一种超疏水纤维织物及其制备方法与流程

文档序号:12817999阅读:736来源:国知局
一种超疏水纤维织物及其制备方法与流程

本发明涉及一种超疏水纤维织物及其制备方法。具体涉及一种基于聚离子液体的超疏水织物及其制备方法。



背景技术:

超疏水表面是指对水及水溶液有排斥性的表面,水滴在其表面无法滑动铺展而保持球型滚动状,从而达到滚动自清洁的效果。自然界当中的荷叶是该种材料的典型代表。超疏水织物因具有自清洁性,抗污性,低粘附等特点使其在生活中多种用途,并且多数超疏水织物同时具有超亲油性,这使其可以广泛应用在油水分离中。

目前已被公开的方法有将蜡溶解在有机溶剂中,然后将织物浸渍,干燥(中国专利cn103061116a),用雾化预聚体溶液喷涂织物表面(中国专利cn103835133a),沉积聚多巴胺和纳米银颗粒(中国专利cn104562709a),溶胶-凝胶法(中国专利cn105544187a)等,但是目前这些制备超疏水纤维织物的方法也有步骤繁琐,改性层易脱落的问题。



技术实现要素:

本发明的目的在于针对目前超疏水织物的制备缺陷,提供一种基于聚离子液体的工艺简单,耐用性强且适用于工业化生产的超疏水纤维织物及其制备方法。本发明提及的超疏水纤维织物是由纤维织物基底,所述纤维织物基底上设有疏水性聚离子液体包裹膜,及被聚离子液体膜包裹在织物表面的微纳米颗粒。疏水性聚离子液体均匀的包裹在织物的表面同时将微纳米颗粒也固定在其表面,使得织物表面同时拥有了粗糙性和低表面能的特性,从而使其拥有了超疏水的能力。

本发明的目的是通过如下措施来达到:

将疏水性聚离子液体溶解到有机溶剂中,并和微纳米颗粒充分混合分散;将织物浸渍在所述溶液中;然后将织物取出,干燥即得所述超疏水织物。

进一步的,所述疏水性聚离子液体为聚乙烯咪唑类离子液体、聚乙烯基季铵盐类离子液体。

进一步的,所述聚乙烯咪唑类离子液体的通式为:

式中,r1为碳原子数为12~18的烷基或氟代烷基;x为cl-、br-、bf4-、pf6-中的一种或多种。

所述聚乙烯基季铵盐类离子液体的通式为:

式中,r1为苯基或碳原子数为1~6的烷基,r2至r4相同或不同,r2至r4为烷基或氟代烷烃,且至少一个为碳原子数为8~18;碳原子数少于8时,不能保证较好的疏水效果,大于18时,由于分子体积太大,反应时空间位阻大,不利于合成所需的聚离子液体单体,同时碳链大于18的药品价格昂贵,不利于实际应用。

x为cl-、br-、bf4-、pf6-中的一种或多种。

进一步的,所述疏水性聚离子液体可为不含交联剂的均聚体,也可为有双烯基团的交联剂交联形成的聚合物,具体可为二乙烯基苯,1,4-丁二烯,1,5-己二烯等。

进一步的,所述有机溶剂为疏水性聚离子液体的良性溶剂,具体可为甲醇,乙醇,二氯甲烷,氯仿,n,n-二甲基甲酰胺,四氢呋喃,乙醚,丙酮中至少一种。

进一步的,所述织物为材质为由棉纤维,麻纤维,合成纤维,再生纤维素纤维,粘胶人造丝,涤纶,锦纶,丙纶,腈纶,氯纶,维纶等合成纤维编制所成的织物。

进一步的,所述疏水性聚离子液体在溶液中的浓度为1wt%~20wt%。浓度过低会导致聚离子液体在布料表面包裹不均匀,使表面疏水性不好。浓度过大会导致溶液粘度太大,布料在溶液中的浸润过程会受影响,且布料表面会附着过厚的聚离子液体,失去布料的柔软性。

进一步的,所述微纳米颗粒为直径是50~300nm的无机纳米颗粒,具体可为氧化铝,二氧化硅,二氧化钛,四氧化三铁,球形金纳米颗粒,球形铜纳米颗粒,球形银纳米颗粒,金纳米棒,银纳米棒,单层或多层碳纳米管中的一种或几种。

进一步的,所述微纳米颗粒在溶液中的浓度为0.5~1.5wt%。浓度过低会使表面沉积的颗粒数量不够,导致粗糙度不够。浓度太大则会导致颗粒的团聚,也不利于形成均匀的粗糙表面。

进一步的,所述浸渍时间为1min~60min。时间太短不能保证布料被充分浸渍,时间太长延长了处理时间。

进一步的,所述干燥方法为自然晾干或热风烘干的方式,温度为30~80℃。温度太低会使溶剂挥发速度过慢,使溶液都由于重力的缘故下降到布料面向地面的那一侧,最终会使布料的疏水性不均匀。过高则会导致聚离子液体分解。

本发明采用聚离子液体交联体包裹织物表面,并连同纳米颗粒一起为织物表面带来了复合的微纳米粗糙结构,并在聚离子液体低表面能特征的共同作用下,使织物拥有了超疏水的特性。

本发明与现有技术相比,具有如下优点:

(1)制备工艺简单,条件温和室温即可操作,不需要特殊仪器设备。

(2)所用改性原料廉价易得,材料制备成本低。

(3)所制备的超疏水织物具有超高耐用性,按照aatcc测试方法61-2003的1a条件,洗涤20次后其接触角值仍在150°以上。

(4)本发明制备方法可广泛应用于棉布,亚麻,涤纶,尼龙,腈纶等纺织物上,不受基材织物的类型限制。

(5)本发明所制备的超疏水织物同时具有超亲油性,可用于油水分离中。

附图说明

图1:原始涤纶织物放大倍数为2000倍的扫描电镜图。

图2:所制备的超疏水涤纶织物放大倍数为2000倍的扫描电镜图。

具体实施方式

为更好的理解本发明,下面结合实施例对本发明作进一步的说明,但是本发明的实施方式不限于此。应当知晓的是,所有的数字标识,例如ph、温度、时间、浓度,包括范围,都是近似值。要了解,虽然不总是明确的叙述所有的数字标识之前都加上术语“约”。同时也要了解,虽然不总是明确的叙述,本文中描述的试剂仅仅是示例,其等价物是本领域已知的。

实施例1:

将一种分子式为下式的聚乙烯基季铵盐类离子液体(交联剂为二乙烯苯,交联度为10%)

溶解于甲醇中,形成浓度为1wt%的溶液,再加入0.5wt%的50nm的二氧化硅颗粒,超声分散30min,形成均一的溶液;将棉织物浸泡在此溶液中5min后取出,然后放置到60℃烘箱中干燥即得。所得超疏水棉织物的接触角为155°.

实施例2:

将一种分子式为下式的聚乙烯基季铵盐类离子液体

溶解于二氯甲烷中,形成浓度为5wt%的溶液,再加入1wt%的200nm的氧化铝颗粒,超声分散30min,形成均一的溶液;将麻纤维织物浸泡在此溶液中1min后取出,然后放置到40℃烘箱中干燥即得。所得超疏水棉织物的接触角为158°.

本实施例与实施例1不同之处在于聚离子液体为不含交联剂的均聚物,且阴离子改为br-,阳离子集团上最长碳链长度改为12,用量改为5wt%,溶剂改为二氯甲烷,微纳米颗粒改成1wt%的200nm的氧化铝颗粒,浸泡时间有所缩短,但最终制成的超疏水织物的接触角依旧很大。

实施例3:

将一种分子式为下式的聚乙烯咪唑类离子液体

溶解于乙醇中,形成浓度为10wt%的溶液,再加入1wt%的300nm的二氧化钛颗粒,超声分散30min,形成均一的溶液;将涤纶纤维织物浸泡在此溶液中30min后取出,然后放置到室温空气中干燥即得。所得超疏水棉织物放大2000倍的电镜图如附图2所示,其接触角值为158°.

本实施例与实施例2不同之处在于聚离子液体种类改为的聚乙烯咪唑类离子液体,阴离子改成bf4-,用量改为10wt%,溶剂改为乙醇,微纳米颗粒改成300nm的二氧化钛颗粒,浸泡时间有所增加。

实施例4:

将一种结构式为下式的聚乙烯季铵盐类离子液体

溶解于乙醇中,形成浓度为20wt%的溶液,再加入0.5wt%的100nm的四氧化三铁颗粒,超声分散30min,形成均一的溶液;将涤纶纤维织物浸泡在此溶液中60min后取出,然后放置到温度为80℃中干燥即得。所得超疏水棉织物的接触角为162°.

本实施例与实施例3不同之处在于聚离子液体种类改为的聚乙烯季铵盐类离子液体,阴离子改成cl-,用量改为20wt%,微纳米颗粒改成0.5wt%的100nm的四氧化三铁颗粒,浸泡时间有所增加。

实施例5:

将一种结构式为下式的聚乙烯季铵盐类离子液体

溶解于n,n-二甲基甲酰胺中,形成浓度为2wt%的溶液,再加入0.5wt%的50nm的球形银纳米颗粒,超声分散30min,形成均一的溶液;将再生纤维织物浸泡在此溶液中10min后取出,然后放置到温度为80℃中干燥即得。所得超疏水棉织物的接触角为165°.

本实施例与实施例4不同之处在于聚乙烯季铵盐类离子液体为全氟长碳链,阴离子改成br-,用量改为2wt%,微纳米颗粒改成0.5wt%的50nm的球形银纳米颗粒。

实施例6:

采用聚乙烯咪唑类离子液体,结构式为下式:

溶解于氯仿中,形成浓度为5wt%的溶液,再加入0.5wt%的直径为50nm的碳纳米管,超声分散30min,形成均一的溶液;将锦纶纤维织物浸泡在此溶液中30min后取出,然后放置到温度为50℃中干燥即得。所得超疏水棉织物的接触角为165°.

本实施例与实施例5不同之处在于采用了含偏氟长碳链的聚乙烯咪唑类离子液体,阴离子改成pf6-,用量改为5wt%,微纳米颗粒改成0.5wt%的50nm的碳纳米管。

上述具体实施例仅是为了说明本发明制备过程,并非是对实施方式的限定,所属领域专业人员可以在实施例的基础上变动或扩展来制得超疏水纤维织物,因此无需穷举所有的实施例,而由此所引出的明显变动仍属于本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1