混合驱动的柔性微创手术操作臂及制备方法

文档序号:9478680阅读:485来源:国知局
混合驱动的柔性微创手术操作臂及制备方法
【技术领域】
[0001]本发明涉及一种微创手术器械及制造,特别涉及一种用智能材料(介电弹性体DE)制备驱动器单元并结合以Jamming(阻塞)原理设计的刚度调节外套的组装方法来制造的微创手术操作器具。
【背景技术】
[0002]随着科学技术发展和人们对医疗服务质量要求日益增长,微创手术作为临床治疗新模式正逐步获得广泛应用。微创手术相对于传统开放式手术具有创口小、出血少、疼痛轻、术后恢复快等优点,已经成为医疗手术的主流方式。未来微创手术向着自然腔道和伤口更少的方向发展,这一发展趋势对微创手术器械提出了更高的要求。要求器械具有多自由度的柔性驱动功能,能够保证操作精确,具有安全可靠的机械稳定性和对生命组织接触无损伤性以及优良的生物抗菌性。
[0003]多自由度操作臂是微创技术未来发展的研究难点,目前操作臂研究围绕机械传动与驱动的传递方式展开,主要特点是直臂加关节来实现分段弯曲和操作功能。目前商业化微创手术器械中最为先进的是Intuitive Surgical公司的Da Vinci手术机器人,该公司申请了多项关于多自由度手术臂的专利(W0 2007146987 A3和TO 2007120952 A3)。
[0004]到目前为止,关于柔性智能手术操作臂的研究已引起了国内学者的关注,天津大学发明了一种辅助微创外科手术的主从一体式机械臂并对传统的机械臂结构布置方案进行了改进(文献号:CN101889900B和CN 102973317A);哈尔滨工业大学(文献号:CN102973317A)基于齿轮啮合及丝杠传动等机械原理,设计了一款多自由度微创外科手术操作臂。这款操作臂在多个电机驱动下可实现稳定的多自由度操作。虽然上述结构在一定的程度上实现了手术臂多自由度的要求,但大多是以多机械关节,拉线电机等形式实现的。由于过多的机械结构装配形成许多缝隙,易成为细菌和病垢的藏匿区,即使采用灭菌措施也很难彻底消毒。同时,刚性机械关节的刚度与人体组织的刚度相距甚大,容易对人体造成伤害。
[0005]新型智能材料-DE (介电弹性体)的出现,为微创手术操作臂的全柔性多自由度驱动提供了一种全新设计思路。这种材料在外加电激励下可产生大变形,当激励撤除后,它又能恢复到原始的形状尺寸;此外,该材料在外力作用下发生形变,在一定条件下能产生相应的电信号。相对于传统智能材料,DE具有质量轻、运动灵活、能耗低、易于成形以及经受大变形而不易疲劳损伤等突出优点,从而使其迅速成为智能材料领域的一个研究热点。作为驱动器已应用于仿生爬行机器人、柔性抓取手,人工肌肉等领域。

【发明内容】

[0006]针对【背景技术】中所提到的手术臂刚度大、多机械关节等不足,并结合DE材料及纤维Jamming结构最新技术成果,本发明的目的在于提供一种接近全柔性、刚度可调节且可实现多自由度蛇形变形的微创手术操作器械。
[0007]为了达到以上目的,本发明是采取如下技术方案予以实现的:
[0008]一种混合驱动的柔性微创手术操作臂,其特征在于,包括至少两节相互密封连接的DE圆柱驱动器单元,其外周设有刚度调节层和封装外套,其中,DE圆柱驱动器单元包括一个驱动器骨架和一个卷绕在该骨架外周的柔性驱动层,该柔性驱动层外周再设置一绝缘封装层;所述驱动器骨架由一根空心的硅橡胶管连接两端的基座组成;所述柔性驱动层由两层DE薄膜夹一层纤维组成,该纤维沿周向环绕、沿轴向平行排列,所述柔性驱动层里面设有沿周向均布的多个碳膏电极,各碳膏电极由导线从碳膏电极间的空白区域引出,汇聚至组装好的手术操作臂一端的控制电路中;所述基座均带有可通过支撑气体和提供组织取样的孔道,其中,取样孔道与硅橡胶管连通;支撑气体孔道与本节DE圆柱驱动器单元中的腔体连通。
[0009]上述混合驱动的柔性微创手术操作臂的制备方法,其特征在于,包括下述步骤:
[0010](1)在一根硅橡胶管两端装配基座形成驱动器骨架,每个基座均带有可通过支撑气体和提供组织取样的孔道;
[0011](2)制备单节DE圆柱驱动器单元:
[0012]a、对介电弹性体DE进行等双轴拉伸成矩形薄膜,然后沿矩形长度排列纤维,纤维间相互平行;将另一张等双轴拉伸的DE矩形薄膜与之粘接,实现两层薄膜夹一层纤维的柔性驱动层;
[0013]b、在柔性驱动层表面涂覆碳膏电极,其图形在柔性驱动层长度方向上多等分均匀排列,各碳膏电极上打印导线,并从电极间的空白区域引出,最后将涂覆好碳膏电极的柔性驱动层卷绕在基座与硅橡胶管所构成的驱动器骨架外侧,其中取样孔与硅橡胶管连通,支撑气体孔与本节DE圆柱驱动器单元的腔体连通;
[0014](3)将至少两节步骤(2)所得单节DE圆柱驱动器单元相互粘接在一起,并在柔性驱动层外周涂覆一层绝缘层构成微创手术操作臂连接体;
[0015](4)在步骤(3)微创手术操作臂连接体的外周设置刚度调节外套,两端套上密封卡箍;
[0016](5)在刚度调节外套外周套上封装外套,两端用密封扎带将封装外套紧固。
[0017]上述方案中,所述刚度调节层由多个尼龙纤维环帘自下而上错层粘接在手术操作臂DE圆柱驱动器单元的绝缘封装层上,所述每个尼龙纤维环帘是用一条胶带将尼龙纤维粘接成“梳子”状,并按DE圆柱驱动器单元的外径卷绕而成。
[0018]所述封装外套为Ecoflex0030娃橡胶套,A, B组分的调配为1: 1,其中加入纳米铜离子,搅拌均匀并倒入模具中,在室温下固化后脱膜制成。
[0019]所述碳膏电极沿柔性驱动层里面周向均布四个,每个碳膏电极所占DE圆柱驱动器单元的圆心角度为80°。
[0020]本发明手术操作臂主要通过气-电混合驱动的形式实现多自由度变形。施加电压前整体结构依靠气体进行支撑,实现稳定的“直杆”状态。而刚度调功能则是通过抽真空的方式实现。当刚度调节外套内部气室与外界大气压想通时,尼龙纤维间的摩擦力很小,手术臂处于自由变形态或“软”状态;当对刚度调节外套内气室进行抽真操作时,外界大气迅速压将尼龙纤维紧紧的压在一起,从而纤维间的摩擦力也大大的提高,使得手术臂在圆柱形母线方向无法伸长或缩短,从而实现变形的“锁定”或者“硬”状态。在实际手术过程中,为了手术臂能够稳定的进入人体腹腔,首先利用真空栗对刚度调节外套施加负压,在外界大气压下,尼龙纤维间的摩擦力迅速增加,手术臂的刚度则迅速提高,成为稳定的直杆状。当手术臂顺利进入人体腹腔或自然腔道后,需要调节姿态时,断开真空栗与刚度调节外套的连接,这时手术臂的刚度迅速下降。当刚度降低到一定程度时,对DE驱动单元加载电压,控制单节DE驱动器的两对电极,此时柔性驱动器内气压和电场同时做功,可实现空间弯曲变形。通过合理控制每个电极的所加载的电压载荷大小便可实现单节驱动空间多角度弯曲变形。经过多节驱动单元的变形叠加,手术操作臂末端工作区则可绕过人体重要器官或沿人体内复杂腔道到达病变位置进行手术操作。当手术臂末端到达病变位置时,为了保障操作过程的稳定,再次将刚度调节外套与真空栗相连接,快速提升手术臂的整体刚度,使手术操作者能够稳定、安全的实施手术。当手术操作结束后,再次将刚度调节外套单元与外界大气压接通,降低手术臂的刚度,以保障手术臂安全撤出人体。
[0021]本发明使用硅橡胶及DE材料,这些材料都具有良好的生物兼容性,不会对人体带来不良影响。采用纳米铜离子封装杀菌,避免引起的人体感染,降低病人的痛苦。
【附图说明】
[0022]图1?图4为本发明手术操作臂所涉及的基座结构图。其中;图1为顶部基座;图2为中部基座(上);图3为中部基座(下);图4为底部基座。每图中的b图均为a图的剖视图。
[0023]图5为手术操作臂基座与硅橡胶管组装图。
[0024]图6为手术操作臂的单节臂制备工艺图。
[0025]图7为手术操作臂单节驱动器结构图。其中b图为a图的剖视图。
[0026]图8为手术操作臂整体组装图。
[0027]图9为尼龙纤维粘接成束。
[0028]图10为尼龙纤维束成环
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1