各向异性导电磁光三功能三明治结构复合膜及其制备方法与流程

文档序号:17249622发布日期:2019-03-30 09:00阅读:195来源:国知局
各向异性导电磁光三功能三明治结构复合膜及其制备方法与流程

本发明涉及纳米材料制备技术领域,具体说涉及各向异性导电磁光三功能三明治结构复合膜及其制备方法。



背景技术:

各向异性导电膜是一种新型的电子元器件互联材料,它具有单方向上的导电性和其它方向上的绝缘性,已经被广泛地应用在电子封装、芯片固定及电极粘接等领域。按其导电方向分类,可以分为如下两类:i型各向异性导电膜:这种各向异性导电膜沿膜的厚度方向导电,而沿膜面方向绝缘,这种各向异性导电膜的制备技术现已非常成熟,且已被广泛地应用在电子设备中;ii型各向异性导电膜:这种各向异性导电膜沿其膜面的不同方向有不同的导电性能,通常沿膜面的两个垂直方向上,一个方向导电,另一个方向绝缘,具有各向异性导电性能。ii型各向异性导电膜的研究尚处于实验室探索阶段,未实现工业化生产和应用。研究探索新型的各向异性导电膜,并赋予其多功能特性,是各向异性导电膜研究领域的重要发展方向。

janus材料是指两种化学组成或者一种化学组成但结构不同在同一体系具有明确分区结构,因而具有双重性质如亲水/疏水、极性/非极性,荧光/导电,导电/绝缘等,是材料科学领域的前沿、热点研究方向之一。janus纳米带是指两种化学组成在同一纳米带中具有明确分区结构,具有两种或两种以上性质,如纳米带的一侧具有导电功能,另一侧具有绝缘功能,如果采用特殊的接收装置,这些janus纳米带可以定向排列,形成janus纳米带阵列膜,这种阵列膜具有良好的各向异性导电性能。

稀土金属铕配合物eu(ba)3phen,eu3+为铕离子,ba为苯甲酸,phen为邻菲啰啉,因铕离子独特的电子构型而成为具有独特性能的红色发光材料,如发光强度高、稳定性好、荧光量子产率高、单色性好等优点,是一种广泛应用的红色荧光材料。聚苯胺pani由于其容易合成、电导率高和环境稳定性好等优点,已经成为导电聚合物领域研究的热点之一。人们已经合成了纳米线、纳米棒、纳米管和纳米纤维等一维纳米结构的聚苯胺pani。

已有的研究已经证明,当深颜色的导电聚苯胺pani和fe3o4纳米晶与稀土配合物eu(ba)3phen直接混合会显著降低其发光效果,因此要获得eu(ba)3phen良好的发光效果,必须使eu(ba)3phen与pani和fe3o4实现有效分离。如果将导电高分子聚苯胺pani与聚甲基丙烯酸甲酯pmma混合制备成纳米带,导电pani是连续的,保证了其的高导电性,作为janus纳米带的一侧,则该侧具有导电性,而将pmma制备成纳米带,作为janus纳米带的另一侧,则该侧具有绝缘性,形成[pani/pmma]//pmmajanus纳米带,如果采用特殊装置,还可以得到janus纳米带阵列膜,这样沿着纳米带长度方向导电性强,而沿着垂直于纳米带方向上,由于有不导电的pmma结构单元存在,使得该方向具有绝缘性,从而具有各向异性导电性,这样就可以得到[pani/pmma]//pmma各向异性导电janus纳米带阵列膜,再利用二次电纺技术,在janus纳米带阵列膜上构筑无序的fe3o4/聚乙烯吡咯烷酮pvp复合纳米纤维膜,其具有磁性,再利用三次电纺技术在磁性膜上构筑无序的eu(ba)3phen/聚丙烯腈pan复合纳米纤维膜,其具有红色荧光功能,这三层膜牢固地结合在一起形成上中下三层结构,得到三明治结构复合膜,这种三明治结构复合膜具有各向异性导电磁性红色荧光三功能特性,利用该种三明治结构实现了eu(ba)3phen与pani和fe3o4的有效分离。这种特殊结构的各向异性导电磁光三功能三明治结构复合膜将在未来纳米结构器件和医疗诊断治疗中具有重要的应用前景。目前尚未见相关的文献报道。

专利号为1975504的美国专利公开了一项有关静电纺丝方法(electrospinning)的技术方案,该方法是制备连续的、具有宏观长度的微纳米纤维的一种有效方法,由formhals于1934年首先提出。这一方法主要用来制备高分子纳米纤维,其特征是使带电的高分子溶液或熔体在静电场中受静电力的牵引而由喷嘴喷出,投向对面的接收屏,从而实现拉丝,然后,在常温下溶剂蒸发,或者熔体冷却到常温而固化,得到微纳米纤维。近十多年以来,在无机纤维制备技术领域出现了采用静电纺丝方法制备无机化合物如氧化物纳米纤维的技术方案,所述的氧化物包括tio2、zro2、y2o3、y2o3:re3+(re3+=eu3+、tb3+、er3+、yb3+/er3+)、nio、co3o4、mn2o3、mn3o4、cuo、sio2、al2o3、v2o5、zno、nb2o5、moo3、ceo2、lamo3(m=fe、cr、mn、co、ni、al)、y3al5o12、la2zr2o7等金属氧化物和金属复合氧化物。q.z.yu,etal.采用静电纺丝技术制备了聚苯胺pani纳米纤维[mater.sci.eng.b,2008,150,70-76]。已有人利用静电纺丝技术成功制备了高分子纳米带[materialsletters,2007,61:2325-2328;journalofpolymerscience:partb:polymerphysics,2001,39:2598-2606]。有人利用锡的有机化合物,使用静电纺丝技术与金属有机化合物分解技术相结合制备了多孔sno2纳米带[nanotechnology,2007,18:435704]。有人利用静电纺丝技术首先制备了peo/氢氧化锡复合纳米带,将其焙烧得到了多孔sno2纳米带[j.am.ceram.soc.,2008,91(1):257-262]。董相廷等采用静电纺丝技术制备了稀土三氟化物纳米带[中国发明专利,申请号:201010108039.7]、二氧化钛纳米带[中国发明专利,授权号:zl200810050948.2]和gd3ga5o12:eu3+多孔纳米带[高等学校化学学报,2010,31(7),1291-1296]。董相廷等使用单个喷丝头、采用静电纺丝技术制备了pan/eu(ba)3phen复合发光纳米纤维[化工新型材料,2008,36(9),49-52]。王策等采用静电纺丝法制备了具有磁性的聚乙烯吡咯烷酮/四氧化三铁复合纳米纤维薄膜[高等学校化学学报,2006,27(10),2002-2004];qingbiaoyang,etal.采用静电纺丝技术制备了fe2o3nanoparticles/eu(dbm)3(bath)复合双功能磁光纳米纤维[journalofcolloidandinterfacescience,2010,350,396-401]。董相廷等使用单个喷丝头、采用静电纺丝技术制备了eu(ba)3phen/pani/pvp光电双功能复合纳米纤维[高等学校化学学报,2012,33(8),1657-1662]。董相廷等利用静电纺丝技术制备了eu(ba)3phen/pvp//pani/pvp光电双功能两股并行纳米纤维束[国家发明专利,申请号:201210407369.5]。董相廷等采用静电纺丝技术制备了单各向异性导电-磁-光三功能janus纳米带阵列[国家发明专利,授权号:zl201410795673.0;adv.funct.mater.,2015,25,2436-2443]。董相廷等采用静电纺丝技术制备了红色发光电磁三功能两层复合纳米纤维膜[国家发明专利,授权号:zl201610765900.4;acsappliedmaterials&interfaces,2016,8(39),26226-26234]。目前,未见利用静电纺丝技术制备柔性各向异性导电磁光三功能三明治结构复合膜的相关报道。

利用静电纺丝技术制备纳米材料时,原料的种类、高分子模板剂的分子量、纺丝液的组成、纺丝过程参数和喷丝头的结构对最终产品的形貌和尺寸都有重要影响。本发明采用静电纺丝技术,喷丝头由两个12#截平的直径相同的注射器针头靠在一起组成的并列双喷丝头,将苯胺、樟脑磺酸、过硫酸铵、pmma、n,n-二甲基甲酰胺dmf和氯仿chcl3混合,待苯胺聚合成聚苯胺后构成第一种纺丝液,将pmma、dmf和chcl3的混合液为第二种纺丝液,以油酸包覆的fe3o4纳米晶、pvp和dmf的混合液为第三种纺丝液,以eu(ba)3phen配合物、pan和dmf的混合液为第四种纺丝液,控制纺丝液的粘度至关重要,在最佳的工艺条件下,得到[pani/pmma]//pmma各向异性导电janus纳米带阵列膜,再利用二次电纺技术,在janus纳米带阵列膜上构筑无序的fe3o4/pvp复合纳米纤维磁性膜,再利用三次电纺技术在磁性膜上构筑无序的eu(ba)3phen/pan复合纳米纤维红色荧光膜,这三层膜牢固地结合在一起形成上中下三层结构,得到三明治结构复合膜,这种三明治结构复合膜具有各向异性导电磁性红色荧光三功能特性。



技术实现要素:

在背景技术中采用静电纺丝技术制备了高分子、金属氧化物、金属氟化物和金属复合氧化物纳米纤维和纳米带、pan/eu(ba)3phen复合发光纳米纤维、聚乙烯吡咯烷酮/四氧化三铁复合磁性纳米纤维、聚苯胺pani纳米纤维、eu(ba)3phen/pani/pvp光电双功能复合纳米纤维、eu(ba)3phen/pvp//pani/pvp光电双功能两股并行纳米纤维束、单各向异性导电-磁-光三功能janus纳米带阵列和红色发光电磁三功能两层复合纳米纤维膜。所使用的原料、模板剂、溶剂和最终的目标产物与本发明的方法有所不同。本发明采用静电纺丝技术,使用并列双喷丝头制备了[pani/pmma]//pmma各向异性导电janus纳米带阵列膜,再利用二次电纺技术,在janus纳米带阵列膜上构筑无序的fe3o4/pvp复合纳米纤维磁性膜,再利用三次电纺技术在磁性膜上构筑无序的eu(ba)3phen/pan复合纳米纤维红色荧光膜,这三层膜牢固地结合在一起形成上中下三层结构,得到三明治结构复合膜,为各向异性导电膜材料领域增加了一种新型结构的多功能各向异性导电膜。

本发明是这样实现的,首先采用沉淀法制备出eu(ba)3phen和油酸包覆的fe3o4纳米晶,采用本体聚合法制备pmma,将苯胺、樟脑磺酸、过硫酸铵、pmma、n,n-二甲基甲酰胺dmf和氯仿chcl3混合,待苯胺聚合成聚苯胺pani后构成第一种纺丝液,以pmma、dmf和chcl3的混合液为第二种纺丝液,以油酸包覆的fe3o4纳米晶、pvp和dmf的混合液为第三种纺丝液,以eu(ba)3phen配合物、pan和dmf的混合液为第四种纺丝液,控制纺丝液的粘度至关重要。采用并列双喷丝头、应用静电纺丝技术进行静电纺丝,在最佳的工艺条件下,获得[pani/pmma]//pmma各向异性导电janus纳米带阵列膜,再利用二次电纺技术,在janus纳米带阵列膜上构筑无序的fe3o4/pvp复合纳米纤维磁性膜,再利用三次电纺技术在磁性膜上构筑无序的eu(ba)3phen/pan复合纳米纤维红色荧光膜,这三层膜牢固地结合在一起形成上中下三层结构,得到三明治结构复合膜。其步骤为:

(1)沉淀法制备eu(ba)3phen配合物

将1.7600geu2o3溶于20ml浓硝酸中,加热蒸干得到eu(no3)3晶体,加入20ml无水乙醇,配制成eu(no3)3的乙醇溶液;将3.6640g苯甲酸和1.8020g邻菲啰啉加入到200ml无水乙醇中配制成混合配体溶液,在不断搅拌的情况下将eu(no3)3的乙醇溶液逐滴加到混合配体溶液中,再加入浓nh3·h2o调节ph为6.5-7.0之间,加热到60℃后,反应3h,所得沉淀依次用水和乙醇洗涤3次,最后在干燥箱中60℃下干燥12h,得到eu(ba)3phen配合物;

(2)沉淀法制备油酸包覆的fe3o4纳米晶

将32.8500gfecl3·6h2o,16.7000gfeso4·7h2o,24.2400gnh4no3和11.4000g分子量为20000的聚乙二醇溶于600ml去离子水中,加热至50℃并通入氩气30min,然后缓慢滴加氨水至溶液的ph值为11,继续通氩气20min得到黑色悬浊液,将此悬浊液磁分离后,用无水乙醇和去离子水依次洗涤三次,将产物置于60℃的真空干燥箱中干燥12h,得到直径为8-10nm的fe3o4纳米晶;取2.0000g所制备的fe3o4纳米晶分散在已通入30min氩气的100ml去离子水中并超声分散20min,然后将溶液在氩气保护下加热到80℃,并加入1ml油酸,然后继续反应40min,将所得到的沉淀进行磁分离,去除水层并将沉淀在60℃真空干燥箱中干燥12h,得到油酸包覆的fe3o4纳米晶;

(3)制备聚甲基丙烯酸甲酯pmma

称取100g甲基丙烯酸甲酯mma和0.1g过氧化二苯甲酰bpo,加入到带有回流装置的250ml三颈瓶中并搅拌均匀,将上述溶液在90-95℃的温度下剧烈搅拌并回流至溶液有一定粘度,当其粘度与甘油相近后,在继续搅拌的同时停止加热并自然冷却到室温,之后将上述溶液灌注到试管中,灌注高度为5-7cm,灌注完毕后静置2h至试管内的溶液没有气泡,然后将上述试管转移到50℃干燥箱中放置48h,试管内的液体硬化为透明的固体,最后将干燥箱温度提高至110℃并保温2h,使聚合反应结束,然后自然冷却至室温,得到聚甲基丙烯酸甲酯pmma;

(4)配制纺丝液

在16.0000gchcl3和0.5000gdmf的混合溶剂中加入1.0000gpmma,搅拌2h得到均匀的胶状液,将0.7000g苯胺和1.7596g樟脑磺酸加入到上述胶状液中并搅拌2h后,加入1.7153g过硫酸铵,再加入1.5000gchcl3和1.000gdmf,搅拌2h后,将溶液放入5℃的冰箱冷藏室中24h,得到第一种纺丝液;在17.5000g氯仿和1.5000gdmf的混合溶剂中加入1.0000gpmma并搅拌24h,得到第二种纺丝液;在4.8000gdmf溶剂中加入1.0000g油酸包覆的fe3o4纳米晶,超声分散20min后,加入1.0000g分子量为1300000的pvp并搅拌24h,得到第三种纺丝液;在10.0000gdmf溶剂中加入1.0000g分子量为86000的pan和0.15000geu(ba)3phen配合物并搅拌24h,得到第四种纺丝液;

(5)制备各向异性导电磁光三功能三明治结构复合膜

采用两支分别都带有截平的12#不锈钢针头的5ml注射器,将两不锈钢针头分别弯曲30°角,使两针尖可紧密并行,并采用一支1ml塑料喷枪头套在两根并行不锈钢针头上,使两根不锈钢针头的尖端处于塑料喷枪头的中间部分,将第一种纺丝液和第二种纺丝液各取2.5ml分别注入到两个注射器中,采用竖喷方式,接收装置为一个水平放置的长20cm,直径为7cm的圆柱形铝制转筒,转速为1200r/min,其它纺丝参数为:纺丝电压为7kv,针尖与转筒间距为14cm,环境温度为20-25℃,相对湿度为20%-30%,待纺丝液耗尽后,得到[pani/pmma]//pmma各向异性导电janus纳米带阵列膜;将得到的janus纳米带阵列膜从铝制转筒上取下,固定在与高压电源负极相连的铁丝网上,将5ml的第三种纺丝液注入到带有不锈钢针头的注射器中,采用单轴静电纺丝技术,在janus纳米带阵列膜上构筑无序的fe3o4/pvp复合纳米纤维磁性膜,纺丝参数为:纺丝电压14kv,针尖与收集铁丝网间距16cm,环境温度为23-26℃,相对湿度20%-30%;待第三种纺丝液完全耗尽后,5ml第四种纺丝液取代第三种纺丝液继续纺丝,在磁性膜上构筑无序的eu(ba)3phen/pan复合纳米纤维红色荧光膜,这三层膜牢固地结合在一起形成上中下三层结构,得到各向异性导电磁光三功能三明治结构复合膜。

上述过程中所制备的各向异性导电磁光三功能三明治结构复合膜,由[pani/pmma]//pmma各向异性导电janus纳米带阵列膜、无序的fe3o4/pvp复合纳米纤维磁性膜和无序的eu(ba)3phen/pan复合纳米纤维红色荧光膜复合而成,形成上中下三层结构,上中下三层膜的厚度分别为56.93,51.09和75.18μm,下层膜由定向排列的[pani/pmma]//pmmajanus纳米带组成,janus纳米带的宽度为8.61±0.1μm,沿着janus纳米带长度方向导电性强,电导为6.35×10-2s,而沿着垂直于janus纳米带长度方向导电性弱,电导为5.72×10-10s,二者比值为1.11×108,具有强的各向异性导电性;中层膜由无序的磁性fe3o4/pvp复合纳米纤维组成,直径为580±2nm;上层膜由无序的eu(ba)3phen/pan复合纳米纤维组成,直径为660±3nm;在292nm的紫外光激发下,上层膜发射出主峰位于615nm的明亮红光;所制备的三明治结构复合膜的饱和磁化强度为5.4emu/g,具有较强的磁性;所制备的柔性三明治结构复合膜具有良好的各向异性导电磁性红色荧光三功能特性,实现了发明目的。

附图说明

图1是各向异性导电磁光三功能三明治结构复合膜的sem照片,该图兼做摘要附图;

图2是各向异性导电磁光三功能三明治结构复合膜的xrd图;

图3是各向异性导电磁光三功能三明治结构复合膜的下层膜的sem照片;

图4是各向异性导电磁光三功能三明治结构复合膜的下层膜中janus纳米带的宽度分布直方图;

图5是各向异性导电磁光三功能三明治结构复合膜的下层膜中janus纳米带的线分析能量色散谱图;

图6是各向异性导电磁光三功能三明治结构复合膜的下层膜中单条janus纳米带的光学显微镜照片;

图7是各向异性导电磁光三功能三明治结构复合膜的中层膜的sem照片;

图8是各向异性导电磁光三功能三明治结构复合膜的中层膜中纳米纤维的直径分布直方图;

图9是各向异性导电磁光三功能三明治结构复合膜的上层膜的sem照片;

图10是各向异性导电磁光三功能三明治结构复合膜的上层膜中纳米纤维的直径分布直方图;

图11是各向异性导电磁光三功能三明治结构复合膜的上层膜的激发光谱图;

图12是各向异性导电磁光三功能三明治结构复合膜的上层膜的发射光谱图;

图13是各向异性导电磁光三功能三明治结构复合膜的上层膜的色坐标图;

图14是各向异性导电磁光三功能三明治结构复合膜的磁滞回线图。

具体实施方式

本发明所选用的氧化铕eu2o3的纯度为99.99%,n,n-二甲基甲酰胺,氯仿,硝酸,苯甲酸,邻菲啰啉,无水乙醇,氨水,苯胺,樟脑磺酸,过氧化二苯甲酰,甲基丙烯酸甲酯,过硫酸铵,六水合三氯化铁,七水合硫酸亚铁,硝酸铵,分子量为20000的聚乙二醇,油酸,氩气,分子量为86000的聚丙烯腈pan,分子量为1300000的聚乙烯吡咯烷酮pvp,均为市售分析纯产品;去离子水实验室自制;所用的玻璃仪器和设备是实验室中常用的仪器和设备。

实施例:将1.7600geu2o3溶于20ml浓硝酸中,加热蒸干得到eu(no3)3晶体,加入20ml无水乙醇,配制成eu(no3)3的乙醇溶液;将3.6640g苯甲酸和1.8020g邻菲啰啉加入到200ml无水乙醇中配制成混合配体溶液,在不断搅拌的情况下将eu(no3)3的乙醇溶液逐滴加到混合配体溶液中,再加入浓nh3·h2o调节ph为6.5-7.0之间,加热到60℃后,反应3h,所得沉淀依次用水和乙醇洗涤3次,最后在干燥箱中60℃下干燥12h,得到eu(ba)3phen配合物;将32.8500gfecl3·6h2o,16.7000gfeso4·7h2o,24.2400gnh4no3和11.4000g分子量为20000的聚乙二醇溶于600ml去离子水中,加热至50℃并通入氩气30min,然后缓慢滴加氨水至溶液的ph值为11,继续通氩气20min得到黑色悬浊液,将此悬浊液磁分离后,用无水乙醇和去离子水依次洗涤三次,将产物置于60℃的真空干燥箱中干燥12h,得到直径为8-10nm的fe3o4纳米晶;取2.0000g所制备的fe3o4纳米晶分散在已通入30min氩气的100ml去离子水中并超声分散20min,然后将溶液在氩气保护下加热到80℃,并加入1ml油酸,然后继续反应40min,将所得到的沉淀进行磁分离,去除水层并将沉淀在60℃真空干燥箱中干燥12h,得到油酸包覆的fe3o4纳米晶;称取100g甲基丙烯酸甲酯mma和0.1g过氧化二苯甲酰bpo,加入到带有回流装置的250ml三颈瓶中并搅拌均匀,将上述溶液在90-95℃的温度下剧烈搅拌并回流至溶液有一定粘度,当其粘度与甘油相近后,在继续搅拌的同时停止加热并自然冷却到室温,之后将上述溶液灌注到试管中,灌注高度为5-7cm,灌注完毕后静置2h至试管内的溶液没有气泡,然后将上述试管转移到50℃干燥箱中放置48h,试管内的液体硬化为透明的固体,最后将干燥箱温度提高至110℃并保温2h,使聚合反应结束,然后自然冷却至室温,得到聚甲基丙烯酸甲酯pmma;在16.0000gchcl3和0.5000gdmf的混合溶剂中加入1.0000gpmma,搅拌2h得到均匀的胶状液,将0.7000g苯胺和1.7596g樟脑磺酸加入到上述胶状液中并搅拌2h后,加入1.7153g过硫酸铵,再加入1.5000gchcl3和1.000gdmf,搅拌2h后,将溶液放入5℃的冰箱冷藏室中24h,得到第一种纺丝液;在17.5000g氯仿和1.5000gdmf的混合溶剂中加入1.0000gpmma并搅拌24h,得到第二种纺丝液;在4.8000gdmf溶剂中加入1.0000g油酸包覆的fe3o4纳米晶,超声分散20min后,加入1.0000g分子量为1300000的pvp并搅拌24h,得到第三种纺丝液;在10.0000gdmf溶剂中加入1.0000g分子量为86000的pan和0.15000geu(ba)3phen配合物并搅拌24h,得到第四种纺丝液;采用两支分别都带有截平的12#不锈钢针头的5ml注射器,将两不锈钢针头分别弯曲30°角,使两针尖可紧密并行,并采用一支1ml塑料喷枪头套在两根并行不锈钢针头上,使两根不锈钢针头的尖端处于塑料喷枪头的中间部分,将第一种纺丝液和第二种纺丝液各取2.5ml分别注入到两个注射器中,采用竖喷方式,接收装置为一个水平放置的长20cm,直径为7cm的圆柱形铝制转筒,转速为1200r/min,其它纺丝参数为:纺丝电压为7kv,针尖与转筒间距为14cm,环境温度为20-25℃,相对湿度为20%-30%,待纺丝液耗尽后,得到[pani/pmma]//pmma各向异性导电janus纳米带阵列膜;将得到的janus纳米带阵列膜从铝制转筒上取下,固定在与高压电源负极相连的铁丝网上,将5ml的第三种纺丝液注入到带有不锈钢针头的注射器中,采用单轴静电纺丝技术,在janus纳米带阵列膜上构筑无序的fe3o4/pvp复合纳米纤维磁性膜,纺丝参数为:纺丝电压14kv,针尖与收集铁丝网间距16cm,环境温度为23-26℃,相对湿度20%-30%;待第三种纺丝液完全耗尽后,5ml第四种纺丝液取代第三种纺丝液继续纺丝,在磁性膜上构筑无序的eu(ba)3phen/pan复合纳米纤维红色荧光膜,这三层膜牢固地结合在一起形成上中下三层结构,得到各向异性导电磁光三功能三明治结构复合膜。所制备的各向异性导电磁光三功能三明治结构复合膜,由[pani/pmma]//pmma各向异性导电janus纳米带阵列膜、无序的fe3o4/pvp复合纳米纤维磁性膜和无序的eu(ba)3phen/pan复合纳米纤维红色荧光膜复合而成,形成上中下三层结构,上中下三层膜的厚度分别为56.93,51.09和75.18μm,如图1所示;各向异性导电磁光三功能三明治结构复合膜中含有立方相fe3o4纳米晶,如图2所示;各向异性导电磁光三功能三明治结构复合膜中,下层膜由定向排列的[pani/pmma]//pmmajanus纳米带组成,如图3所示;下层膜中janus纳米带的宽度为8.61±0.1μm,如图4所示;对于各向异性导电磁光三功能三明治结构复合膜的下层膜中janus纳米带的结构,s元素的分布可以代表聚苯胺的分布,s元素仅分布在janus纳米带的一侧,而另一侧没有s元素,这与janus纳米带的结构相符合,如图5所示;对于各向异性导电磁光三功能三明治结构复合膜的下层膜中janus纳米带的结构,单条janus纳米带的一侧包含深颜色的pani/pamm,另一侧包含无色透明的pmma,如图6所示;下层膜中沿着janus纳米带长度方向导电性强,电导为6.35×10-2s,而沿着垂直于janus纳米带长度方向导电性弱,电导为5.72×10-10s,二者比值为1.11×108,具有强的各向异性导电性;中层膜由无序的磁性fe3o4/pvp复合纳米纤维组成,如图7所示;中层膜中无序的磁性fe3o4/pvp复合纳米纤维直径为580±2nm,如图8所示;上层膜由无序的eu(ba)3phen/pan复合纳米纤维组成,如图9所示;上层膜中无序的eu(ba)3phen/pan复合纳米纤维直径为660±3nm,如图10所示;以615nm作为监测波长,上层膜在210-375nm处有一个宽的激发带,其峰值在292nm处,可归为配体的π→π*跃迁,如图11所示;在292nm的紫外光激发下,上层膜发射出主峰位于615nm的明亮红光,它对应于eu离子的5d0→7f2跃迁,如图12所示;在292nm的紫外光激发下,上层膜发射的荧光颜色的色坐标值x和y分别为0.621和0.333,发射的荧光颜色为红色,如图13所示;所制备的三明治结构复合膜的饱和磁化强度为5.4emu/g,具有较强的磁性,如图14所示;所制备的柔性三明治结构复合膜具有良好的各向异性导电磁性红色荧光三功能。

当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1