非织造复合材料及其制造方法

文档序号:1781094阅读:303来源:国知局
专利名称:非织造复合材料及其制造方法
技术领域
本发明涉及非织造复合材料和方法,确切说,涉及含有借助热风略微结合和水刺缠结的非织造纤网的非织造复合材料及其制造方法。
背景技术
在连续长丝非织造纤网的制造工艺的一个例子中,较细的纺粘长丝通过以长丝形式从喷丝头的多个通常呈圆形的小毛细孔挤出熔融热塑性材料来形成,所挤出的长丝的直径迅速减小。纺粘纤维通常是连续的且有大于7微米的直径,尤其具有在约10微米至30 微米之间的直径。该纤维通常落置在移动的多孔带或成形丝网上,它们在此处形成纤(维) 网。然后,纤网通常会继续来到更重要的第二结合步骤,在这里,其与其它非织造纤网如纺粘、熔喷或梳理固结纤网等(仅作为例子)结合。该结合步骤能以多种方式来实现,例如水刺缠结、针刺、超声结合、热风结合、热点结合和砑光。关于第一结合步骤,这些纤网以某种方式在它们被制造时就立即结合,从而增强其结构整体性以供进一步加工为成品。增强连续长丝纤网的整体性是必须的,以便在成形后的加工过程中保持其形状。通常,在纤网成形之后直接采用热压或冷压。热压或冷压通过“压辊”来完成,“压辊”挤压纤网以增强其自粘性从并由此增强其整体性。压辊能实现该功能,但有多个缺点。一个这样的缺点是压辊确实压缩纤网,导致织物的松厚度或膨松度减小,这可能不利于最终使用。第二个缺点在于压紧会导致单根纤维永久性变形或损坏。压辊的第三个缺点在于,织物有时会缠绕一个或两个辊,导致织物生产线停机以清理该辊,造成在停机期间内的明显生产量损失。压辊的第四个缺点在于,如果在纤网成形中有轻微瑕疵产生,例如聚合物滴落物被形成到纤网中,压辊会将掉滴落物压入在其上成形大部分纤网的多孔成形带中,导致成形带有瑕疵并毁掉成形带。增加连续长丝纤网的另一方法为在形成纤维的那个多孔成形带上立即水刺缠结该纤网。然而,该方法具有打湿带且不能在需要再次成形纤网之前使该带完全脱水/干燥的问题。这还会导致针对为了在成形或水刺缠结时不给任一工序带来不利影响而进行成形带优化的问题、为进行后续工序需从该带移除纤网、水污染。增加连续长丝纤网的整体性的另一方法是将连续长丝纤网从成形带转移到水刺缠结带并立即水刺缠结该纤网。该方法将对将连续长丝纤网转移而不严重影响纤维基体和在不损失材料丝的情况下高速运行造成问题。另外,不具有某种临时固结例如机械固结、热固结即立即对轻质连续长丝纤网进行水刺缠结(不管在成形带还是在独立的水刺缠结带上)会导致在采用高压水流用于纤网固定时扰乱纤维成形。该问题可能的解决方案是采用大量水刺缠结站来递增用于长丝固定的水刺缠结压力。然而,该方法需要大量的水刺缠结站、过多辅助设备、很大的设备占地面积、不间断的使用能源和大量水,从而使得该方法在商用的高速应用方面基本是不可行的。

发明内容
本发明的一个实施例提供制造非织造复合材料的方法,其包括提供连续长丝非织造纤网,用热风来弱结合所述连续长丝非织造纤网,以及水刺缠结该弱结合的连续长丝非织造纤网。之后,该方法还包括在水刺缠结的弱结合连续长丝非织造纤网上设置第一层,和将该第一层与水刺缠结的弱结合连续长丝纤网水刺缠结。在本发明的另一实施例中提供一种非织造复合材料,包括通过热风轻微结合且被水刺缠结的非织造纤网;与非织造纤网水刺缠结的第一层。本发明实现了采用热风弱结合和水刺缠结对刚生产的连续长丝进行优化的水刺缠结和移动。这基本上消除了在连续长丝经过工艺的其余步骤时的不希望有的运动。本发明在连续长丝具有相对低的基重和更容易来回运动的情况下尤为有利。


通过参考本发明的以下描述并结合附图,本发明的上述和其它特征以及获得这些特征的方式将会变得更为显见,发明本身也将会得到更好的理解,其中图1是可用于执行根据本发明的方法和制造根据本发明的非织造复合材料的设备的示意图。图2是商业生产的热点粘合(TPB)纺粘品(SB)的表面的扫描电子显微镜(SEM) 显微照片(5kv, X 50)。图3a是由热点粘合(TPB)纺粘品(SB)和不连续纤维制得的工业化水刺缠结擦拭巾产品的扫描电子显微镜(SEM)显微照片6kv,X25),其中不连续纤维已被酸提取。图北是由热点粘合(TPB)纺粘品(SB)和不连续纤维制得的工业化水刺缠结擦拭巾产品的扫描电子显微镜(SEM)显微照片6kv,X 150),其中不连续纤维已被酸提取。图如是已通过热风刀(HAK)工艺临时固结的连续长丝非织造纤网的扫描电子显微镜(SEM)显微照片(5kv, X 100)。图4b是已通过热风刀(HAK)工艺临时固结的连续长丝非织造纤网中单个HAK结合点的扫描电子显微镜(SEM)显微照片6kv,X800)。图如是已通过热风刀(HAK)工艺临时固结的连续长丝非织造纤网中另一单个HAK 结合点的扫描电子显微镜(SEM)显微照片6kv,X800)。图fe是已通过热风刀(HAK)工艺临时固结且随后被水刺缠结的连续长丝非织造纤网表面的扫描电子显微镜(SEM)显微照片6kv,X 100)。图恥是已通过热风刀(HAK)工艺临时固结且随后被水刺缠结的连续长丝非织造纤网中单个破损HAK结合点的扫描电子显微镜(SEM)显微照片6kv,X 700)。图6a是本发明非织造复合材料的扫描电子显微镜(SEM)显微照片6kv,X 100), 其中非连续纤维已被酸从复合材料提取出。
图6b是本发明非织造复合材料中两个破损HAK结合点的扫描电子显微镜(SEM) 显微照片6ky,X600),其中非连续纤维已被酸从复合材料提取处。图6c是本发明非织造复合材料中单个破损HAK结合点的扫描电子显微镜(SEM) 显微照片6kv,X400),其中非连续纤维已从复合材料被酸提取出。^JL本文所用术语“短纤维”是指由合成聚合物例如聚丙烯、聚酯、消费后再生(PCR) 纤维、聚酯、尼龙等以及那些非亲水但可处理成亲水的材料制成的不连续纤维。短纤维可以是切段纤维等。短纤维可以具有圆的、双组份的、多组分的、构型的、空心的等等横截面。本发明所采用的典型的短纤维长度为3至12mm,旦尼尔值为1至6dpf (旦尼尔/纤维)。本文所用术语“纸浆纤维”是指来自天然来源例如木材或非木质植物的纤维。木质植物例如包括落叶树和针叶树。非木质植物例如包括棉、亚麻、细茎针草、乳草属植物、稻草、黄麻、大麻和蔗渣。本文所用术语“非织造纤网”是指具有交织但不如针织织物那样以可辨识方式交织的独立纤维或丝的结构的网。非织造纤网已可由多种工艺例如熔喷工艺、纺粘工艺和粘合梳理工艺制造。非织造纤网的基重通常以每平方码的材料盎司数(osy)表示,或以每平方米的克数(gsm)表示,纤维直径通常以微米或旦尼尔/纤维(dpf)表示(注意将osy转换成gsm,要将osy值乘以33. 91)。本文所用术语“微纤维”是指具有不大于约75微米的平均直径、例如具有从约0. 5 微米至约50微米的平均直径的微细纤维,或更特别地,微纤维具有从约0. 5微米至约40微米的平均直径。另一常用来表示纤维直径的是旦尼尔,其定义为每9000米纤维的克数。例如,以微米数给出的聚丙烯纤维的直径可以通过平方并用该结果乘以0. 00629得到旦尼尔数,因此,15微米的聚丙烯纤维具有约1. 42旦尼尔(152 X 0 . 00 6 29 = 1. 4 1 5)。本文所用术语“纺粘”是指这样的工艺过程,其中通过从喷丝头的多个通常呈圆形的细毛细孔以长丝形式挤出熔融热塑性材料,然后通过例如Appel等人的美国专利 US4340563、Dorschner 等人的美国专利 US36^618、Matsuki 等人的美国专利 US38(^817、 Kinney 的美国专利 US3338992 和 US3341394、Levy 的美国专利 US3502538、Hartman 的美国专利US3502763和Dobo等人的美国专利所示的工艺迅速减小挤出长丝的直径而形成细小纤维。纺粘纤维通常是连续的且有大于7微米的直径,具体地说,具有在约 10-30微米之间的直径。纺粘纤维在落置在收集面上时通常不发粘。本文所用术语“熔喷”是指这样的工艺过程,其中通过从多个通常呈圆形的模具细小毛细孔以熔丝或长丝形式挤出熔融热塑性材料到使熔融热塑性材料变细而使其直径减小到微纤维直径的高速气流(例如空气流)中来制得纤维。其后,熔喷纤维被高速气流携带并落置在收集面上以形成随机分布的熔喷纤维网。这样的工艺例如在Butin的美国专利 US3849241中被公开。熔喷纤维是连续或不连续的且直径通常小于10微米的微纤维。本文所用术语“熔纺”包括“纺粘”或“熔喷”,可以包括或不包括结合。本文所用术语“聚合物”通常包括但不限于均聚物;共聚物,如嵌段、接枝、无规和交替共聚物、三元共聚物等;和它们的共混物和改性物。此外,除非另有限定,术语“聚合物” 将包括材料所有可能的分子几何构型。这些构型包括但不限于全同、间同和不规则对称。本文所用术语“机器方向”或“MD”是指沿织物被制造方向的织物长度方向。术语“机器横向,,或“⑶”是指织物宽度方向,即基本上垂直于MD的方向。本文所用术语“单组份”纤维是指仅由一种聚合物形成的纤维。这不意味着排除为了着色、防静电性、润滑、亲水性等已加入有少量添加剂的由一种聚合物制成的纤维。这些添加剂例如用于着色的二氧化钛通常以少于5重量%且通常少于约2重量%的量存在。本文所用术语“双组份纤维”是指这样的纤维,其由独立的挤出机挤出的至少两种聚合物形成并纺在一起而形成一种纤维。所述聚合物在双组份纤维的横截面上以基本恒定布置的独立区域设置,这些独立区域沿双组份纤维长度连续延伸。该双组份纤维的构型例如可以是皮芯结构,其中一种聚合物被另一种包围,或者可以是并列构造,或者“海岛”构造。本文所用术语“双成分纤维”或“双成分纤网”是指由同一挤出机以共混物形式挤出的至少两种聚合物制成的纤维或纤网。术语“共混物”将在下文定义。双成分纤维或纤网不具有在纤维或纤网的横截面上按相对恒定布置的独立区域设置的多种聚合物组分。多种聚合物通常不是沿纤维或纤网的整个长度连续的,尽管有一些会是,取而代之的是通常形成随机起止的原纤维。双成分纤维或纤网有时称作多成分纤维或多成分纤网。本文所用术语“共混物”是指两种或更多种聚合物的混合物,而术语“聚合物合金” 是共混物的子集,其多种组份是非混溶的,而是相容的。“混溶性”和“非混溶性”被分别定义为对于混合自由能来说具有负值的共混物和具有正值的共混物。此外,“相容化”被定义为将非混溶共混聚合物的界面性能改性以获得聚合物合金的工艺。本文所用的热风结合或“TAB”是指结合非织造双组份纤维网或包含双组份纤维的非织造纤网的工艺,所述纤网至少部分地缠绕被包封在罩中的穿孔辊。热得足以熔融制造纤网的纤维的聚合物中的一种的空气从罩吹入,穿过纤网并进入穿孔辊。空气速率介于 100-500英尺/分之间且持续时间长达6秒。聚合物的熔融和重新凝固造成结合。热风结合具有受约束的可变性且通常被视作第二步结合工序。
具体实施例方式本发明的独特方法提供一种连续长丝非织造纤网,其具有良好的一致性和活动纤维以供用在具有较高整体性的非织造复合材料中,从而避免使用之前所述的那些方法。本发明包括在刚形成的非织造纤网的连续长丝上直接使用“热风刀”或者说HAK,以临时固结纤维,随后水刺缠结临时固结纤网,以便可控地解离HAK结合。此后,后续步骤可以包括施加非连续纤维层并且水刺缠结该复合材料以使结构成一个整体。细连续长丝可以通过以独立纤维形式从喷丝头的多个通常呈圆形的微小毛细孔中挤出熔融热塑性材料来形成。然后,挤出长丝的直径通过空气抽拉而迅速减小且随后被骤冷以固定纤维直径。用该方法制得的纤维通常是连续的且有大于7微米的直径,具体说在约10-30微米之间。骤冷的纤维落置在形成未结合非织造纤网的移动的多孔带或成型丝网上。如上所述,连续长丝工艺使用本领域技术人员已知的任何热塑性聚合物。这样的聚合物包括聚烯烃、聚酯、聚氨酯和聚酰胺及其混合物,具体说是聚烯烃如聚乙烯、聚丙烯、 聚丁烯、乙烯共聚物、丙烯共聚物和丁烯共聚物。已发现可用的聚丙烯例如包括可得自美国德克萨斯州休斯顿的埃克森美孚化学公司的商品名为PP3155的均聚物和可得自美国密歇根州米德兰的陶氏化学公司的商品名为PP5D49的均聚物。连续长丝可具有圆状、双组份、 并列、成型、空心等的横截面,通常具有从l-3dpf的旦尼尔值。长丝还可以是单组份或双组份的,或纤网可以是单成分或双成分的。热风刀(HAK)是以非常高的流速,通常从约1000至约10000英尺/分(fpm) (305-3050米/分钟),将热空气流聚集在刚成型之后的非织造织物上的装置。热风刀的空气被加热到不足以熔化纤维中聚合物但足以稍稍软化该聚合物的温度。对于常用于连续长丝熔纺的热塑性聚合物来说,该温度通常在约200下至550 T (93°C至290°C )之间。在本文所描述的工况下操作的经恰当地控制的HAK可以用于弱结合单组份或双组分纤维,或者在单成分或双成分非织造纤网中的纤维,而不会不利地影响纤维/纤网性能且甚至能改善纤维/纤网性能,从而省去了压辊的需要。HAK聚集的空气流由至少一个宽度为约1/8至1英寸(3至25mm)、尤其是约3/4 英寸(19. Imm)的狭槽排布和导向,该至少一个狭槽用作吹向未结合的非织造纤网的热风出口,其中狭槽基本沿机器横向(CD)在基本上整个纤网宽度上移动。在其它实施例中,可以有彼此相邻布置或由小间隙隔开的多个狭槽。至少一个狭槽是优选的,但也可以使用其它构造,例如间隔很紧密的孔。HAK具有高压室以在热空气离开狭槽之前容纳和分配该热空气。HAK的高压室压力优选为约0. 5英寸至56. 0英寸水压,且该HAK位于成形丝网上方约0. 25英寸至10英寸、 更优选0. 75英寸至3. 0英寸(19mm至76mm)处。在一个特定实施例中,HAK的高压室尺寸为相对出口狭槽总面积的机器横向流横截面积的至少两倍。因为其上有聚合物成形的多孔成形丝网或成形面通常高速移动,非织造纤网的任何具体部分暴露于从热风刀排出的空气下的时间小于十分之一秒,通常为约百分之一秒, 相比之下,热风结合工艺具有长得多的持续时间。HAK工艺具有大范围的可变性和至少气温、空气体积、空气速度和从HAK高压室到非织造织物的间距的可控性。水刺缠结可以采用本领域已知的常规水刺缠结设备来实现。这些水刺缠结设备可获得自德国Egelskich的Fleissner有限责任公司。本发明的水刺缠结可以任何合适的工作流体来实施,例如水。工作流体流过将该流体均勻分布到一系列独立孔或洞的歧管。这些孔或洞可以有从约0. 003至约0. 015英寸的直径。例如,本发明可以通过采用含有带0. 007 英寸直径的孔且每英寸有30个孔且孔排成一行的条板的歧管来实施。也可采用多种其它歧管构造或组合。例如可使用单个歧管,或者多个喷嘴可以连续布置。在水刺缠结工序中,工作流体以范围在约200至3500磅/平方英寸(表压)(psig) 的压力穿过孔。在上述压力的范围上部值中,可以想到材料例如非织造纤网可以以约500 英尺/分(fpm)至约2000fpm的速度处理。流体冲击被多孔表面或丝网支撑的材料,所述多孔表面或丝网例如可以是具有从约40X40至约100X100的网格尺寸的单平面网。多孔表面还可以是具有从约50X50至约200X200网格尺寸的多层网。如多种水射流处理工艺中常见的,真空槽可以位于水刺缠结喷嘴和/或在该水刺缠结歧管下游的多孔缠结表面的正下方,从而多余的水可以从被水刺缠结的材料中吸出。参见图1,以附图标记10示意示出根据本发明思想对非织造复合材料的非织造纤网提供优化的整体性的示例性工艺。聚合物被加到料斗,且该聚合物被供应到挤出机14。 挤出机14熔化该聚合物且迫使其进入喷丝头16。喷丝头16具有以一行或多行布置的开口,当聚合物被挤出时该喷丝头形成向下延伸的连续长丝幕帘。来自于骤冷鼓风机18的空气当连续长丝离开喷丝头16时使其骤冷。尽管未示出,来自于骤冷鼓风机的其它空气也可以定位于对面和/或下方。用于将连续长丝牵拉至其最终直径的拉丝单元20位于喷丝头 16之下以接纳被骤冷的长丝。绕着导辊M行进的通常多孔的成形面22从拉丝单元20接纳连续长丝,真空装置沈抽吸连续长丝使其抵靠着成形面22,从而形成连续的长丝非织造纤网30。紧跟在成形之后,热风从热风刀(HAK)观被引导穿过连续长丝的非织造纤网以使得长丝弱结合而不会不利地影响长丝性能。这是很重要的,因为不希望使长丝显著变形或者永久性地彼此结合。换句话说,长丝不明显地发生机械变形,从而相比于确实使长丝机械变形的方法例如压辊可获得较高的强度。这为如下所述的生产所必须的后续工序例如水刺缠结、卷绕、运输和退卷提供了优化的纤网。之后,非织造纤网30通过传送带组件32被移动到水刺缠结站34,在此其通过由喷嘴36提供的水射流被选择性地水刺缠结。位于喷嘴36正下方或者其下游的真空模块38 将多余的水从被水刺缠结的纤网30抽出。关于喷嘴36和真空模块38,它们的数目、定位、 间隔等可以选择性地选定成适合本发明的特定操作和所用材料。在此,纤网30的水刺缠结的一个显著和有利的效果在于水刺缠结可控地打破一些由HAK形成的暂时结合,从而使连续长丝更有柔性和活动性,因而增加长丝被缠结在一起的能力。该效果对于后续的将其它纤维层水刺缠结入纤网30中是尤为有利的,因为其为成品提供了增加的整体性和强度。此外,使用HAK和水刺缠结步骤提供了较宽的、有效的且可用的非织造纤网30的后续水刺缠结压力范围,而不会导致其长丝大量断裂,且最大化了纤维的活动性,获得了前述增加的整体性和强度。本发明的另一优点是关于能够卷绕连续长丝非织造纤网卷以供运输以及在另一位置退卷以供后续工序的需求。当多个工序步骤不能如图1所示在单条联机生产线中完成时,会产生该需求。例如,非织造纤网30可以在HAK步骤后在HAMS处卷绕、运输,或可在 HAK28和水刺缠结站34之后被卷绕、运输。非织造纤网30然后被移到材料供应站40,在此由一种或多种材料构成的第一层 42被设置在纤网30上。第一层42可以包括成品的终端使用所需要的任何材料。材料的例子包括纸浆纤维、短纤维、纸浆纤维和短纤维构成的独立层、或者纸浆纤维和短纤维的混合物。另外,第一层42可以是连续长丝非织造纤网,仅作为示例比如非织造纤网30。层42可以包括连续长丝纤网和纤维或者纤维的混合物,如前述的那些。之后,纤网30和第一层42 移到第二水刺缠结站46,在此,层42和纤网30两者水刺缠结在一起以形成非织造复合材料 44。本发明的非织造复合材料44的一个例子包括纸浆纤维和短纤维,其中连续长丝非织造纤网30占到非织造复合材料44的重量的15%至30% ;短纤维占到非织造复合材料44的重量的20%至35%;且纸浆纤维占到非织造复合材料44的重量的45%至65%。在非织造复合材料44的另一例子中,复合材料包括纸浆纤维,其中连续长丝非织造纤网30占到非织造复合材料44的重量的15%至30% ;且纸浆纤维占到非织造复合材料4的重量的20%至 65%。本发明还可想到除第一层42之外的层。例如可在其它供应站(未示出)在第一层42上设置第二层(未示出)以供后续工序,如与第一层42和纤网30发生水刺缠结。第二层可以是或可以不是通过热风弱结合和被水刺缠结、或仅通过热风弱结合、或仅水刺缠结的连续长丝非织造纤网。可以想到,通过本发明方法可以想到层和材料的多种组合以制得多种最终产品。自第二水刺缠结站46后,非织造复合材料44移动到干燥站48以供选择性干燥, 然后到起绉站50以供选择性起绉,且最终到达卷绕站52以在卷筒上卷绕以供后续使用或处理。多种类型的干燥、起绉和卷绕设备在本领域中是公知的,且适合于工艺的合适设备可选择性地选定。如前所述,本发明通过使用热风弱结合和水刺缠结使刚制好的连续长丝具有良好的均一性、整体性和优化的缠结和活动性。这最终消除了连续长丝在移动经过该工艺的后续工序时的不利运动。本发明在连续长丝具有相对低的基重且从而较容易四处移动的情况下是尤为有利的。本发明包括在刚成形的非织造纤网的连续长丝上直接使用HAK以暂时固结纤维,且随后水刺缠结该暂时固结的纤网以可控地解离HAK结合。之后的后续步骤包括施加非连续纤维层和水刺缠结该复合材料以使得结构整体化。转到图2_6c,在此示出商购产品和本发明的非织造复合材料的扫描电子显微镜显微照片(SEM)。这些扫描电子显微镜显微照片示出了相比于商购产品本发明通过HAK和水刺缠结步骤对刚制得的连续长丝的均一性、整体性和最佳缠结性和活动性的改进。图2是工业化生产的热点粘合(TPB)纺粘品(SB)的表面的扫描电子显微镜(SEM) 的显微照片6kv,X50)。注意显示为平滑或连续表面的硬化区域,且最终这会导致如前所述的松厚度或膨松度减小、纤维永久性变形、吸收性降低、整体性降低、生产线停机和生产工艺缺陷。与图2中产品相同或类似,图3a和北是由热点粘合(TPB)纺粘品(SB)和不连续纤维制得的商售水刺缠结擦拭巾产品的扫描电子显微镜(SEM)的显微照片6kv,X25),其中不连续纤维已被酸提取;和由热点粘合(TPB)纺粘品(SB)和不连续纤维制得的商售水刺缠结擦拭巾产品的扫描电子显微镜(SEM)的显微照片(5kv,X 150),其中不连续纤维已被酸提取。同样,注意硬化区域或表面。使用HAK工艺的结果在图如-如中示出。图如是已通过热风刀(HAK)工艺临时固结的连续长丝非织造纤网的扫描电子显微镜(SEM)的显微照片6kv,X 100),注意弱结合区域。图4b是已通过热风刀(HAK)工艺临时固结的连续长丝非织造纤网中单个HAK结合点的扫描电子显微镜(SEM)的显微照片6kv,X800)。图如是已通过热风刀(HAK)工艺临时固结的连续长丝非织造纤网中另一单个HAK结合点的扫描电子显微镜(SEM)的显微照片6kv,X 800)。为了与前述产品直接对比,在图中示出了本发明。图如是已通过热风刀(HAK)工艺临时固结且随后被水刺缠结的连续长丝非织造纤网表面的扫描电子显微镜 (SEM)的显微照片(5kv,X 100)。注意基本上不存在早前所述和显示产品所带的。这种不存在硬化区域或表面的情况导致增加的松厚度或膨松度;不存在纤维变形;增加的吸收性;增加的整体性;显著减少生产线停机;和生产工艺中基本上不存在瑕疵。图恥是已通过热风刀(HAK)工艺临时固结且随后被水刺缠结的连续长丝非织造纤网中单个破损HAK结合点的扫描电子显微镜(SEM)的显微照片(5kv,X 700)的放大图;图6a是本发明的非织造复合材料的扫描电子显微镜(SEM)的显微照片(5kv,X 100), 其中非连续纤维已被酸提取出该复合材料;图6b是本发明的非织造复合材料中两个破损 HAK结合点的扫描电子显微镜(SEM)的显微照片6kv,X600),其中非连续纤维已被酸提取出该复合材料;且图6c是本发明的非织造复合材料中单个破损HAK结合点的扫描电子显微镜(SEM)的显微照片6kv,X400),其中非连续纤维已被酸提取出该复合材料。同样,本发明所带来的不存在硬化区域或表面的情况导致增加的松厚度或膨松度;不存在纤维变形;增加的吸收性;增加的整体性;显著减少生产线停机;和生产工艺中基本上不存在瑕疵。尽管本发明已描述了优选实施例,将可以理解能有其它改变。因此本发明将打算覆盖符合本发明总体思想的本发明所有变形、等同、用途和适用场合,且包括本领域技术人员已知的或惯常手段所能从本发明出发做出的变动,本发明涉及并且落入所附权利要求的限定范围内。
权利要求
1.一种用于制造非织造复合材料的方法,包括如下步骤 提供连续长丝非织造纤网;通过热风弱结合所述连续长丝非织造纤网;水刺缠结该弱结合的连续长丝非织造纤网;在该弱结合的水刺缠结的连续长丝非织造纤网上设置第一层;和将该第一层与该弱结合的水刺缠结的连续长丝非织造纤网水刺缠结。
2.根据权利要求1所述的方法,还包括如下步骤 将该弱结合的连续长丝非织造纤网在卷筒上卷绕; 运输弱结合的连续长丝非织造纤网卷;和在水刺缠结步骤之前退卷该弱结合的连续长丝非织造纤网卷。
3.根据权利要求1所述的方法,还包括如下步骤将弱结合的水刺缠结的连续长丝非织造纤网在卷筒上卷绕;运输弱结合的水刺缠结的连续长丝非织造纤网卷;和在设置一层之前退卷该弱结合的水刺缠结的连续长丝非织造纤网卷。
4.根据权利要求1所述的方法,其中,所述设置第一层的步骤包括提供纸浆纤维。
5.根据权利要求1所述的方法,其中,所述设置第一层的步骤包括提供短纤维。
6.根据权利要求1所述的方法,其中,所述设置第一层的步骤包括提供纸浆纤维和短纤维的混合物。
7.根据权利要求1所述的方法,其中,所述设置第一层的步骤包括提供连续长丝非织造纤网。
8.根据权利要求1所述的方法,其中,所述提供第一层的步骤包括提供连续长丝非织造纤网和纤维,该纤维选由自由纸浆纤维、短纤维以及纸浆纤维和短纤维的混合物构成的组。
9.根据权利要求1所述的方法,其中,所述水刺缠结该弱结合的连续长丝非织造纤网的步骤还包括可控地打断该弱结合的连续长丝非织造纤网的结合。
10.根据权利要求1所述的方法,还包括提供第二层的步骤,随后将第二层和第一层与所述弱结合的、水刺缠结连续长丝非织造纤网水刺缠结。
11.根据权利要求10所述的方法,其中,所述第二层通过热风弱结合。
12.根据权利要求10所述的方法,其中,所述第二层被水刺缠结。
13.一种由权利要求1至12中任一项所述方法制得的非织造复合材料。
14.一种非织造复合材料,包括被通过热风弱结合且被水刺缠结的连续长丝非织造纤网;和与该弱结合的、水刺缠结的连续长丝非织造纤网水刺缠结的第一层。
15.根据权利要求14所述的非织造复合材料,其中该第一层由以下纤维构成,该纤维可选自由纸浆纤维、短纤维、纸浆纤维和短纤维的混合物、单独的纸浆纤维层和短纤维层构成的组。
16.根据权利要求14所述的非织造复合材料,其中,该第一层是连续长丝非织造纤网。
17.根据权利要求14所述的非织造复合材料,其中,该第一层是连续长丝非织造纤网和纤维,该纤维选自由纸浆纤维、短纤维以及纸浆纤维和短纤维的混合物、单独的纸浆纤维层和短纤维层构成的组。
18.根据权利要求14所述的非织造复合材料,还包括与第一层和连续长丝非织造纤网水刺缠结的第二层。
19.根据权利要求18所述的非织造复合材料,其中,该第二层是连续长丝非织造纤网。
20.根据权利要求16所述的非织造复合材料,其中,第一层包括纸浆纤维和短纤维,且其中连续长丝非织造纤网占到该非织造复合材料的重量的15%至30%;该短纤维占到该非织造复合材料的重量的20%至35% ;且该纸浆纤维占到该非织造复合材料的重量的46% 至 65%。
全文摘要
一种非织造复合材料和制造非织造复合材料的方法,包括弱结合和水刺缠结连续长丝非织造纤网以改善整体性和纤维活动性以供后续工艺步骤,例如将第一层加到连续长丝非织造纤网,和将该第一层和连续长丝非织造纤网水刺缠结在一起。
文档编号D04H1/42GK102257203SQ200980152081
公开日2011年11月23日 申请日期2009年11月25日 优先权日2008年12月19日
发明者G·H·亚当, L·E·小钱伯斯, R·史密斯 申请人:金伯利-克拉克环球有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1