一种低收缩率高强度纳米碳纤维的制备方法

文档序号:1777618阅读:185来源:国知局
专利名称:一种低收缩率高强度纳米碳纤维的制备方法
技术领域
本发明涉及一种低收缩率高强度纳米碳纤维的制备方法,属于纳米材料技术领域。
背景技术
碳纤维是一种重要的增强纤维。由于其高比强度、高比模量两大特性,使得它广泛应用于航空航天、国防军事等尖端领域以及高级体育用品、医疗器械等民用行业。近年来, 高性能纳米碳纤维吸引着许多国家和地区投入大量的人力、物力和财力进行研制、开发和应用,使得碳纤维工业得到了迅猛发展,碳纤维的性能同时得到了不断提高。但制备碳纤维时,要得到高强度,一般会降低其模量。可是,纳米碳纤维能同时具备高强度、高模量,因而其综合性能最好。目前,制备纳米碳纤维的方法主要是气相生长法,国内就此申请了一些专利(专利公开号CN102007236、CN101805943、CN1389606),但用此方法制备纳米碳纤维时,由于所用金属化合物催化剂的存在,必然会引入一定量的杂质,而且气相生长法还必须用化学方法进行纯化处理,造成生产成本高,且碳纤维的直径偏大分布不均勻,纤维中易出现炭黑等物质。此外,此方法难以规模化制造纳米碳纤维,难以实现工业化连续生产。由静电纺丝法制备的纤维膜具有纤维直径小、比表面积大、孔径小以及孔隙率高等优点,将由静电纺丝方法获得的纤维作为制备纳米碳纤维的前躯体,可以获得连续、比表面积大、孔隙率高、机械性能良好的纳米碳纤维。然而,在对电纺纤维膜进行碳化处理过程中,会伴随严重的收缩现象,即碳化前后的纤维直径相差巨大,造成纳米碳纤维的强度无法进一步提高,机械性能下降,限制了其在航空航天、国防军事的进一步发展。

发明内容
本发明所要解决的技术问题是通过对电纺聚合物溶液的前期处理,避免纤维膜在碳化过程中的严重收缩,提供一种可减小碳化时纳米碳纤维收缩率,同时又能获得通过静电纺丝法制备的具有高比表面积、高强度的纳米碳纤维的制备方法。为了解决上述技术问题,本发明提供了一种纳米碳纤维的制备方法,其特征在于, 包括将模板聚合物溶于溶剂中搅拌得到模板溶液,将酸功能化后的碳纳米管分散在模板溶液中得到纺丝液A ;配制纺丝液B,将纺丝液A和纺丝液B进行同轴静电纺丝,得到聚合物复合纤维膜,经真空干燥和拉伸处理后,先在空气中预氧化,然后在氮气保护下碳化,最后降温至室温,即得到低收缩率高强度的纳米碳纤维。作为优选方案,所述的模板聚合物为尼龙6,聚乙烯醇,聚丙烯酸,聚乙烯吡咯烷酮,聚丙烯酰胺,聚乙烯亚胺或聚环氧乙烷。作为优选方案,所述的模板溶液的溶剂为甲酸,水或乙醇。作为优选方案,所述的模板溶液中模板聚合物的质量百分比浓度为5 30%。作为优选方案,在配制所述的模板溶液时,采用磁力搅拌器以50 2500 rpm速度搅拌5 30h。作为优选方案,所述的碳纳米管的酸功能化的具体步骤为取单壁碳纳米管 (SffNTs)溶于硫酸与硝酸的混合溶剂中配制成单壁碳纳米管的浓度为0. 01 0. 10g/ml的溶液,先将此溶液在20 60 kHz频率下超声10 50 min,然后在100 170°C油浴下搅拌回流1 池,真空过滤,蒸馏水洗涤滤出物直至滤液pH=7,最后将滤出物真空干燥,即得酸功能化后的碳纳米管。作为更加优选的方案,所述的硫酸的质量分数为98%,硝酸的质量分数为60%。作为更加优选的方案,所述的硫酸和硝酸的体积比为1 5 1。作为更加优选的方案,所述的真空干燥的温度为40 80°C,时间为12 h。作为优选方案,所述的纺丝液A中酸功能化后的碳纳米管的重量百分比浓度为 10 30%ο作为优选方案,所述的纺丝液B由将聚丙烯腈溶于N,N-二甲基甲酰胺制得。作为更加优选的方案,所述的纺丝液B中聚丙烯腈的重量百分比浓度为5 10%。作为优选方案,所述的同轴静电纺丝的步骤为将纺丝液A与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为0.5 4 ml/h,纺丝液B置于外管,注射速度为0.9 1.2 ml/h,纺丝液A与B在喷丝口会合同时进行同轴静电纺丝,使纤维沉积在静电纺丝机的接收器上成膜,得到聚合物复合纤维膜。作为更加优选的方案,所述的所述的同轴静电纺丝的具体参数为喷丝口与接收器之间的距离为10 20cm,纺丝电压为15 35kV,纺丝温度为20 40 °G,相对湿度为 30 60%。作为优选方案,所述的拉伸处理的处理温度为90 180°C,拉伸速度为3 25m/ min。作为优选方案,所述的预氧化的温度为150 300。c,时间为2 池。作为优选方案,所述的碳化的温度为900 1800°C,升温速率为3 15°C/min,碳化时间为50 120 min。作为优选方案,所述的同轴静电纺丝的接收器的材料为铝箔、铜网、织物、铁板、导电卡纸和无纺布中的一种或两种以上。与现有技术相比,本发明的有益效果为
(1) 本发明先将碳纳米管进行酸功能化,然后进行同轴静电纺丝得到聚合物复合纤维膜,再将聚合物复合纤维膜进行拉伸、预氧化、碳化,得到的纳米碳纤维的收缩率大大降低,最低仅为5 %,且强度能高达8.6 GPa,是钢的150倍,密度仅为钢的1/5。实现了纳米碳纤维同时拥有低收缩率高强度的综合优良性能。(2) 本发明提供的纳米碳纤维膜具有极高的比表面积、高模量、高强度的特性,比表面积高达1000 m2/go
具体实施例方式下面结合实施例,进一步对本发明进行详细阐述。实施例1
在室温25 !条件下将5 g尼龙6 (Mw* 18000)加入到20 g甲酸中,用磁力搅拌器以100 rpm的转速搅拌15 h,得到质量分数为20 %的尼龙溶液;将10 g SffNTs溶于硫酸(98 %)与硝酸(60 %)体积比为3 1的200 ml混合溶剂中,将此溶液在40 kHz频率下超声30 min,然后在135 °C油浴下搅拌,回流2 h,真空过滤,滤出物用蒸馏水洗涤,直至滤液pH=7, 滤出物60 °C下真空干燥12 h;取2 g处理好的碳纳米管分散在10 g尼龙溶液中,用磁力搅拌器以50 rpm的转速搅拌12 h,得到纺丝液A ;将1. 6 g聚丙烯腈(Mw为150000)加入到 18.4 g N, N-二甲基甲酰胺中,将所得溶液放在磁力搅拌器上以100 rpm速度进行搅拌15 h,获得性质均一的纺丝液B;在室温25 °C、湿度40 %的条件下,纺丝液A与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为0.5 ml/h,纺丝液B置于外管, 注射速度为0.9 ml/h,纺丝液A与B在喷丝口会合,同时在静电纺丝机上施加30 kV电压条件下进行静电纺丝,将纤维沉积在铝箔接收器上,接收器与喷丝口之间的距离为10 cm, 纺丝过程完成后,将聚合物复合纤维膜从铝箔接收器上取下,并进行真空干燥1. 5 h ;在130 0C条件下,以10 m/min的速度对聚合物复合纤维膜进行拉伸处理;将拉伸处理后的纤维膜置于真空管式炉中,在220°C下进行预氧化,并保持2. 5 h ;然后在氮气气氛下进行碳化,升温速率为5 °C/min,碳化温度为1200 °C,恒温60 min,降温至室温,即得低收缩率高强度纳米碳纤维;
在室温25 °C下,纳米碳纤维比表面积为780 m2/g,强度为3. 1 GPa,模量为228 GPa, 收缩率为10 %。实施例2
在室温条件下将1 g聚乙烯吡咯烷酮(Mw* 58000)加入到19 g乙醇中,用磁力搅拌以 120 rpm的转速搅拌15 h,得到质量分数为5 %的聚乙烯吡咯烷酮溶液;将10 g SffNTs溶于硫酸(98 %)与硝酸(60 %)体积比为3 1的200 ml混合溶剂中,将此溶液在40 kHz频率下超声30 min,然后在135 °C油浴下搅拌,回流2 h,真空过滤,滤出物用蒸馏水洗涤,直至滤液pH=7,滤出物60 °C下真空干燥12 h;取3 g处理好的碳纳米管分散在12 g聚乙烯吡咯烷酮溶液中,用磁力搅拌器以150 rpm的转速搅拌10 h,得到纺丝液A ;将1. 6 g聚丙烯腈(Mw* 150000)加入到18.4 g N,N-二甲基甲酰胺中,将所得溶液放在磁力搅拌器上以100 rpm速度进行搅拌15 h,获得性质均一的纺丝液B ;在室温25 °C、湿度35 %的条件下,纺丝液A与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为 2 ml/h,纺丝液B置于外管,注射速度为1.2 ml/h,纺丝液A与B在喷丝口会合,同时在静电纺丝机上施加25 kV电压条件下进行静电纺丝,将纤维沉积在铝箔接收器上,接收器与喷丝口之间的距离为10 cm,纺丝过程完成后,将聚合物复合纤维膜从铝箔接收器上取下,并进行真空干燥1 h ;在150 0C条件下,以8 m/min的速度对聚合物复合纤维膜进行拉伸处理; 将拉伸处理后的纤维膜置于真空管式炉中,在250 °(下进行预氧化,并保持2.5 h;然后在氮气气氛下进行碳化,升温速率为6 °C/min,碳化温度为1300 °C,恒温120 min,降温至室温,即得低收缩率高强度纳米碳纤维;
在室温25 °C下,纳米碳纤维比表面积为820 1112/^,强度为2.9 GPa,模量为M8 GPa, 收缩率为15 %。实施例3
在室温25 °(条件下将3 g聚丙烯酸(Mw* 250000)加入到17 g乙醇中,用磁力搅拌以80 rpm的转速搅拌12 h,得到质量分数为15 %的聚丙烯酸溶液;将10 g SffNTs溶于硫酸(98 %)与硝酸(60 %)体积比为3 1的200 ml混合溶剂中。将此溶液在40 kHz频率下超声30 min,然后在135 °C油浴下搅拌,回流2 h,真空过滤,滤出物用蒸馏水洗涤,直至滤液pH=7,滤出物60 °C下真空干燥12 h;取1.5 g处理好的碳纳米管分散在10 g聚丙烯酸溶液中,用磁力搅拌器以120 rpm的转速搅拌8 h,得到纺丝液A ;将1. 6 g聚丙烯腈(Mw 为150000)加入到18. 4 g N,N-二甲基甲酰胺中,将所得溶液放在磁力搅拌器上以100 rpm 速度进行搅拌15 h,获得性质均一的纺丝液B;在室温25 °C、湿度45 %的条件下,纺丝液A 与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为1.5 ml/h,纺丝液B置于外管,注射速度为1. 2 ml/h,纺丝液A与B在喷丝口会合,同时在静电纺丝机上施加20 kV电压条件下进行静电纺丝,将纤维沉积在铝箔接收器上,接收器与喷丝口之间的距离为15 cm,纺丝过程完成后,将聚合物复合纤维膜从铝箔接收器上取下,并进行真空干燥1. 5 h ;在145 0C条件下,以12 m/min的速度对聚合物复合纤维膜进行拉伸处理;将拉伸处理后的纤维膜置于真空管式炉中,在沈0 °(下进行预氧化,并保持2 h;然后在氮气气氛下进行碳化,升温速率为12 °C/min,碳化温度为1400 °C,恒温90 min,降温至室温,即得低收缩率高强度纳米碳纤维;
在室温25 °C下,纳米碳纤维比表面积为720 m2/g,强度为2.5 GPa,模量为观9 GPa, 收缩率为18 %。实施例4
在室温25 °(条件下将5 g聚乙烯醇(Mw* 86000)加入到15 g乙醇中,用磁力搅拌以80 rpm的转速搅拌12 h,得到质量分数为25 %的聚乙烯醇溶液;将10 g SffNTs溶于硫酸(98 %)与硝酸(60 %)体积比为3 :1的200 ml混合溶剂中,将此溶液在40 kHz频率下超声30 min,然后在135 °C油浴下搅拌,回流2 h,真空过滤,滤出物用蒸馏水洗涤,直至滤液pH=7,滤出物60 °C下真空干燥12 h;取2 g处理好的碳纳米管分散在10 g聚乙烯醇溶液中,用磁力搅拌器以120 rpm的转速搅拌12 h,得到纺丝液A ;将1. 6 g聚丙烯腈(Mw* 150000)加入到18.4 g N,N-二甲基甲酰胺中,将所得溶液放在磁力搅拌器上以100 rpm 速度进行搅拌15 h,获得性质均一的纺丝液B;在室温25 °C、湿度45 %的条件下,纺丝液A 与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为3 ml/h,纺丝液B置于外管,注射速度为1. 2 ml/h,纺丝液A与B在喷丝口会合,同时在静电纺丝机上施加20 kV电压条件下进行静电纺丝,将纤维沉积在铝箔接收器上,接收器与喷丝口之间的距离为12 cm,纺丝过程完成后,将聚合物复合纤维膜从铝箔接收器上取下,并进行真空干燥2 h;在145 °C条件下,以6 m/min的速度对聚合物复合纤维膜进行拉伸处理;将拉伸处理后的纤维膜置于真空管式炉中,在MO °(下进行预氧化,并保持2 h;然后在氮气气氛下进行碳化,升温速率为8 °C/min,碳化温度为1100 °C,恒温80 min,降温至室温,即得低收缩率高强度纳米碳纤维;
在室温25 °C下,纳米碳纤维比表面积为790 m2/g,强度为3.3 GPa,模量为228 GPa, 收缩率为18 %。实施例5
在室温25 0C条件下将4. 8 g聚丙烯酰胺(Mw为9000000)加入到15. 2 g蒸馏水中,用磁力搅拌以120 rpm的转速搅拌15 h,得到质量分数为M %的聚丙烯酰胺溶液;将10 g SffNTs溶于硫酸(98 %)与硝酸(60 %)体积比为3 1的200 ml混合溶剂中,将此溶液在40 kHz频率下超声30 min,然后在135 °C油浴下搅拌,回流2 h,真空过滤,滤出物用蒸馏水洗涤,直至滤液pH=7,滤出物60 °C下真空干燥12 h。取2.5 g处理好的碳纳米管分散在 15 g聚丙烯酰胺溶液中,用磁力搅拌器以100 rpm的转速搅拌15 h,得到纺丝液A ;将1. 6 g聚丙烯腈(Mw* 150000)加入到18.4 g N,N-二甲基甲酰胺中,将所得溶液放在磁力搅拌器上以100 rpm速度进行搅拌15 h,获得性质均一的纺丝液B ;在室温25。C、湿度40 %的条件下,纺丝液A与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为0.9 ml/h,纺丝液B置于外管,注射速度为0.9 ml/h,纺丝液A与B在喷丝口会合,同时在静电纺丝机上施加15 kV电压条件下进行静电纺丝,将纤维沉积在铝箔接收器上,接收器与喷丝口之间的距离为15 cm,纺丝过程完成后,将聚合物复合纤维膜从铝箔接收器上取下,并进行真空干燥1.5 h;在155 °C条件下,以12 m/min的速度对聚合物复合纤维膜进行拉伸处理;将拉伸处理后的纤维膜置于真空管式炉中,在沈0 °(下进行预氧化,并保持2 h; 然后在氮气气氛下进行碳化,升温速率为5 °C/min,碳化温度为1300 °C,恒温70 min,降温至室温,即得低收缩率高强度纳米碳纤维;
在室温25 °C下,纳米碳纤维比表面积为710 m2/g,强度为3.5 GPa,模量为148 GPa, 收缩率为20 %。实施例6
在室温25 °(条件下将2.6 g聚环氧乙烷(Mw* 486000)加入到17. 4 g乙醇中,用磁力搅拌以120 rpm的转速搅拌18 h,得到质量分数为13 %的聚丙烯酰胺溶液;将10 g SffNTs 溶于硫酸(98 %)与硝酸(60 %)体积比为3 1的200 ml混合溶剂中,将此溶液在40 kHz 频率下超声30 min,然后在135 °C油浴下搅拌,回流2 h,真空过滤,滤出物用蒸馏水洗涤, 直至滤液pH=7,滤出物60 °C下真空干燥12 h;取1.5 g处理好的碳纳米管分散在10 g聚环氧乙烷溶液中,用磁力搅拌器以120 rpm的转速搅拌12 h,得到纺丝液A ;将1. 9 g聚丙烯腈(Mw* 150000)加入到18. 1 g N,N-二甲基甲酰胺中,将所得溶液放在磁力搅拌器上以 80 rpm速度进行搅拌15 h,获得性质均一的纺丝液B ;在室温25 °C、湿度40 %的条件下, 纺丝液A与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为1.5 ml/h,纺丝液B置于外管,注射速度为1. 0 ml/h,纺丝液A与B在喷丝口会合,同时在静电纺丝机上施加20 kV电压条件下进行静电纺丝,将纤维沉积在铝箔接收器上,接收器与喷丝口之间的距离为12 cm,纺丝过程完成后,将聚合物复合纤维膜从铝箔接收器上取下,并进行真空干燥2 h ;在130 0C条件下,以8 m/min的速度对聚合物复合纤维膜进行拉伸处理;将拉伸处理后的纤维膜置于真空管式炉中,在220 !下进行预氧化,并保持3 h;然后在氮气气氛下进行碳化,升温速率为9 °C/min,碳化温度为1200 °C,恒温100 min,降温至室温,即得低收缩率高强度纳米碳纤维;
在室温25 °C下,纳米碳纤维比表面积为910 m2/g,强度为3.7 GPa,模量为145 GPa, 收缩率为M %。实施例7
在室温25 °(条件下将4.2 g聚乙烯亚胺(Mw* 70000)加入到15.8 g蒸馏水中,用磁力搅拌以150 rpm的转速搅拌12 h,得到质量分数为21 %的聚丙烯酰胺溶液;将10 g SWNTs溶于硫酸(98 %)与硝酸(60 %)体积比为3 1的200 ml混合溶剂中,将此溶液在 40 kHz频率下超声30min,然后在135 °C油浴下搅拌,回流2 h,真空过滤,滤出物用蒸馏水洗涤,直至滤液pH=7,滤出物60 °C下真空干燥12 11;取2.5 g处理好的碳纳米管分散在15 g聚丙烯酰胺溶液中,用磁力搅拌器以100 rpm的转速搅拌15 h,得到纺丝液A ;将1. 6 g 聚丙烯腈(Mw* 150000)加入到18.4 g N, N-二甲基甲酰胺中,将所得溶液放在磁力搅拌器上以100 rpm速度进行搅拌15 h,获得性质均一的纺丝液B ;在室温25。C、湿度40 %的条件下,纺丝液A与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为3. 5 ml/h,纺丝液B置于外管,注射速度为1. 1 ml/h,纺丝液A与B在喷丝口会合,同时在静电纺丝机上施加15 kV电压条件下进行静电纺丝,将纤维沉积在铝箔接收器上,接收器与喷丝口之间的距离为15 cm,纺丝过程完成后,将聚合物复合纤维膜从铝箔接收器上取下,并进行真空干燥1.5 h;在155 °C条件下,以12 m/min的速度对聚合物复合纤维膜进行拉伸处理;将拉伸处理后的纤维膜置于真空管式炉中,在沈0 °(下进行预氧化,并保持2 h; 然后在氮气气氛下进行碳化,升温速率为5 °C/min,碳化温度为1300 °C,恒温70 min,降温至室温,即得低收缩率高强度纳米碳纤维;
在室温25 °C下,纳米碳纤维比表面积为710 m2/g,强度为3.5 GPa,模量为148 GPa, 收缩率为20 %。
权利要求
1.一种纳米碳纤维的制备方法,其特征在于,包括将模板聚合物溶于溶剂中搅拌得到模板溶液,将酸功能化后的碳纳米管分散在模板溶液中得到纺丝液A ;配制纺丝液B,将纺丝液A和纺丝液B进行同轴静电纺丝,得到聚合物复合纤维膜,经真空干燥和拉伸处理后,先在空气中预氧化,然后在氮气保护下碳化,最后降温至室温,即得到低收缩率高强度的纳米碳纤维。
2.如权利要求1所述的纳米碳纤维的制备方法,其特征在于,所述的模板聚合物为尼龙6,聚乙烯醇,聚丙烯酸,聚乙烯吡咯烷酮,聚丙烯酰胺,聚乙烯亚胺或聚环氧乙烷。
3.如权利要求1所述的纳米碳纤维的制备方法,其特征在于,所述的模板溶液的溶剂为甲酸,水或乙醇。
4.如权利要求1所述的纳米碳纤维的制备方法,其特征在于,所述的碳纳米管的酸功能化的具体步骤为取单壁碳纳米管溶于硫酸与硝酸的混合溶剂中配制成单壁碳纳米管的浓度为0. 01 0. 10g/ml的溶液,先将此溶液在20 60 kHz频率下超声10 50 min,然后在100 170°C油浴下搅拌回流1 池,真空过滤,蒸馏水洗涤滤出物直至滤液pH=7,最后将滤出物真空干燥,即得酸功能化后的碳纳米管。
5.如权利要求1所述的纳米碳纤维的制备方法,其特征在于,所述的纺丝液A中酸功能化后的碳纳米管的重量百分比浓度为10 30%。
6.如权利要求1所述的纳米碳纤维的制备方法,其特征在于,所述的纺丝液B由将聚丙烯腈溶于N,N-二甲基甲酰胺制得。
7.如权利要求1所述的纳米碳纤维的制备方法,其特征在于,所述的同轴静电纺丝的步骤为将纺丝液A与纺丝液B同时输入具有内外管的喷丝器中,纺丝液A置于内管,注射速度为0. 5 4 ml/h,纺丝液B置于外管,注射速度为0. 9 1. 2 ml/h,纺丝液A与B在喷丝口会合同时进行同轴静电纺丝,使纤维沉积在静电纺丝机的接收器上成膜,得到聚合物复合纤维膜。
8.如权利要求7所述的纳米碳纤维的制备方法,其特征在于,所述的所述的同轴静电纺丝的具体参数为喷丝口与接收器之间的距离为10 20cm,纺丝电压为15 35kV,纺丝温度为20 40 °C,相对湿度为30 60%。
9.如权利要求1所述的纳米碳纤维的制备方法,其特征在于,所述的预氧化的温度为 150 300 0C,时间为2 3h。
10.如权利要求1所述的纳米碳纤维的制备方法,其特征在于,所述的碳化的温度为 900 1800。C,升温速率为3 15。C/min,碳化时间为50 120 min。
全文摘要
本发明提供了一种纳米碳纤维的制备方法,其特征在于,包括将模板聚合物溶于溶剂中搅拌得到模板溶液,将酸功能化后的碳纳米管分散在模板溶液中得到纺丝液A;配制纺丝液B,将纺丝液A和纺丝液B进行同轴静电纺丝,得到聚合物复合纤维膜,经真空干燥和拉伸处理后,先在空气中预氧化,然后在氮气保护下碳化,最后降温至室温,即得到低收缩率高强度的纳米碳纤维。本发明的纳米碳纤维具有较低的收缩率、较高的强度、极高的比表面积和高模量。
文档编号D01F9/22GK102433614SQ20111024285
公开日2012年5月2日 申请日期2011年8月23日 优先权日2011年8月23日
发明者丁彬, 俞建勇, 王娜, 王家林 申请人:东华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1