人工心脏瓣膜和递送装置的制造方法

文档序号:10616883阅读:336来源:国知局
人工心脏瓣膜和递送装置的制造方法
【专利摘要】本公开涉及基于导管的人工心脏瓣膜的实施例,并且具体地涉及具有被构造成密封在人工瓣膜和原生瓣环的周围组织之间的界面的密封构件的人工心脏瓣膜的实施例,其中人工瓣膜被移植在该界面中。本公开也公开了制作导引器鞘管的新方法,所述导引器鞘管带有用于将医疗设备经皮插入患者中的内衬。
【专利说明】
人工心脏瓣膜和递送装置
技术领域
[0001] 本公开涉及人工瓣膜(例如,人工心脏瓣膜)和用于移植人工瓣膜的递送装置的实 施例。
【背景技术】
[0002] 多年来,人工心脏瓣膜已经用于治疗心脏瓣膜疾病。原生心脏瓣膜(诸如主动脉 瓣、肺动脉瓣和二尖瓣)在保证充分血液供应向前流动通过心血管系统的方面提供重要的 功能。由于先天的、炎性的或传染性的条件,这些心脏瓣膜能够被致使不太有效。瓣膜的这 种损伤能够导致严重的心血管危害或死亡。多年来,对这种疾病的确定性治疗是在心脏直 视手术期间瓣膜的外科手术修复或替换,但这种外科手术易有许多并发症。最近,已经研发 经血管技术,用于以比心脏直视手术更小侵害的方式使用柔性导管引入并植入人工心脏瓣 膜。
[0003] 在该技术中,人工瓣膜在卷曲状态中被安装在柔性导管的末端部分上并且被推进 通过患者的血管直到人工瓣膜到达植入部位。导管尖端处的人工瓣膜然后在有缺陷的原生 瓣膜的部位处扩张到其功能尺寸,诸如通过使其上安装有人工瓣膜的球囊膨胀/充气。可替 代地,人工瓣膜能够具有弹性、自扩张的支架或框架,当人工瓣膜从导管远端处的递送鞘管 被推进时,所述支架或框架将人工瓣膜扩张到其功能尺寸。
[0004] 主要由于钙化,可扩张人工瓣膜被部署在其中的原生瓣膜瓣环通常具有不规则形 状。结果,在人工瓣膜的扩张框架和周围组织之间可存在小的缝隙。缝隙能够允许以与血液 通过瓣膜的正常流动相反的方向流动的血液的回流(泄漏)。为了使回流最小化,已经研发 了密封人工瓣膜和周围组织之间的界面的各种密封设备。

【发明内容】

[0005] 本公开涉及基于导管的人工心脏瓣膜的实施例,并且具体地,涉及具有被构造成 密封人工瓣膜和原生瓣环的周围组织之间的界面的密封构件的人工心脏瓣膜的实施例,其 中人工瓣膜被移植在该界面中。本公开也公开了制作导引器鞘管的新方法,所述导引器鞘 管带有用于将医疗设备经皮插入患者中的内衬。
[0006] 在一个有代表性的实施例中,人工心脏瓣膜包含可塌缩且可扩张的环形框架,该 环形框架被构造成被塌缩至径向塌缩状态从而用于安装在递送装置上并且在身体内被扩 张至径向扩张状态。框架具有流入端、流出端,以及从流入端延伸至流出端的纵向轴线,并 且该框架包含限定多个网格(cell)的多个行的多个支杆。人工心脏瓣膜也包含安装在环形 框架内的可塌缩且可扩张的瓣膜构件,和安装在环形框架内的可塌缩且可扩张的裙型 (skirt)组件。裙型组件包含上裙部、下裙部和密封裙部。上裙部和下裙部防止密封裙部接 触瓣膜构件并且也能够将瓣膜构件耦连至环形框架。当环形框架扩张至其径向扩张状态 时,密封裙部的部分向外突出通过框架的网格。
[0007] 在特定实施例中,密封裙部由圈圈纱制成。在进一步的实施例中,密封裙部通过缝 线被安装在人工心脏瓣膜的环形框架内,该缝线将密封裙部和下裙部固定至人工心脏瓣膜 的框架。在附加实施例中,从人工心脏瓣膜的纵向轴线,瓣膜构件从下裙部径向向外安置, 上裙部从瓣膜构件径向向外安置;并且密封裙部从上裙部径向向外安置。在更多实施例中, 下裙部的流出部分被缝合至瓣膜构件的流入部分;并且瓣膜构件的流入部分被缝合至上裙 部的流入部分。
[0008] 在另一个有代表性的实施例中,提供了制作带有用于将医疗设备经皮插入患者的 内衬的导引器鞘管的方法。方法包括将金属套管插入模具中,将包含封闭端和开口端的聚 合物管插入金属套管中,并且对聚合物管加压和加热从而引起聚合物管扩张紧靠着金属套 管的内表面,以便形成鞘管的内衬。
[0009] 在方法的特定实施例中,预成形圆柱形聚合物管由尼龙-12、聚乙烯或氟化乙烯丙 烯共聚物(FEP)制成。在进一步的实施例中,由聚合物管形成的内衬具有从约0.025毫米(约 0.001英寸)到约0.075毫米(约0.003英寸)的径向壁厚。在更多实施例中,金属套管具有从 约0.05毫米(约0.002英寸)到约0.15毫米(约0.006英寸)的径向壁厚。对聚合物管加压和加 热能够包含将加热的压缩气体注入聚合物管中。可替代地,对聚合物管加压能够包含将压 缩的气体注入聚合物管中并且对聚合物管加热能够包括利用与加压的气体分离的热源加 热。在若干实施例中,导引器鞘管被构造成用于将人工心脏瓣膜通过患者股动脉经皮插入。 [0010]在若干实施例中,方法能够包括形成带有内衬和外衬的导引器鞘管,其用于将医 疗设备经皮插入患者。在方法的一些实施例中,预成形圆柱形聚合物管被用于形成外衬。在 特定实施例中,被用于形成外衬的预成形圆柱形聚合物管能够由尼龙-12、聚醚嵌段酰胺或 聚乙烯制成。在进一步的实施例中,外衬具有从约0.012毫米(约0.0005英寸)到约0.075毫 米(约0.003英寸)的径向壁厚。
[0011] 参照附图进行以下具体描述,本发明的前述和其他对象、特征和优势将会更加明 显。
【附图说明】
[0012] 图1为根据一个实施例的人工瓣膜的透视图,所述人工瓣膜能够用于替换原生心 脏主动脉瓣膜。
[0013] 图2为图1的一部分人工瓣膜的透视图,其图示说明两个小叶至人工瓣膜的支撑框 架的连接。
[0014]图3为图1的人工瓣膜的支撑框架的侧正视图。
[0015] 图4为图1的人工瓣膜的支撑框架的透视图。
[0016] 图5A为心脏的横截面视图,其示出被植入在主动脉瓣环内的图1的人工瓣膜。
[0017] 图5B为图5A的放大视图,其图示说明被植入在主动脉瓣环内的人工瓣膜,其中为 了清楚起见,示出其中人工瓣膜的小叶结构被移除。
[0018] 图6为在被固定到支撑框架之前示出的图1的人工瓣膜的小叶结构的透视图。
[0019] 图7为图1的人工瓣膜的横截面视图。
[0020]图8为递送装置的实施例的横截面视图,所述递送装置能够用于递送并植入人工 瓣膜,诸如图1中所示的人工瓣膜。
[0021 ]图8A至图8C为图8的部段的放大横截面视图。
[0022] 图9为图8的递送装置的分解视图。
[0023] 图10为图8的递送装置的引导导管的侧视图。
[0024] 图11为图10的引导导管的近端部分的透视分解图。
[0025]图12为图10的引导导管的远端部分的透视分解图。
[0026] 图13为图8的递送装置的扭矩轴导管的侧视图。
[0027] 图14为图13的扭矩轴导管的可旋转螺杆的放大侧视图。
[0028] 图15为设置在扭矩轴的末端处的联接构件的放大透视图。
[0029] 图16为在图13的扭矩轴导管中使用的带螺纹螺母的放大透视图。
[0030]图17为图8的递送装置的前端锥形导管(nose cone catheter)的远端部分的放大 侧视图。
[0031] 图17A为图17所示的导管的前端锥形件(nose cone)的放大横截面视图。
[0032] 图17B为图8的递送装置的远端部分的放大横截面视图,其示出在递送鞘管内保持 在压缩状态中的人工瓣膜的支架。
[0033] 图18为图8的递送装置的远端部分的放大侧视图,其示出处于递送位置中的递送 鞘管覆盖为递送到患者中而处于压缩状态的人工瓣膜。
[0034] 图19为图8的递送装置的远端部分的部段的放大横截面视图,其示出瓣膜保持机 构将人工瓣膜的支架固定到递送装置。
[0035] 图20为类似于图19的放大横截面视图,其示出处于释放位置中的瓣膜保持机构的 内叉,用于从递送装置释放人工瓣膜。
[0036] 图21和图22为图8的递送装置的远端部分的放大侧视图,其图示说明扭矩轴的操 作,用于从递送鞘管部署人工瓣膜。
[0037]图23至图26为机动递送装置的实施例的各种视图,所述机动递送装置能够用于操 作图8中所示的递送装置的扭矩轴。
[0038]图27为可替代马达的透视图,所述可替代马达能够用于操作图8中所示的递送装 置的扭矩轴。
[0039]图28A为图10的引导导管轴的远侧段的放大视图。
[0040]图28B示出用于诸如通过激光切割金属管形成图28A所示的轴的部分的切割图案/ 形式(pattern) 〇
[0041]图29A为根据另一个实施例的引导导管轴的远侧段的放大视图。
[0042]图29B示出用于诸如通过激光切割金属管形成图29A的轴的切割图案。
[0043] 图30为根据一个实施例的人工瓣膜的透视图,所述人工瓣膜被固定到递送装置的 末端。
[0044] 图31为根据另一个实施例的人工瓣膜的透视图,所述人工瓣膜能够用于替换原生 心脏主动脉瓣膜。
[0045] 图32为小叶结构的透视图,也示出在被固定到支撑框架之前示出的图31的人工瓣 膜的包括上裙部和下裙部的裙部。
[0046] 图33为在一个实施例中的图31的人工瓣膜的横截面视图,其图示说明瓣膜框架、 小叶、上裙部、下裙部和密封裙部的构型。
[0047]图34为在一个实施例中,在附连至瓣膜框架之前的密封裙部的示意图。
[0048] 图35为根据一个实施例的包括密封裙部的人工瓣膜的透视图,所述人工瓣膜能够 用于替换原生心脏主动脉瓣膜。
[0049] 图36为在一个实施例中的图35的一部分人工瓣膜的透视图,其图示说明密封裙部 以及密封裙部至人工瓣膜的支撑框架的连接。
[0050] 图37为类似于图36的透视图,其图示说明密封裙部的修改。
[0051]图38为类似于图36的透视图,其图示说明密封裙部的修改。
[0052]图39为图35的一部分人工瓣膜的透视图,其图示说明密封裙部的另一种构型。 [0053]图40A为根据另一个实施例的导引器鞘管的透视图。
[0054]图40B为图40A的导引器鞘管的套管的放大透视图。
[0055]图41为套管的另一个实施例的放大透视图,所述套管能够与图40A的导引器鞘管 一起使用。
[0056]图42为能够与图40A的导引器鞘管一起使用的套管的端视图。
[0057]图43为根据另一个实施例的导引器鞘管的一段套管的透视图。
[0058]图44为根据另一个实施例的用于导引器鞘管的金属套管的侧正视图。
[0059]图45示出用于形成图43的金属套管的切割图案。
[0060]图46示出用于形成图44的金属套管的切割图案。
[00611图47示出类似于图46但具有较窄的孔口的切割图案。
[0062]图48和图49为图示说明模制用于导引器鞘管的金属套管的内衬的方法的横截面 视图。
【具体实施方式】
[0063] 为了该描述的目的,本文描述了本公开的实施例的某些方面、优点和新颖特征。无 论如何,描述的方法、系统和装置不应该被解释为限制性的。相反,本公开涉及各种公开的 实施例(无论是单独地还是彼此的各种组合和子组合)的所有新颖且非显而易见的特征和 方面。公开的方法、系统和装置不限于其任何具体方面、特征或其组合,公开的方法、系统和 装置也不要求出现任何一个或多个具体的优点或解决的问题。
[0064] 虽然为了便于表达,以特定的、连续的顺序描述公开的方法中的一些的操作,但应 该理解,这种描述方式包括重新布置,除非以下阐述的具体语言要求特定的顺序。例如,连 续描述的操作可以在一些情况下被重新布置或同时执行。此外,为了简单起见,附图没有示 出所公开的方法、系统和装置能够与其它系统、方法和装置结合使用的各种方式。
[0065] 如本文使用的,术语"一个"、"一种"和"至少一个"包括一个或更多个具体元素。就 是说,如果存在两个特定元素,也可以存在这些元素中的一个并且因此存在"一个"元素。术 语"多个"和"多种"表示两个或更多个指定元素。
[0066] 如本文使用的,在列举元素的最后两个元素之间使用的术语"和/或"表示所列元 素的任何一个或多个。例如,短语"A、B和/或C表示"A"、"B"、"C"、"A和B"、"A和C"、"B和C"或 "Α^(Τ〇
[0067] 如本文使用的,术语"耦连"通常指物理耦连的或链接的,而不排除在缺少具体相 反语言情况下的耦连项之间的中间元素的存在。
[0068] 首先参照图1,示出根据一个实施例的人工主动脉心脏瓣膜10。人工瓣膜10包括支 撑可扩张瓣膜构件的可扩张的框架构件,或支架12,在图示说明的实施例中可扩张瓣膜构 件包含柔性小叶部段14。人工瓣膜10可径向地压缩到压缩状态以用于穿过身体递送到部署 部位并且在部署部位处可扩张到图1所示的其功能尺寸。在特定实施例中,人工瓣膜10为自 扩张的;也就是说,当人工瓣膜从递送鞘管的远端被推进时,人工瓣膜能够径向扩张到其功 能尺寸。下面详细描述特别适合于自扩张人工瓣膜的经皮递送和植入的装置。在另一些实 施例中,人工瓣膜能够为球囊扩张式人工瓣膜,其能够适于以压缩状态安装在递送导管的 球囊上。如本领域所熟知的那样,通过使球囊膨胀,人工瓣膜能够在部署部位处扩张到其功 能尺寸。
[0069] 虽然所示的人工瓣膜10也能够用于替换心脏的其它原生瓣膜(主动脉瓣、肺动脉 瓣和二尖瓣),但人工瓣膜10适于部署在原生主动脉瓣环内。此外,人工瓣膜10能够适于替 换身体内其它的瓣膜,诸如静脉瓣。
[0070] 为了图示说明的目的,图3和图4示出没有小叶部段14的支架12。如图所示,支架12 能够由多个纵向延伸的大体正弦形的框架构件或支杆16形成。支杆16形成有交替的弯曲, 并且在由邻近的弯曲的顶点形成的节点18处彼此焊接或以其他方式彼此固定以便形成网 状结构。支杆16能够由合适的形状记忆材料制成,所述形状记忆材料诸如被称为镍钛诺的 镍钛合金,所述形状记忆材料允许人工瓣膜压缩到减小的直径以用于在递送装置(诸如如 下所述)中递送,并且然后当人工瓣膜从递送装置部署时引起人工瓣膜在患者体内扩张到 其功能尺寸。如果人工瓣膜为球囊可扩张的人工瓣膜,支架12能够由合适的延性材料制成, 所述延性材料诸如不锈钢,其中球囊可扩张的人工瓣膜适于卷曲到递送装置的可膨胀球囊 上并且通过球囊的膨胀扩张到其功能尺寸。
[0071] 支架12具有流入端26和流出端27。由支杆16形成的网状结构包括大体圆柱形的 "上"或流出端部分20、向外弯成弓形或胀大的中间部段22,以及向内弯成弓形的"下"或流 入端部分24。中间部段22理想地被定尺寸且被成形以延伸到主动脉根中的瓦尔萨耳瓦窦 (Valsalva sinuses)中,从而一旦人工瓣膜被植入则有助于将人工瓣膜锚定在适当位置 中。如图所示,网状结构理想地具有沿其整体长度的弯曲形状,网状结构的直径从流出端部 分20到中间部段22逐渐增加,然后直径从中间部段22到流入端部分24上的位置逐渐减小, 并且然后直径逐渐增加以形成在流入端26处结束的扩口部分。
[0072]当人工瓣膜处于其扩张状态中时,中间部段22具有直SD1,流入端部分24具有最 小直径D2,流入端26具有直径D3,并且流出端部分20具有直径D4,其中D2小于DjPD 3,且D4小 于出。此外,理想地,DjPD3大于原生瓣环的直径,人工瓣膜将被植入原生瓣环中。以此方式, 支架12的总体形状有助于将人工瓣膜保持在植入部位处。更具体地,并且参照图5A和图5B, 人工瓣膜10能够被植入在原生瓣膜(在图示的示例中的主动脉瓣)内,使得下部部段24被安 置在主动脉瓣环28内,中间部段24在主动脉瓣环上方延伸到瓦尔萨耳瓦窦56内,并且下部 扩口末端26在主动脉瓣环下方延伸。人工瓣膜10通过下部部段24抵抗主动脉瓣环28的周围 组织的径向向外力以及支架的几何结构而被保持在原生瓣膜内。具体地,中间部段24和扩 口下部末端26径向向外延伸超过主动脉瓣环28以更好地抵抗人工瓣膜在下游方向和上游 方向上(朝向主动脉和远离主动脉)的轴向变位。如图5B所述,根据原生小叶58的状况,人工 瓣膜通常被部署在原生瓣环28内,其中原生小叶58向上折叠并且被压缩在支架12的外表面 和瓦尔萨耳瓦窦的壁之间。在一些情况下,期望的是在植入人工瓣膜10之前切除小叶58。
[0073]具有自扩张框架的熟知的人工瓣膜通常具有额外的锚定设备或框架部分,该额外 的锚定设备或框架部分延伸到脉管系统的非患病区域内并且被固定到脉管系统的非患病 区域。因为支架12的形状有助于保持人工瓣膜,所以不需要额外的锚定设备,并且支架的总 长度L能够被最小化以防止支架上部20延伸到主动脉的非患病区域中,或至少使上部20最 小程度地延伸到主动脉的非患病区域中。在需要未来干预的情况下,避开患者的脉管系统 的非患病区域有助于避免并发症。例如,因为支架主要被锚定到原生瓣膜的患病部分,所以 人工瓣膜能够被更容易从患者移除。此外,较短的人工瓣膜更容易围绕主动脉弓进行导航。 [0074]在特定实施例中,对于打算用在22毫米到24毫米的瓣环中的人工瓣膜,直径Dl为 从约28毫米到约32毫米,其中约30毫米为具体示例;直径D2为从约24毫米到约28毫米,其中 约26毫米为具体示例;直径D3为从约28毫米到约32毫米,其中约30毫米为具体示例;并且直 径D4为从约24毫米到约28毫米,其中约26毫米为具体示例。在特定实施例中的长度L为从约 20毫米到约24毫米,其中约22毫米为具体示例。
[0075] 参照图1,支架12能够具有柱30形式的多个成角度间隔的保持臂或凸起(在所示实 施例中有三个),保持臂或凸起从支架上部20延伸。每个保持臂30具有各自的孔口 32,孔口 32被定尺寸以接收瓣膜保持机构的叉状物,所述瓣膜保持机构的叉状物能够用于在人工瓣 膜和递送装置之间形成可释放的连接(如下所述)。在可替代的实施例中,如果不使用瓣膜 保持机构,则不需要提供保持臂30。
[0076] 如图6和图7最佳示出的,所示实施例中的小叶组件14包括由柔性材料制成的三个 小叶34&、3仙、34〇。每个小叶具有流入端部分60和流出端部分62。小叶能够包括任何合适的 生物材料(例如,心包组织,诸如牛心包或马心包)、生物相容性合成材料或其它此类材料, 诸如美国专利No. 6,730,118中描述的那些。小叶组件14能够包括环形加强裙部42,环形加 强裙部42在邻近人工瓣膜的流入端的缝合线44处被固定到小叶34a、34b、34c的流入端部 分。通过将裙部42缝合到支架的下部部段24的支杆16,小叶组件14的流入端部分能够被固 定到支架12(如图1最佳示出)。如图7所示,小叶组件14能够进一步包括内部加强带46,内部 加强带46被固定到小叶的流入端部分60的内表面。
[0077]参照图1和图2,小叶组件14的流出端部分能够在小叶34a、34b、34c的三个成角度 间隔的连合附连处被固定到支架12的上部。如图2最佳示出,能够通过在由两个小叶形成的 连合处围绕一对小叶的相邻的上边缘部分38包裹加强部段36并且用缝线48将加强部段36 固定到边缘部分38,来形成每个连合附连。加强材料和小叶的夹层然后能够用缝线50邻近 支架的流出端固定到支架12的支杆16。因此,小叶理想地沿支架的整个长度或基本整个长 度从流入端26延伸到流出端27。加强部段36加强小叶到支架的附连,以便使在缝合线处的 应力集中最小化并且避免在使用过程中折曲的小叶部分上的"针孔"。加强部段36、裙部42 和内部加强带46(图7)理想地由诸如聚四氟乙烯(PTFE)的生物相容性合成材料或诸如编织 聚酯(例如,聚对苯二甲酸乙二酯(PET)、DACRON?)的织物材料制成。
[0078]图7示出人工瓣膜10的操作。在心脏舒张期间,小叶34a、34b、34c塌缩从而有效地 闭合人工瓣膜。如图所示,支架12的中间部段22的弯曲形状在中间部段和小叶之间限定空 间,该空间模拟瓦尔萨耳瓦窦。因此,当小叶闭合时,进入"窦"的回流沿小叶的上表面产生 血液湍流,如箭头52所指示。该湍流有助于清洗小叶和裙部42从而使凝块形成最小化或减 少凝块形成。
[0079] 人工瓣膜10能够以逆行的方法植入,其中以卷曲状态安装在递送装置的远端处的 人工瓣膜经由股动脉被引入到身体中并且通过主动脉弓被推进到心脏,如在美国专利公开 No · 2008/0065011中进一步描述的。
[0080] 图8和图9示出根据一个实施例的递送装置100,其能够用于将自扩张人工瓣膜(诸 如上述的人工瓣膜10)递送通过患者的脉管系统。递送装置100包括具有细长轴104的第一 最外层导管或主导管1〇2(图10中单独示出),主导管102的远端被耦连到递送鞘管106(图 18;也称为递送柱体)。主导管102的近端被连接到递送装置的手柄。图23至图26示出具有用 于操作递送装置的电动马达的手柄机构的实施例。下面详细描述手柄机构。在人工瓣膜的 递送期间,外科医生能够使用手柄,以便使递送装置通过患者的脉管系统推进和缩回。虽然 没有要求,但主导管102能够包括引导导管,其被构造成随着轴104被推进通过患者的脉管 系统,允许外科医生引导或控制轴104的远端部分的弯曲或折曲的量,诸如下面进一步描 述。引导导管的另一个实施例被公开在美国专利公开No. 2008/0065011中。
[0081] 如图9最佳示出,递送装置100还包括第二中间导管108(本文也被称为扭矩轴导 管),其具有细长轴110 (本文也被称为扭矩轴)和连接到轴110的远端的细长螺杆112。中间 导管108的轴110同轴地延伸通过主导管102的轴104。递送装置100还能够包括第三前端锥 形导管118,第三前端锥形导管118具有细长轴120和固定到轴120的远端部分的前端件或前 端锥形件122。前端件122能够具有渐缩的外表面,如图所示,用于通过患者脉管系统进行无 创伤追踪。前端锥形导管的轴120延伸通过人工瓣膜10(图8至图9中未示出)和中间导管108 的轴110。在所示的构型中,最内的轴120被构造成相对于轴104、110可轴向地且可旋转地移 动,并且扭矩轴110被构造成相对于轴104、120可旋转,从而实现人工瓣膜从递送装置的瓣 膜部署和释放,如在下面详细描述的。此外,最内的轴120能够具有腔,腔用于接收引导线从 而使得递送装置能够在引导线上推进到患者的脉管系统内部。
[0082] 如图10最佳示出的,外导管102能够包括在其近端处的折曲控制机构168,用于在 外轴104的远端部分被推进通过患者的脉管系统时,控制外轴104的远端部分的弯曲或折曲 的量,诸如下面进一步描述的。外轴104能够包括近侧段166和远侧段126,其中近侧段166从 折曲控制机构168延伸,远侧段126包括开槽的金属管,所述开槽的金属管增加该位置处的 外轴的挠性。远侧段126的远端部分能够包括瓣膜保持机构114 (图8和图8B)的外叉130,外 叉130被构造成在瓣膜递送过程中将人工瓣膜10可释放地固定到递送装置100,如在下面所 详细描述的。
[0083]图28A为外轴104的远侧段126的一部分的放大视图。图28B示出能够用于通过激光 在金属管中切割图案来形成远侧段126的切割图案。远侧段126包括多个互连的环形带或链 节(link) 160,其形成开槽的金属管。牵引线162能够被安置在远侧段126的内部并且能够从 远侧段126的位置164(图10和图12)延伸到折曲控制机构。牵引线162的远端能够诸如通过 焊接被固定到位置164处的远侧段126的内表面。牵引线162的近端能够被可操作地连接到 折曲控制机构168,折曲控制机构168被构造成施加和释放张力到牵引线以便控制轴的弯 曲,如下面进一步描述的。轴的链节160以及相邻链节之间的间隙被成形为当施加轻微拉力 到牵引线162上时就允许轴的弯曲。在图示说明的实施例中,如图12最佳示出,远侧段126被 固定到具有不同构造(例如,一层或多层聚合物管件)的近侧段166。在图示说明的实施例 中,近侧段166从折曲控制机构168延伸到远侧段126,并且因此形成了外轴104的大部分长 度。在可替代的实施例中,外轴104的整体长度或基本整体长度能够由包括一段或多段互连 的链节160的开槽的金属管形成。在任何情况下,具有此类构造的主轴的使用能够允许递送 装置高度地可操控。
[0084] 链节160的宽度能够被改变,从而改变远侧段沿其长度的挠性。例如,开槽的管的 远端部分内的链节能够相对较窄,从而增加在那个位置处的轴的挠性,而开槽的管的近端 部分内的链节能够相对较宽,以便轴在那个位置处相对不太柔韧。
[0085] 图29A示出在126'处指示的远侧段的可替代实施例,所述远侧段126'能够例如通 过激光切割金属管来形成。段126'能够包括递送装置的外轴的远侧段(如图12所示),或者 外轴的基本整个长度能够具有图29A所示的构造。图29B示出用于形成段126'的切割图案。 在另一个实施例中,递送装置能够包括复合外轴,复合外轴包括用聚合物外层层压而成的 激光切割金属管,该聚合物外层融合在金属层中的间隙内。在一个示例中,复合轴能够包括 具有图29A和图29B的切割图案的激光切割金属管以及融合在金属管的链节160之间的间隙 中的聚合物外层。在另一个示例中,复合轴能够包括具有图28A和图28B的切割图案的激光 切割金属管以及融合在金属管的链节160之间的间隙中的聚合物外层。复合轴还能够包括 融合在金属管的链节160之间的间隙中的聚合物内层。
[0086]参照图8A和图11,折曲控制机构168能够包括可旋转的外壳或手柄部分186,外壳 或手柄部分186容纳安装在导轨192上的滑动螺母188。通过一个或更多个杆192防止滑动螺 母188在外壳内旋转,每个杆192被部分地设置在导轨192内的相应凹陷中以及螺母188内侧 上的凹槽或凹陷中。牵引线162的近端被固定至螺母188。螺母188具有啮合外壳的内螺纹的 外螺纹。因此,根据外壳的旋转方向,旋转外壳186引起螺母188沿近侧或远侧方向在外壳内 轴向移动。沿第一方向(例如,顺时针方向)旋转外壳引起螺母在近侧方向上行进,从而施加 张力到牵引线162,这引起递送装置的远端弯曲或折曲。沿第二方向(例如,逆时针方向)旋 转外壳引起螺母在远侧方向上行进,从而释放牵引线162中的张力并允许递送装置的远端 在其自身弹性下折回到它的预折曲构型。
[0087] 如图13最佳示出,扭矩轴导管108包括环128形式的环形凸起(也被称为锚定圆 盘),环128被安装在邻近螺杆112的扭矩轴110的远端部分上。环128被固定到扭矩轴110的 外表面,使得它相对于扭矩轴不能轴向或旋转地移动。外轴104的内表面形成有诸如槽或凹 陷的特征,该特征以这样的方式接收环128,即,环和外轴104的内表面上的相应的特征允许 扭矩轴110相对于外轴104旋转但阻止扭矩轴相对于外轴轴向移动。接收环128的外轴104上 的相应特征能够是在远侧段126中形成的向内延伸的凸耳部分,诸如图12的164处所示。在 图示说明的实施例中(如图14最佳示出),环128是螺杆112的组成部分(即,螺杆112和环128 是单个部件的部分)。可替代地,螺杆112和环为单独形成的部件但它们都被稳固地固定到 扭矩轴110的远端。
[0088]扭矩轴110理想地被构造成相对于递送鞘管106可旋转,从而实现人工瓣膜10从递 送鞘管106的递增的且受控的推进。为了达到这种目的,并且根据一个实施例,递送装置100 能够包括安装在螺杆112的外螺纹上的螺纹螺母150形式的鞘管保持环。如图16最佳示出, 螺母150包括啮合螺杆的外螺纹的内螺纹152,和轴向延伸的支腿154。每个支腿154具有凸 起的远端部分,该凸起的远端部分延伸到鞘管106的近端中的开口 172内和/或形成与鞘管 106的近端中的开口 172的卡接配合连接(如图18最佳示出),以便将鞘管106固定到螺母 150。如图17B和图18所图示说明,鞘管106在人工瓣膜10上延伸并使人工瓣膜保持在径向压 缩状态中,直到鞘管106被使用者缩回以部署人工瓣膜。
[0089] 如图21和图22最佳示出,瓣膜保持机构的外叉130包括多个叉状物134,每个叉状 物134延伸通过限定在螺母的两个邻近的支腿154之间的区域,以便防止在螺杆旋转时螺母 相对于螺杆112旋转。因此,扭矩轴110(并且因此螺杆112)的旋转引起螺母150的相应的轴 向移动。螺母150和鞘管106之间的连接被构造成使得螺母沿螺杆112(在远侧或近侧方向 上)的轴向移动引起鞘管106相对于螺杆和瓣膜保持机构在相同方向上轴向移动。图21示出 处于远侧位置的螺母150,其中鞘管106(图21中未示出)在人工瓣膜10上延伸并且将人工瓣 膜10保持在压缩状态中以便递送。螺母150从远侧位置(图21)到近侧位置(图22)的移动引 起鞘管106在近侧方向上移动,从而从鞘管106部署人工瓣膜。用于实现鞘管106的轴向移动 的扭矩轴110的旋转能够使用机动机构或通过手动转动曲柄或轮完成(如在美国专利公开 No. 2012/0239142 中所描述的)。
[0090] 图17示出被固定到最内的轴120的远端的前端锥形件122的放大视图。在所图示说 明的实施例中的前端锥形件122包括近端部分174,近端部分174被定尺寸以适配在鞘管106 的远端内部。前端锥形件的中间部段176紧邻在使用中的鞘管的末端被安置,并且形成有多 个纵向凹槽或凹进部分178。中间部段176在其近端180处的直径理想地稍大于鞘管106的外 直径。近端180能够保持与鞘管106的远端紧密接触,从而防止周围组织与鞘管的金属边缘 接触。随着递送装置被推进通过导引器鞘管,凹槽178允许中间部段被径向压缩。这允许前 端锥形件122相对于导引器鞘管的内直径有稍过大的尺寸。图17B示出前端锥形件122和递 送位置中的鞘管106的横截面,其中人工瓣膜以压缩的递送状态保持在鞘管106内(为了图 示说明的目的,仅示出人工瓣膜的支架12)。如图所示,中间部段176的近端180能够邻接鞘 管106的远端,并且前端锥形件的渐缩近侧表面182能够在支架12的远端部分内延伸。
[0091] 如上所述,递送装置100能够包括用于可释放地保持人工瓣膜的支架12的瓣膜保 持机构114 (图8B)。瓣膜保持机构114能够包括外叉130 (如图12最佳示出)(也称为"外三叉" 或"释放三叉")形式的第一瓣膜固定部件,以及内叉132(如图17最佳示出)(也称为"内三 叉"或"锁定三叉")形式的第二瓣膜固定部件。外叉130与内叉132协作以形成与支架12的保 持臂30的可释放连接。
[0092]外叉130的近端被连接到外轴104的远侧段126,并且外叉的远端被可释放地连接 到支架12。在所图示说明的实施例中,虽然这些部件能够被分开形成并且随后彼此连接,但 外叉130和远侧段126也能够整体形成为单个部件(例如,外叉和远侧段能够被激光切割或 另外由金属管的单件机加工而成)。内叉132能够被安装在前端导管轴120上(如图17最佳示 出)。内叉132将支架连接到前端导管轴120的远端部分。如下面进一步描述的,前端导管轴 120能够相对于外轴104轴向移动,从而从瓣膜保持机构释放人工瓣膜。
[0093]如图12最佳示出,外叉130包括与支架12的保持臂30对应的多个成角度间隔的叉 状物134(在所图示说明的实施例中有三个),其中叉状物从远侧段126的远端延伸。每个叉 状物134的远端部分包括各自的开口 140。如图17最佳示出,内叉132包括与支架12的保持臂 30对应的多个成角度间隔的叉状物136 (在所图示说明的实施例中有三个),其中叉状物从 内叉的近端处的基底部分138延伸。内叉的基底部分138被稳固地固定到前端导管轴120(例 如,用合适的粘合剂),以防止内叉相对于前端导管轴120的轴向移动和旋转移动。
[0094]外叉130的每个叉状物与内叉的对应叉状物136协作以形成与支架的保持臂30的 可释放连接。在图示说明的实施例中,例如,每个叉状物134的远端部分形成有开口 140。当 人工瓣膜被固定到递送装置时(如图19最佳示出),支架12的每个保持臂30向内延伸穿过外 叉的叉状物134的开口 140,并且内叉的叉状物136穿过保持臂30的开口 32插入以便保持该 保持臂30以免其退回到开口 140外。图30也示出在人工瓣膜被装载到鞘管106中之前通过内 叉和外叉固定到递送装置的人工瓣膜10。能够看到螺纹螺母150被放置在外叉130的叉状物 之间。人工瓣膜10准备被压缩且被装载到递送装置的鞘管106中。向近侧(在图20的箭头184 的方向上)缩回内叉状物136以使叉状物从开口 3 2移出有效地从保持机构释放人工瓣膜10。 当内叉132被移动到近侧位置时(图20),支架的保持臂30能够在支架的回弹力下从外叉130 中的开口 140向外径向移动。以这种方式,瓣膜保持机构114形成与人工瓣膜的可释放连接, 该可释放连接足够牢固以相对于递送装置保持人工瓣膜,从而允许使用者在人工瓣膜从递 送鞘管部署之后微调或调整人工瓣膜的位置。当人工瓣膜被安置在期望的植入部位处时, 能够通过相对于外轴104缩回前端导管轴120(其相对于外叉130缩回内叉132),释放人工瓣 膜和保持机构之间的连接。
[0095] 一旦人工瓣膜10被装载进递送鞘管106中,递送装置100能够被插入到患者身体中 以便人工瓣膜的递送。在一种方法中,人工瓣膜能够以逆行程序被递送,其中递送装置被插 入到例如股动脉并且被推进通过患者的脉管系统到达心脏。在递送装置插入之前,导引器 鞘管能够被插入到股动脉,紧随导引器鞘管的是引导线,其被推进通过患者的脉管系统通 过主动脉并且进到左心室中。递送装置100然后能够被插入通过导引器鞘管并且在引导线 上推进,直到容纳人工瓣膜10的递送装置的远端部分被推进到邻近原生主动脉瓣的位置或 在原生主动脉瓣内的位置。
[0096] 此后,通过相对于外轴104旋转扭矩轴110,人工瓣膜10能够从递送装置100被部 署。如下所述,扭矩轴110的近端能够可操作地连接到可手动旋转的手柄部分或机动机构, 手柄部分或机动机构允许外科医生实现扭矩轴110相对于外轴104的旋转。扭矩轴110和螺 杆112的旋转引起螺母150和鞘管106朝向外轴的近侧方向上移动(图22),从而从鞘管部署 人工瓣膜。随着人工瓣膜从递送鞘管的开口远端推进并开始扩张,扭矩轴110的旋转引起鞘 管以精确且受控的方式相对于人工瓣膜移动。因此,不同于熟知的递送装置,随着人工瓣膜 开始从递送鞘管推进并扩张,人工瓣膜被保持抵抗来自鞘管的不受控的移动,该不受控的 移动由抵抗鞘管远端的人工瓣膜的扩张力引起。此外,随着鞘管106被缩回,人工瓣膜10凭 借瓣膜保持机构114相对于内轴120和外轴104的末端被保持在静止位置中。正因如此,随着 鞘管被缩回,人工瓣膜10能够相对于身体内的目标位置保持静止。此外,在人工瓣膜从鞘管 被部分地推进之后,期望的是缩回人工瓣膜使其返回到鞘管中,从而例如重新安置人工瓣 膜或从身体完全撤回人工瓣膜。部分部署的人工瓣膜能够通过反向旋转扭矩轴而被缩回返 回到鞘管中,从而引起鞘管106沿远侧方向被推回到人工瓣膜上。
[0097] 在熟知的递送设备中,外科医生必须对轴和/或鞘管施加推-拉力以使人工瓣膜出 鞘。因此,很难在不扭曲轴(例如,轴向压缩或伸展轴)的情况下将力传递到设备的远端,这 进而导致在出鞘过程期间人工瓣膜的不受控的移动。为了减轻这种影响,轴和/或鞘管能够 被制作的更刚性,这是不可取的,因为设备变得难以操控通过脉管系统。相比之下,上述人 工瓣膜出鞘的方式消除如熟知设备中所要求的在轴上施加推-拉力,以便相对大且准确的 力能够被施加到轴的远端,而不损害设备的挠性。在某些实施例中,多达约90N(20镑)的力 能够被传递到扭矩轴的末端,而不会不利地影响出鞘过程。相比之下,在出鞘过程期间,利 用推-拉机构的现有技术设备通常不能超过约20N(5镑)的力。
[0098]在人工瓣膜10从递送鞘管被推进并且扩张到其功能尺寸(图30描绘固定到递送装 置的扩张的人工瓣膜10)之后,人工瓣膜经由保持机构114依然被连接到递送装置。结果,在 人工瓣膜从递送鞘管被推进之后,外科医生能够相对于原生瓣膜中期望的植入位置重新安 置人工瓣膜,诸如通过在近侧和远侧方向上移动递送装置或左右移动递送装置,或旋转递 送装置,从而引起人工瓣膜的相应移动。保持机构114理想地提供人工瓣膜和递送装置之间 的连接,随着人工瓣膜的位置相对于原生瓣膜中的期望植入位置被调整,该连接足够牢固 和坚硬以抵抗血液的流动保持人工瓣膜相对于递送装置的位置。一旦外科医生将人工瓣膜 安置在原生瓣膜中的期望植入位置处,能够通过在近侧方向上相对于外轴104缩回最内的 轴120来释放人工瓣膜和递送装置之间的连接,从而有效地缩回内叉132以使其叉状物136 从人工瓣膜的保持臂30中的开口 32撤回(图20)。外轴104的轻微缩回允许外叉130退出人工 瓣膜的保持臂30,保持臂30向外滑动通过外叉中的开口 140以使人工瓣膜完全脱离保持机 构114。其后,递送装置能够从身体撤回,从而留下植入在原生瓣膜内的人工主动脉瓣10(诸 如图5A和5B所示)。
[0099]递送装置100在其远端处具有由相对刚性的部件构成的半刚性段,该部件用于将 扭矩轴的旋转转换为鞘管的轴向移动。具体地,图示说明的实施例中的该半刚性段由人工 瓣膜和螺杆112构成。递送装置100的优点在于半刚性段的总长度被最小化,因为使用螺母 150而不是外轴上的内螺纹来实现鞘管的平移。半刚性段的减小的长度增加沿递送导管的 远端部分的总挠性。此外,半刚性段的长度和位置保持不变,因为扭矩轴不相对于外轴轴向 平移。正因如此,递送导管的弯曲形状能够在瓣膜部署期间被维持,这改善了部署的稳定 性。递送装置100的进一步益处在于环128防止轴向负荷(压缩和张力)转移到扭矩轴110在 环的远侧的部段。
[0100]在可替代实施例中,递送装置能够适于递送球囊扩张式人工瓣膜。如上所述,瓣膜 保持机构114能够用于将人工瓣膜固定到递送装置的末端。由于人工瓣膜的支架不是自扩 张的,因此鞘管106能够是可选的。保持机构114增强递送装置和人工瓣膜组件通过导引器 鞘管的推动力(pushability)。
[0101] 图23至图26图示说明根据一个实施例的递送装置100的近端部分。递送装置100能 够包括手柄202,手柄202被构造成可释放地可连接到包括导管102、108、118的导管组件204 的近端部分。由于各种原因,可期望使手柄202从导管组件204分离。例如,使手柄分离能够 允许另一个设备(诸如瓣膜收回设备或有助于操控导管组件的设备)在导管组件上滑动。应 该注意的是,手柄202和导管组件204的任一特征能够在本文公开的递送装置的任一实施例 中实施。
[0102] 图23和图24示出被部分地插入到手柄202的远端开口中的导管组件204的近端部 分。主轴104的近端部分形成有环形凹槽212(如图24最佳示出),环形凹槽212与手柄内部的 固持机构或闩锁机构214协作。如图25和图26所示,当导管组件的近端部分被完全插入手柄 中时,固持机构214的接合部分216至少部分地延伸到凹槽212中。固持机构214的一侧被连 接到延伸通过手柄的外壳的按钮218。固持机构214的相对侧与弹簧220接触,所述弹簧220 使固持机构214偏压到在凹槽212处接合主轴104的位置。固持机构214在凹槽212内的接合 防止导管组件与手柄的轴向分离。导管组件能够通过按压按钮218从手柄中释放,从而使固 持机构214从与主轴的锁定接合移动。此外,主轴104能够在凹槽212内形成有平坦的表面部 分。平坦的表面部分抵靠接合部分216的相应平坦表面部分被放置。随着扭矩轴在瓣膜部署 期间被旋转,该接合使主轴104相对于扭矩轴110保持静止。
[0103] 扭矩轴110的近端部分能够具有从动螺母222(图26),该从动螺母222被可滑动地 接收在安装在手柄内部的驱动柱体224(图25)中。通过将螺母222固定在联接构件170(图 15)上方,螺母222能够被固定到扭矩轴100的近端。图26为手柄202的内部的透视图,其中驱 动柱体和其它部件被移除以示出安置在驱动柱体内的从动螺母和其它部件。柱体224具有 延伸柱体长度的通口(或腔),该通口(或腔)被定形状以对应于螺母222的平坦部分使得驱 动柱体的旋转有效地旋转螺母222和扭矩轴110。驱动柱体能够具有扩大的远端部分236,该 远端部分236能够容纳一个或更多个密封件(例如,0型环246),该密封件与主轴104的外表 面形成密封(图25)。手柄也能够容纳配件238,该配件238具有与扭矩轴的腔和/或主轴的腔 连通的冲洗口。
[0104] 驱动柱体224可操作地通过齿轮228和230连接到电动马达226。手柄也能够容纳电 池隔间232,该电池隔间232包含用于给马达226提供功率的电池。马达在一个方向上的旋转 引起扭矩轴110旋转,这进而使鞘管106缩回和暴露在导管组件的远端处的人工瓣膜。马达 在相反方向上的旋转引起扭矩轴在相反方向上旋转,从而使鞘管在人工瓣膜上往回移动。 手柄上的操作员按钮234允许使用者激活马达,该马达能够在任一方向上旋转以使人工瓣 膜出鞘或收回(retrieve)扩张的或部分扩张的人工瓣膜。
[0105] 如上所述,前端导管轴120的远端部分能够被固定至内叉132,内叉132相对于外叉 130移动以释放被固定到递送装置末端的人工瓣膜。轴120相对于主轴104(其固定外叉130) 的移动能够通过手柄的近端部分240实现,所述手柄的近端部分相对于主外壳244可滑动。 末端部分240可操作地被连接到轴120,从而使得末端部分240的移动有效地使轴120相对于 主轴104轴向平移(引起人工瓣膜从内叉和外叉释放)。末端部分240在手柄的相对两侧上能 够具有柔性的侧板242,该侧板242通常被向外偏压处于锁定位置中以相对于主外壳244保 持末端部分。在人工瓣膜的部署期间,使用者能够按压侧板242,该侧板242与外壳中的相应 特征脱离并且允许末端部分240相对于主外壳向近侧被拉动,从而引起轴120相对于主轴的 相应的轴向移动。轴120向近侧的移动引起内叉132的叉状物136脱离支架12中的孔口 32,这 进而允许支架的保持臂30从外叉130的叉状物134中的开口 140径向向外偏斜,从而释放人 工瓣膜。
[0106] 图27示出马达(在300处指示)的可替代实施例,该马达能够用于驱动扭矩轴(例 如,扭矩轴110)。在该实施例中,在没有传动装置(gearing)的情况下,导管组件能够被直接 连接到马达的轴302的一端。轴30 2包括腔,该腔允许导管组件的最内的轴(例如,轴120 )、牵 引线和/或用于冲洗导管组件的腔的流体通过。
[0107] 可替代地,用于使扭矩轴110旋转的动力源能够是被构造成使扭矩轴旋转的液压 动力源(例如,液压栗)或气动(空气操作的)动力源。在另一个实施例中,手柄能够具有可操 作以使扭矩轴11 〇旋转的可手动移动的操纵杆或轮。
[0108]在另一个实施例中,动力源(例如,电动动力源、液压动力源或气动动力源)能够可 操作地被连接到轴,该轴进而被连接到人工瓣膜10。动力源被构造成使轴在远侧方向上相 对于瓣膜鞘管以精确和受控的方式纵向往复运动以便从鞘管推进人工瓣膜。可替代地,动 力源能够可操作地被连接到鞘管,以便使鞘管在近侧方向上相对于人工瓣膜纵向地往复运 动从而从鞘管部署人工瓣膜。
[0109]参照图31,示出根据另一个实施例的人工主动脉心脏瓣膜410。类似于人工瓣膜 10,人工瓣膜410包括支撑可扩张瓣膜构件的可扩张的框架构件,或支架412,在图示说明的 实施例中可扩张瓣膜构件包含柔性小叶部段414。同样,人工瓣膜410可径向地压缩到压缩 状态以用于穿过身体递送到部署部位并且在部署部位处可扩张到图31所示的其功能尺寸。 在某些实施例中,人工瓣膜410为自扩张的;也就是说,当人工瓣膜从递送鞘管的远端被推 进时,人工瓣膜能够径向扩张到其功能尺寸。在另一些实施例中,人工瓣膜能够为球囊扩张 式人工瓣膜,其能够适于以压缩状态被安装在递送导管的球囊上。如本领域所熟知的那样, 通过使球囊膨胀,人工瓣膜能够在部署部位处扩张到其功能尺寸。特别适合于人工瓣膜10 经皮递送和植入的装置1〇(诸如本文所述的那些)也适合于人工瓣膜410的经皮递送和植 入。虽然图示说明的人工瓣膜410也能够用于替换其它原生心脏瓣膜(二尖瓣、三尖瓣和肺 动脉瓣),但人工瓣膜410适于被部署在原生主动脉瓣环内。此外,人工瓣膜410能够适于替 换身体内的其它瓣膜,诸如静脉瓣。
[0110]人工瓣膜410的框架构架412能够具有与人工瓣膜10的框架构件12相同的总体形 状和构造。因此,类似于框架构件12,框架构件412能够由多个纵向延伸的大体正弦形的框 架构件或支杆416形成。参照图31,支架412具有流入端426和流出端427,并且通过支杆416 形成的网状结构包括大体圆柱形的"上"或流出端部分420、向外弯成弓形或胀大的中间部 段422、以及向内弯成弓形的"下"或流入端部分424。而且,支架412能够具有柱430形式的多 个成角度间隔的保持臂或凸起(在所图示说明的实施例中有三个),保持臂或凸起从支架 412上部延伸。每个保持臂430具有各自的孔口 432,孔口 432被定尺寸以接收瓣膜保持机构 的叉状物,所述瓣膜保持机构的叉状物能够用于在人工瓣膜和递送装置(以上所述的)之间 形成可释放的连接。在可替代的实施例中,如果不使用瓣膜保持机构,则不需要提供保持臂 430。在进一步的实施例中,保持臂430能够从支架424的下部延伸,例如,用于涉及到瓣膜的 顺行植入的应用(例如,在经皮的方法中,递送装置被插入通过心脏左心室的壁中的外科手 术开口,诸如,在心室壁前侧下部上的裸点处所做的开口)。
[0111] 虽然存在以下描述的一些不同,但人工主动脉心脏瓣膜410的小叶组件414类似于 人工主动脉心脏瓣膜10的小叶组件14。例如,参照图32和图33,小叶组件414包括由柔性材 料制成的三个小叶434 &、43仙、434〇。每个小叶具有流入端部分460和流出端部分462。小叶 能够包括任何合适的生物材料(例如,心包组织,诸如牛心包或马心包)、生物相容性合成材 料或其它此类材料,诸如美国专利No. 6,730,118中描述的那些。小叶组件414能够包括环形 加强裙型组件442,环形加强裙型组件442在邻近人工瓣膜的流入端的缝合线444处被固定 到小叶434a、434b、434c的流入端部分。通过将裙型组件442缝合到支架的下部部段424的支 杆416,小叶组件14的流入端部分能够被固定到支架412(如图31最佳示出)。
[0112] 参照图33,裙型组件442能够包括上裙部443和下裙部445。小叶434a、434b和434c 的流入端部分460能够被安置在下裙部445的上部447和上裙部443的下部454之间,其中与 下裙部相比,上裙部理想地具有向外的布置。上裙部443,小叶434a、434b、434c的流入端部 分460,和下裙部445能够沿着邻近人工瓣膜的流入端的波浪或波状形状缝合线444通过缝 线被固定(图31)。小叶组件414的流入端部分能够经由缝线455通过将上裙部443、下裙部 445或上裙部443和下裙部445二者缝合至支架的下部部段424的支杆416而被固定到支架 412(如图31最佳示出)。裙型组件442(包括上裙部443和下裙部445)理想地能够由诸如聚四 氟乙烯(PTFE)的生物相容性合成材料或诸如编织聚酯(例如,聚对苯二甲酸乙二酯(PET)、 DACRON?)的织物材料制成。上裙部443和下裙部445能够由相同或者不同的材料制成。
[0113] 如图32最佳示出,上裙部443的流出端部分能够被成形以与通过支架的下部部段 424的支杆416形成的波状或锯齿形状基本上对齐,例如,以便于通过缝线将上裙部固定至 支架的支杆。例如,上裙部443能够包括被成形以对应于框架构件412的第二最下面行的网 格的形状的上边缘456。上裙部443的流入端部分能够具有与波状缝合线444和小叶443a、 443b和443c的流入部分的波浪或波状形状基本上对齐的波状下边缘458。下裙部445的流出 端部分能够被成形以具有基本上对应于波状缝合线444的波状形状。上裙部443的流入端部 分454与下裙部445的流出端部分447在小叶流入端部分的相对侧上彼此重叠至少足够沿着 缝合线444通过缝线固定上裙部和下裙部。虽然另一些构型是可能的,但是下裙部445的流 入端部分通常延伸至支架的流入端426。例如,下裙部445的流入端部分能够被成形以包括 被成形为对应于框架的最下面行的形状的下边缘。
[0114] 小叶组件414的流出端部分能够以类似于用以将小叶组件14的流出端部分在小叶 34a、34b、34c的三个成角度间隔的连合附连处被固定到支架12的上部的构型的方式(如图2 最佳示出),在小叶434a、434b、434c的三个成角度间隔的连合附连处被固定至支架412的上 部。
[0115] 图33示出人工瓣膜410的操作。在心脏舒张期间,小叶434a、434b、434c塌缩从而有 效地闭合人工瓣膜。如图所示,支架412的中间部段422的弯曲形状限定在中间部段和小叶 之间的空间,该空间模拟瓦尔萨耳瓦窦。因此,当小叶闭合时,进入"窦"的回流沿小叶的上 表面产生血液湍流,如箭头452所指示。该湍流有助于清洗小叶和裙型组件442从而使凝块 形成最小化。
[0116] 参照图33和图35,人工瓣膜410能够进一步包括被安置在支架的下部部段424处的 密封裙部449。密封裙部449通过在支架的流入端部分处提供向外突出通过框架的网格开口 并且接触原生瓣环的周围组织的材料而提供附加的屏障,以防备在将支架植入对象随后的 心脏瓣周漏,从而使心脏瓣周漏最小化或减少心脏瓣周漏。密封裙部理想地由上裙部443和 下裙部445支撑,从而防止密封裙部449接触小叶组件414的小叶434a、434b和434c。上裙部 443和下裙部445额外地提供支撑以确保密封裙部449的材料在由支架412的支杆416形成的 网格之间向外延伸从而紧挨着周围瓣环密封。
[0117] 图34描绘了在附连至支架之前的密封裙部449的实施例。密封裙部449的流出端部 分451能够具有波状或锯齿形状,即具有被成形以对应于通过支架412的支杆416形成的框 架的最下面行的网格的上边界形状的上边缘。在可替代的实施例中,密封裙部449的流出端 部分451能够具有基本笔直的边缘,该边缘不与通过支架412的支杆416形成的波状或锯齿 形状对齐;替代地,密封裙部449的流出端部分451能够横切通过支架412的支杆416形成的 框架的最下面行(见,例如图38)。虽然其他构型是可能的,但是密封裙部449的流入端部分 453通常延伸至支架的流入端426(见,例如图35和图36)。例如,密封裙部449能够具有上边 缘和被成形以对应于通过支架的流入端426的支杆416形成的最下面行的网格的形状的下 边缘,使得密封裙部449仅阻隔网格最下面的行中的开口(见,例如图37)。在附加实施例中, 密封裙部449的流入端部分能够被构建成延伸超过支架的流入端426(见,例如图38)。在若 干实施例中,密封裙部449的流入端部分453能够被成形以与下裙部445的流入端部分基本 对齐。
[0118] 参照图35至图39,密封裙部449能够利用缝线455被固定至支架412下部的支杆 416。缝线455能够将密封裙部449固定至支架412下部的支杆416,并且可选地也能够将上裙 部443和/或下裙部445固定至支架412下部的支杆416。密封裙部449理想地由诸如聚四氟乙 烯(PTFE)的生物相容性合成材料或诸如编织聚酯(例如,聚对苯二甲酸乙二酯(PET)、 DACRON?)的织物材料制成。在若干实施例中,密封裙部包含诸如圈圈纱的毛绒或软绒 材料,其起填充材料的作用,因为密封裙部的该纤维能够向外延伸通过在框架中的开口并 填充框架与原生瓣环之间的空间。毛绒或软绒材料也可压缩,因此使密封裙部449的卷曲轮 廓最小化。在一些实施例中,密封裙部能够由PET圈圈纱或70/20的聚酯变形纱制成。在附加 实施例中,密封裙部能够由部分地取向的聚酯复丝纱(预取向纱)、聚酯双层复丝纱、聚酯薄 膜、针织聚酯、编织聚酯和/或聚酯毡制成。此类材料可商购得到,例如,从生物医学结构公 司(Warwick,RI)和 ATEX 技术公司(Pinebluff,NC)得到。
[0119] 参照图39,密封裙部449的图示说明的实施例能够由体积相对更小、非毛绒或非软 绒材料(例如,编织的PET织物)制成并且(例如,利用缝线455)被固定至框架构件412,使得 密封裙部的部分径向向外突出通过框架构件412的网格来密封周围瓣环。在此类实施例中, 密封裙部能够通过缝线455被固定,使得密封裙部449的松弛的材料凸起或突出通过由框架 构件412的支杆416形成的最下面的网格。下裙部445支撑密封裙部449(并且能够利用与用 于固定密封裙部449相同的缝线455被固定至框架构件412)以防止密封裙部的松弛的材料 朝向瓣膜410的纵向轴线向内突出并且防止密封裙部的松弛的材料接触小叶。在此类实施 例中,密封裙部449的长度通常比框架构架412的下部的内圆周的长度长。图39提供了描绘 框架构件412和密封裙部449的一部分的透视图;但是为了清楚的图示说明,没有描绘上裙 部443、下裙部445和小叶组件434。
[0120] 根据用于密封裙部的材料类型,密封裙部449的尺寸能够被调整以获得从扩张的 环形框架突出的材料的期望量。例如,在密封裙部449由具有在框架构件412的网格之间向 外突出的纤维的毛绒或软绒材料构建(诸如圈圈绒)的实施例中,密封裙部的长度(在安装 在框架上之前处于展开或平扁构型)能够基本上与框架构件412的下部的周长相同。在另一 些实施例中,在安装在环形框架上之前密封裙部的长度比支架的扩张的环形框架的周长至 少长约5% (诸如至少约10 %、至少约15%、至少约20%、至少约25% ),从而允许额外的材料 在框架构件412的网格之间突出。
[0121] 虽然以上密封裙部449的描述是参照人工心脏瓣膜410而做出的,但是密封裙部也 能够被包括在人工心脏瓣膜10上,例如,通过根据需要修改密封裙部449的尺寸从而将密封 裙部449固定至心脏瓣膜10的裙型组件42。
[0122] 人工瓣膜410能够以逆行的方法被植入,其中以卷曲状态安装在递送装置(例如, 递送装置100)的远端处的人工瓣膜经由股动脉被引入到身体中并且被推进通过主动脉弓 到心脏,如在美国专利申请公开No. 2008/0065011中进一步描述的。人工瓣膜410也能够以 逆行的方法植入,其中以卷曲状态安装在递送装置(例如,递送装置100)的远端处的人工瓣 膜经由左或右锁骨下动脉被引入到身体中并且被推进到心脏。在进一步的实施例中,人工 瓣膜410能够以顺行的方法被植入,其中以卷曲状态安装在递送装置的远端处的人工瓣膜 被引入到身体中并且经心室被推进(见,例如,美国专利No .8,439,970)。对于经心室植入应 用,保持臂430能够被包括在支架的下部上。
[0123]在递送装置插入之前,导引器鞘管能够被插入到动脉中,接着是引导线,引导线被 推进通过患者的脉管系统通过主动脉并且进到左心室中。递送装置然后能够被插入通过导 引器鞘管并且在引导线上推进,直到容纳人工瓣膜410的递送装置的远端部分被推进到邻 近原生主动脉瓣膜或在原生主动脉瓣膜内的位置。
[0124] 熟知的导引器鞘管通常采用由具有从约0.025毫米(约0.010英寸)到约0.04毫米 (约0.015英寸)的径向壁厚的聚合物管件制成的套管。图40A示出了在500处指示的导引器 鞘管的实施例,该导引器鞘管采用与熟知的设备相比具有小得多的壁厚的薄金属管状层。 在特定实施例中,鞘管500的壁厚从约0.0012毫米(约0.0005英寸)到约0.05毫米(约0.002 英寸)。导引器鞘管500包括近侧定位的外壳或衬套502和远侧延伸的套管或插管504。如本 领域所熟知的,外壳502能够容纳密封件或一系列密封件以使失血最小化。套管504包含由 诸如镍钛诺或不锈钢的金属或金属合金形成的管状层或套管506,并且理想地形成有一系 列周向延伸或螺旋延伸的狭槽或开口从而赋予套管期望程度的挠性。
[0125] 如图40B所示,例如,管状层506形成(例如,激光切割)有交替的环形条带507的"I 形梁"图案以及带有连接相邻条带507的轴向延伸连接部分510的开口 508。如在示出的图示 说明的实施例中所示,两个相邻的条带507能够通过多个成角度间隔的连接部分510被连 接,所述多个成角度间隔的连接部分510诸如围绕套管轴线彼此成约90度间隔的四个连接 部分510。套管504呈现充分的挠性,以允许随着套管被推进通过曲折的路径折曲而没有扭 曲或屈曲。图41示出开口的另一种图案,该图案能够被激光切割或者其他方式形成在管状 层506中。图41的实施例中的管状层具有交替的条带512的图案以及带有连接部分516的开 口 514,该连接部分516连接相邻的条带512、开口 514,并且每个连接部分516沿着套管的长 度被布置成螺旋图案。在可替代实施例中,条带和开口的图案和/或条带和/或开口的宽度 能够沿着套管的长度变化,以便改变套管沿其长度的刚度。例如,条带的宽度能够从近端到 套管的远端减小从而在近端附近提供更大的刚度且在套管的远端附近提供更大的挠性。 [0 126]如图42所示,套管504能够具有在管状层506上方延伸的薄的外层或外衬518,外衬 518由低摩擦材料制成以减小套管和血管壁之间的摩擦,其中套管被插入血管壁中。套管 504也能够具有覆盖管状层506的内表面并且由低摩擦材料制成的薄的内层或内衬520从而 减少套管和被插入在套管中的递送装置之间的摩擦。内层和外层能够由合适的聚合物制 成,所述聚合物诸如PET、PTFE、FEP和/或聚醚嵌段酰胺(PEBAX?)。内衬和外衬以及管状 层被合适地定尺寸以用于导引器鞘管500的期望应用。在特定实施例中,内衬520能够具有 从约0.0012毫米(约0.0005英寸)到约0.012毫米(约0.005英寸)(诸如从约0.025毫米(约 0.001英寸)到约0.075毫米(0.003英寸),例如约0.06毫米(约0.0025英寸))的范围内的径 向壁厚。在特定实施例中,外衬518具有从约0.0012毫米(0.0005英寸)到约0.012毫米(约 0.005英寸)(诸如从约0.012毫米(约0.0005英寸)到约0.075毫米(0.003英寸),例如约 0.025毫米(约0.001英寸))的范围内的径向壁厚。在特定实施例中,管状层506能够具有从 约O · 0012毫米(约O · 0005英寸)到约O · 025毫米(约O · Ol英寸)(诸如从约O · 05毫米(约O · 002 英寸)到约0.15毫米(约0.006英寸),例如约0.05毫米(约0.002英寸)或约0.1毫米(约0.004 英寸))的范围内的径向壁厚。
[0127] -致地,内衬520、管状层506和外层518的壁厚能够基于期望的最终产品而变化。 在一些实施例中,内衬520、管状层506和外层518能够一致地具有从约0.05毫米(约0.002英 寸)到约0.5毫米(约0.02英寸)(诸如从约0.09毫米(约0.0035英寸)到约0.3毫米(约0.012 英寸))的范围内的径向壁厚。因而,套管504能够提供有比熟知设备小约IFr至2Fr的外直 径。套管504的相对较小的轮廓提高了易用性、降低了经由撕裂动脉管壁的患者损伤的风 险,并且增加用于具有高钙化动脉、扭曲路径或小的血管直径的患者的微创手术的潜在使 用。
[0128] 内衬520能够被应用到管状层506的内部,例如,使用两阶段模制过程。在一个步骤 中,例如通过注射模制或挤压过程形成带有开口端524和封闭端526的预成形的圆柱形聚合 物管或型坯522(图48)。管522具有外直径和壁厚,其中该管522的外直径比管状层506的内 直径小,该管522的壁厚被设计成提供合适的壁厚用于管状层506的内衬520,接下来是吹塑 模制。在一个实施例中,管522能够具有从约0.025毫米(约0.001英寸)到约0.1毫米(约 0.004英寸)(诸如从约0.05毫米(约0.002英寸)到约0.075毫米(约0.003英寸),诸如约0.06 毫米(约0.0025英寸))的壁厚。用于聚合物管的合适的材料能够基于期望完成的产品进行 选择。在一些实施例中,聚合物管522由尼龙-12、聚乙烯或氟化乙烯丙烯和/或聚醚嵌段酰 胺(例如,PEBAX?72D)制成。管522的长度能够根据管状层506的长度而改变,并且通常 长于管状层506的长度。在另一步骤中,施加热和压力至管522从而通过吹塑模制形成内衬 520〇
[0129] 图48和图49描绘了使用吹塑模制以将管522施加至管状层506从而形成内衬520的 示例性方法。管状层506被插入模具528中。模具528具有比管状层506稍大的内直径从而使 得套管能够容易地被插入模具中和从模具中移除,在加压步骤(以下描述)期间,模具528防 止套管的任何可感知的径向扩张。模具528能够被构建成在管522的吹塑模制期间不可扩 张。模具528能够具有对应于管状层506的外表面的形状的圆柱形内表面529。因此,当管522 被加压时(在下面详细论述),模具的内表面防止管状层506在来自扩张的管522的压力下扩 张/变形并且防止管522的部分径向向外扩张通过管状层506中的开口 508。
[0130] 如图48所示,带有开口端524和封闭端526的管522被插入管状层506中。封闭端526 能够延伸超过管状层506的一端,并且开口端524能够延伸超过管状层506的另一端。
[0131] 热和压力被施加至管522以引起管扩张抵靠管状层506的内表面从而形成扩张的 聚合物管530。热和压力能够被顺序地(例如,先施加热,然后施加压力)或同时地施加。例 如,通过将加热的压缩气体或流体注入管522的开口端524,热和压力能够同时被施加。可替 代地,热能够通过加热模具528被施加,并且管522能够通过将压缩气体或流体注入管522的 开口端524而被加压。例如,包括模具528、管状层506和管522的整个组件能够被浸入加热的 流体中。在这方面,模具的壁能够具有一个或多个孔口,这样允许加热的流体(例如,诸如水 的加热的流体)流动通过孔口并且接触管522,从而便于管的加热。各种其他类型的热源,诸 如电阻式热源、导电热源、对流热源和红外热源,能够用于施加热至管522。可选地,管522能 够在加热和/或加压的同时被轴向地拉伸,或者在从加热和/或加压的单独的时间执行的一 个或多个单独的拉伸步骤中被轴向地拉伸。
[0132]延伸超过管状层506的任一端的扩张的管530的部分能够被修剪以形成管状层506 的内衬520。在一些实施例中,内衬520能够在模制过程期间扩张进管状层506的开口508中, 并且在模制过程后保留在开口中。在另一些实施例中,在模制过程期间,内衬520不扩张进 和/或保留在管状层506的开口 508中。用于吹塑模制管状层506的内衬520的具体热和压力 状况(包括,热和压力应该被施加的持续时间,以及冷却状况)能够如所期望的被改变,并且 通常将取决于起始材料和期望的完成的产品。在一些实施例中,管522被加热至约125摄氏 度(约255华氏度)并且被加压至约80千帕(约12镑/平方英寸)持续足以形成内衬520的一段 时间。进一步地,本领域的普通技术人员熟知吹塑模制的一般方法(见,例如美国专利申请 公开 No.2011/0165284)。
[0133] 使用常规技术或机构(例如,使用粘合剂或通过热焊接),鞘管的外层518能够被施 加在管状层506的外表面上并且被固定至管状层506的外表面。在一个实施例中,外层通过 将聚合物管状层收缩包裹至管状层506而形成。用于外层518的合适的材料能够基于期望完 成的产品而被选择。在一些实施例中,外层518由尼龙-12、聚醚嵌段酰胺(PEBAX?,例如, PEBAX?72D)和/或聚乙烯制成。外层518能够在使用上述模制过程形成内层520之前或 之后被施加至管状层506。
[0134] 在导引器鞘管500的修改中,鞘管能够分别地具有内层520和外层518,内层520和 外层518仅在金属套管的近端和远端处被固定至金属套管(例如,套管504)。内聚合物层和 外聚合物层能够例如通过使用合适的粘合剂或通过热焊接被结合至金属套管(或者通过在 金属套管中的缝隙彼此结合)。以这种方式,金属套管不附连至沿着套管的大部分长度的、 在套管的近端和远端之间的内聚合物层和外聚合物层,并且因此金属套管相对于沿着套管 的大部分长度的聚合物层是"自由浮动的"。这种构造允许相邻的金属条带相对于内层和外 层更容易地弯曲,比如果内层和外层被沿着套管的整个长度结合提供鞘管以更大的挠性和 抗扭曲性。
[0135] 图43示出在600处指示的可替代金属套管的段,其能够用在导引器鞘管500中。在 这个实施例中的鞘管500理想地包括内聚合物层和外聚合物层,该内聚合物层和外聚合物 层理想地仅在如上所述的金属套管的近端和远端处被固定至金属套管。套管600包括通过 在每对相邻环之间延伸的两个链节或连接部分604互连的多个圆形条带或环602。连接两个 相邻条带602的每对链节理想地彼此隔开约180度并且理想地从相邻的一对连接链节旋转 偏移约90度,从而允许多轴向弯曲。
[0136] 图44示出在700处指示的金属套管的另一个实施例的段的侧视图,该段能够用在 导引器鞘管500中。套管700具有与套管600相同的切割图案,并且因此具有圆形条带702和 连接相邻条带的两个链节704,并且进一步包括形成在每个条带702中的两个切口或孔口 706,从而增加套管的挠性。切口 706理想地具有大体椭圆形或卵形形状,但是也能够具有其 他形状。每个切口 706理想地在套管的圆周方向中延伸约180度并且理想地从在相邻条带 702中的切口 706旋转偏移约90度。
[0137] 在特定实施例中,导引器鞘管的金属套管具有从约0.05毫米(约0.002英寸)到约 0.015毫米(约0.006英寸)的范围内的壁厚。在一个实施中,鞘管具有:具有约0.05毫米(约 0.002英寸)的壁厚且约5.8毫米(约0.229英寸)的内直径的金属套管、具有约0.06毫米(约 0.0025英寸)的壁厚的内聚合物层、具有约0.025毫米(约0.001英寸)的壁厚的外聚合物层, 并且具有约0.14毫米(约0.0055英寸)的总壁厚(贯穿全部三层)。在另一个实施中,鞘管具 有:具有约0.1毫米(约0.004英寸)的壁厚和约5.8毫米(约0.229英寸)的内直径的金属套 管、具有约〇 . 06毫米(约0.0025英寸)的壁厚的内聚合物层、具有约0.025毫米(约0.001英 寸)的壁厚的外聚合物层,并且具有约0.2毫米(约0.0075英寸)的总壁厚(贯穿全部三层)。 图45示出用于形成图43的金属套管600的切割图案。图46示出用于形成图44的金属套管700 的切割图案。图47示出类似于图46的切割图案的切割图案,但是包括切口 706,切口 706比在 图46中示出的切口狭窄。
[0138]表1
L0140」上面的表1展示了若干金属套管的弯曲性能。每种金属套管具有约5.8毫米(约 0.229英寸)的内直径。除了表1中形成有在图43中示出的切割图案的最后的套管之外,每个 套管形成有在图44中示出的切割图案。表1中的全部套管提供在相对小的弯曲直径(2.5厘 米,1英寸)下的设备递送能力。此外,发现即使在将递送设备传送通过套管的可视扭曲部段 后,金属套管恢复它们的环形横截面形状。
[0141]考虑到可以应用本发明的原理的许多可能实施例,应该意识到,图示说明的实施 例仅为优选示例,而不应该被认为限制本公开的范围。此外,额外的实施例在美国专利申请 No. 2010/0049313(美国专利申请No. 12/429,040)和美国专利申请公开No. 2012/0239142 (美国专利申请No. 13/405,119)中公开。因此,本公开的范围通过以下权利要求进行限定。 因此,
【申请人】要求保护落入这些权利要求的范围和精神内的全部方案。
【主权项】
1. 一种人工心脏瓣膜,包含: 可塌缩且可扩张的环形框架,所述可塌缩且可扩张的环形框架被构造成被塌缩至径向 塌缩状态从而用于安装在递送装置上并且在身体内被扩张至径向扩张状态,所述框架具有 流入端、流出端和从所述流入端延伸至所述流出端的纵向轴线,所述框架包含限定多个网 格的多个行的多个支杆; 可塌缩且可扩张的瓣膜构件,所述可塌缩且可扩张的瓣膜构件被安装在所述环形框架 内; 可塌缩且可扩张的裙型组件,所述可塌缩且可扩张的裙型组件被安装在所述环形框架 内并且包含上裙部、下裙部和密封裙部,其中所述上裙部和所述下裙部防止所述密封裙部 接触所述瓣膜构件,并且其中当所述环形框架被扩张至其径向扩张状态时,所述密封裙部 的部分向外突出通过所述框架的网格。2. 根据权利要求1所述的人工心脏瓣膜,其中所述密封裙部由圈圈纱制成。3. 根据任一前述权利要求所述的人工心脏瓣膜,其中所述密封裙部通过缝线被安装在 所述人工心脏瓣膜的所述环形框架内,所述缝线将所述密封裙部和所述下裙部固定至所述 人工心脏瓣膜的所述框架。4. 根据任一前述权利要求所述的人工心脏瓣膜,其中所述密封裙部延伸超过所述人工 心脏瓣膜的所述流入端。5. 根据任一前述权利要求所述的人工心脏瓣膜,其中所述密封裙部包含上边缘和被成 形以对应于所述框架的最下面行的网格的形状的下边缘。6. 根据任一前述权利要求所述的人工心脏瓣膜,其中所述上裙部包含被成形以对应于 所述框架的第二最下面行的网格的上边界的形状的上边缘。7. 根据任一前述权利要求所述的人工心脏瓣膜,其中,从所述纵向轴线: 所述瓣膜构件从所述下裙部径向向外安置, 所述上裙部从所述瓣膜构件径向向外安置;以及 所述密封裙部从所述上裙部径向向外安置。8. 根据任一前述权利要求所述的人工心脏瓣膜,其中所述下裙部、所述瓣膜构件和所 述上裙部通过缝线相互耦连。9. 根据任一前述权利要求所述的人工心脏瓣膜,其中所述下裙部的流出部分被缝合至 所述瓣膜构件的流入部分;以及 所述瓣膜构件的所述流入部分被缝合至所述上裙部的流入部分。10. -种制作导引器鞘管的方法,所述导引器鞘管带有用于将医疗设备经皮插入患者 中的内衬,包含: 将金属套管插入模具中; 将包含封闭端和开口端的聚合物管插入所述金属套管中; 对所述聚合物管加压和加热以引起所述聚合物管扩张紧靠着所述金属套管的内表面, 以便形成所述鞘管的所述内衬。11. 根据权利要求10所述的方法,其中所述预成形圆柱形聚合物管由尼龙-12、聚乙烯 或氟化乙烯丙烯制成。12. 根据权利要求10至权利要求11中任一项所述的方法,其中所述聚合物管具有从约 0.025毫米(约0.001英寸)到约0.075毫米(约0.003英寸)的范围内的径向壁厚。13. 根据权利要求10至权利要求12中任一项所述的方法,其中所述金属套管具有从约 0.05毫米(约0.002)到0.15毫米(约0.006英寸)的范围内的径向壁厚。14. 根据权利要求10至权利要求13中任一项所述的方法,其中对所述聚合物管加压和 加热包含将加热的压缩气体注入所述聚合物管中。15. 根据权利要求10至权利要求14中任一项所述的方法,其中对所述聚合物管加压包 含将压缩气体注入所述聚合物管中,并且其中对所述聚合物管加热包含利用与加压的气体 分离的热源加热。16. 根据权利要求10至权利要求15中任一项所述的方法,其中所述金属套管包含多个 周向延伸或螺旋延伸的狭槽。17. 根据权利要求10至权利要求16中任一项所述的方法,其中所述导引器鞘管被构造 成用于将人工心脏瓣膜通过所述患者的股动脉经皮插入。18. 根据权利要求10至权利要求17中任一项所述的方法,进一步包含在所述金属套管 上形成外聚合物衬。
【文档编号】A61F2/966GK105979911SQ201480074952
【公开日】2016年9月28日
【申请日】2014年12月5日
【发明人】L-H·T·洪, A·J·西格尔, G·巴卡斯
【申请人】爱德华兹生命科学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1