一种活性壳聚糖改性棉织物的制备方法与流程

文档序号:23502431发布日期:2021-01-01 18:09阅读:198来源:国知局
一种活性壳聚糖改性棉织物的制备方法与流程

本发明涉及一种活性壳聚糖改性棉织物的制备方法,属于纺织品功能整理技术领域。



背景技术:

棉纤维是我国纺织工业的重要原材料,其织物价格低廉、吸湿透气、舒适性好、易于染色加工、安全环保、对人体无害。但棉织物缩水率大、易起皱变形,在潮湿环境里易发霉变质,造成人体细菌感染,引发健康问题。因此对棉纺产品进行抗菌防病整理,开发安全卫生的高效抗菌纺织品以保护人体健康已刻不容缓。

目前用于棉织物的抗菌整理剂主要包括无机抗菌剂、有机抗菌剂和天然抗菌剂三大类,其中:无机抗菌剂成本高、金属颗粒易氧化变色、金属粒子对人体危害存在争议;有机抗菌剂毒性较大、化学稳定性和耐久性差、易分解挥发[xuqb,lirl,shenlw,etal.enhancingthesurfaceaffinitywithsilvernano-particlesforantibacterialcottonfabricbycoatingcarboxymethylchitosanandl-cysteine.appliedsurfacescience,2019,497:143-151]。而天然抗菌剂资源丰富、可再生、生物相容、生物可降解、绿色环保,已在抗菌纺织品中普遍使用。壳聚糖作为一种天然抗菌剂,广谱抗菌性强、无毒无刺激性、生物活性高,且消炎镇痛和促进创伤愈合,已广泛用在纺织服装、印染、化工、食品和生物医学等领域。由于壳聚糖与棉纤维间缺乏化学键结合,需要将壳聚糖溶解在含有交联剂的酸性溶液中,在高温(≥120℃)焙烘下通过化学交联剂的“桥联”作用使壳聚糖接枝在棉纤维上,但高温焙烘使棉织物手感和强力变差,且天然棉纤维表面涂覆的化学交联剂对人体产生负面影响[王建刚,王亚丽,葛明桥,等.柠檬酸和壳聚糖对棉织物抗菌整理的研究.纺织学报,2006,27(1):89-92]。发明专利cn106521950a公开的三甲氧基苯甲酰壳聚糖改性的棉织物,通过有机多元羧酸和氨基硅油乳液作为交联剂实现壳聚糖与棉织物的化学接枝,提高了棉织物的抗菌和染色等性能,但该整理液成份繁多,需要浸轧、预烘和高温焙烘等复杂整理过程,工艺设备要求高。

因此,探究无交联剂的绿色改性技术是近年来抗菌功能纺织品生产的重要研究方向之一,通过壳聚糖化学交联棉织物赋予织物持久高效的抗菌能力,对保护人体健康具有重要意义。



技术实现要素:

鉴于现有技术存在的上述问题,本发明提供一种活性壳聚糖改性棉织物的制备方法,目的在于使该活性壳聚糖改性棉织物具有生物相容性好、杀菌能力高效持久、服用舒适性高、无化学交联剂、绿色环保等优点。

为实现上述发明目的,本发明采用如下技术方案:

一种活性壳聚糖改性棉织物的制备方法,其特点在于:所述的改性棉织物是先在1-乙基-3-甲基咪唑硫酸氢盐离子液体和去离子水混合介质中润胀棉织物,取出棉织物后加入活性壳聚糖进行溶解,再通过棉织物的羟基与活性壳聚糖分子中的醛基反应形成半缩醛化学键而得到。具体包括如下步骤:

(1)将退浆的棉织物浸渍在1-乙基-3-甲基咪唑硫酸氢盐离子液体和去离子水混合介质中,于30~55℃下润胀1~3h后取出棉织物,再加入活性壳聚糖于60~80℃搅拌至完全溶解,配置成质量浓度为0.5~3%的活性壳聚糖溶液;

(2)将润胀的棉织物按浴比1:30~50加入到活性壳聚糖溶液中,于45~60℃下持续搅拌反应1~4h,反应结束后,取出棉织物用去离子水冲洗6~8次,在50~60℃真空烘箱中烘燥2~5h,即得活性壳聚糖改性棉织物样品。

作为优选,步骤(1)中所述活性壳聚糖的黏均分子量为3.5~10.8万、脱乙酰度≥90.2%、c2和c3位的醛基含量为19.43~31.69%、c6位的羧基含量为56.05%。

作为优选,步骤(1)中所述1-乙基-3-甲基咪唑硫酸氢盐离子液体与去离子水的体积比为1~4:1。

通过优化活性壳聚糖的醛基含量和浓度、反应时间、反应温度以及棉织物的润胀时间,可以获得一系列不同活性壳聚糖接枝率的改性棉织物。

与现有技术相比,本发明中活性壳聚糖改性棉织物的制备原理和有益效果如下:

1、本发明采用活性壳聚糖半缩醛交联棉织物制备持久抗菌纺织品,不使用化学交联剂,避免了交联剂涂覆对棉织物优良性能和人体健康的负面影响,所制备的改性棉织物具有亲和人体、生物活性高、抗菌持久高效、舒适卫生、绿色环保等特点,具备实际应用的巨大潜力。

2、本发明利用1-乙基-3-甲基咪唑硫酸氢盐(emimhso4)离子液体和去离子水混合介质对棉织物进行润胀处理,emimhso4离子液体中的阳离子[emim]+和阴离子hso4-分别与棉纤维大分子链中羟基上的氧原子和氢原子作用,通过破坏纤维素分子间氢键而使棉纤维润胀直至溶解在离子液体中;而水分子的存在减弱了离子液体中阳离子[emim]+和阴离子hso4-的氢键接受能力,使离子液体/去离子水体系不能溶解纤维素,只能润胀棉纤维,削弱棉纤维结晶区分子间的氢键力,增加了活性壳聚糖对棉织物中反应位点的可及度,提高了活性壳聚糖与棉织物的接枝效率,增强了改性棉织物的抗菌活性及耐洗性能。

3、本发明使用1-乙基-3-甲基咪唑硫酸氢盐离子液体/去离子水体系作为活性壳聚糖的溶解和反应介质,酸离子液体1-乙基-3-甲基咪唑硫酸氢盐可使活性壳聚糖的伯胺质子化,增强了壳聚糖分子中-nh3+对带负电荷棉织物的亲和力,使活性壳聚糖易与棉织物接触及接枝反应,提高了改性棉织物的壳聚糖接枝率和结合牢度。

4、本发明通过活性壳聚糖接枝改性棉织物,活性壳聚糖分子中的-nh2可被c6位羧基质子化而带上正电荷,抑菌高效持久,且静电吸引棉织物,增加活性壳聚糖中c2、c3位醛基与棉织物羟基的反应几率,棉织物接枝率高,杀菌性能优异。

5、本发明制备活性壳聚糖改性棉织物的反应条件温和、工艺简单易控、成本低、绿色环保、安全可靠,易于推广应用。

附图说明

图1是本发明活性壳聚糖半缩醛接枝棉织物的改性机理图。

图2是本发明测试项1中活性壳聚糖改性棉织物的红外光谱图。

具体实施方式

为了对本发明的技术特征、目的及有益效果有更好的理解,以下结合附图及具体实施例对本发明作进一步说明,但本发明并不限制于下述实施例。

一、活性壳聚糖改性棉织物的制备

实施例1

(1)将退浆的棉织物浸渍在体积比为7:3的1-乙基-3-甲基咪唑硫酸氢盐离子液体和去离子水混合介质中,于40℃下润胀2h后取出棉织物,再加入黏均分子量为8.2万、脱乙酰度为94.6%、c2和c3位的醛基含量为23.18%、c6位的羧基含量为56.05%的活性壳聚糖于70℃搅拌至完全溶解,配置成质量浓度为1%的活性壳聚糖溶液。

(2)将润胀的棉织物按浴比1:50加入到活性壳聚糖溶液中,于45℃下持续搅拌反应2h,反应结束后,取出棉织物用去离子水冲洗6次,在60℃真空烘箱中烘燥3h,即得活性壳聚糖改性棉织物。经测试,本实施例所得活性壳聚糖改性棉织物中的壳聚糖接枝率为4.72%,改性棉织物的拉伸强力为571.23n,折皱回复角为140.22°。

实施例2

(1)将退浆的棉织物浸渍在体积比为4:1的1-乙基-3-甲基咪唑硫酸氢盐离子液体和去离子水混合介质中,于45℃下润胀2h后取出棉织物,再加入黏均分子量为3.9万、脱乙酰度为91.4%、c2和c3位的醛基含量为29.43%、c6位的羧基含量为56.05%的活性壳聚糖于70℃搅拌至完全溶解,配置成质量浓度为2%的活性壳聚糖溶液。

(2)将润胀的棉织物按浴比1:50加入到活性壳聚糖溶液中,于50℃下持续搅拌反应2h,反应结束后,取出棉织物用去离子水冲洗8次,在60℃真空烘箱中烘燥3h,即得活性壳聚糖改性棉织物。经测试,本实施例所得活性壳聚糖改性棉织物中的壳聚糖接枝率为8.25%,改性棉织物的拉伸强力为582.65n,折皱回复角为167.93°。

实施例3

(1)将退浆的棉织物浸渍在体积比为4:1的1-乙基-3-甲基咪唑硫酸氢盐离子液体和去离子水混合介质中,于50℃下润胀2h后取出棉织物,再加入黏均分子量为3.9万、脱乙酰度为91.4%、c2和c3位的醛基含量为29.43%、c6位的羧基含量为56.05%的活性壳聚糖于70℃搅拌至完全溶解,配置成质量浓度为2%的活性壳聚糖溶液。

(2)将润胀的棉织物按浴比1:50加入到活性壳聚糖溶液中,于60℃下持续搅拌反应2h,反应结束后,取出棉织物用去离子水冲洗8次,在60℃真空烘箱中烘燥4h,即得活性壳聚糖改性棉织物。经测试,本实施例所得活性壳聚糖改性棉织物中的壳聚糖接枝率为10.83%,改性棉织物的拉伸强力为634.12n,折皱回复角为185.78°。

对比例

(1)取黏均分子量为5.8万、脱乙酰度为95.2%的普通壳聚糖于60℃搅拌至完全溶解在稀乙酸溶液中,配置成质量浓度为2%的壳聚糖溶液。

(2)将退浆的棉织物按浴比1:50加入到壳聚糖溶液中,于60℃下持续搅拌反应2h,反应结束后,取出棉织物用去离子水冲洗6次,在60℃真空烘箱中烘燥3h,即得壳聚糖改性棉织物。经测试,本对比例所得壳聚糖改性棉织物中的壳聚糖接枝率为0.67%,改性棉织物的拉伸强力为517.06n,折皱回复角为109.20°。原棉织物的拉伸强力为541.65n,折皱回复角为117.58°。

二、对上述实施例所得样品进行检测试验

测试项1:活性壳聚糖改性棉织物的红外光谱表征

采用红外光谱分析活性壳聚糖接枝棉织物中的分子基团情况。取棉织物样品2份:第1份为经退浆、煮炼处理的棉织物所获得的织物a,第2份为按实施例3的方法用活性壳聚糖接枝棉织物所获得的接枝率为10.83%的改性织物b,测试结果依次参见图2(a)~(b)。

从图2可知,纯棉织物的红外曲线a在1643.9cm-1附近是棉纤维吸附水的伸缩振动峰,棉纤维中的c-h伸缩特征峰出现在2895.1cm-1左右,而位于892.6cm-1处是β-吡喃糖苷键的伸缩振动吸收峰。而改性棉织物的红外曲线b在1738.3cm-1处出现了较强的活性壳聚糖中醛基和羧基的c=o伸缩振动吸收峰,在2844.2cm-1附近也存在活性壳聚糖中醛基的c-h伸缩振动峰;同时,活性壳聚糖接枝后的棉织物位于3327.4cm-1附近的羟基吸收带峰值减弱,并向高波数处发生偏移,说明棉织物的羟基与活性壳聚糖中醛基发生半缩醛反应被消耗。改性棉织物位于1537.6cm-1处出现了活性壳聚糖的n-h弯曲振动峰,且在892.6cm-1附近的半缩醛吸收带增强,这表明活性壳聚糖通过半缩醛化学键与棉织物牢固结合。

测试项2:活性壳聚糖改性棉织物的抗菌性能测试

根据《gb/t20944.3–2008纺织品抗菌性能的评价第3部分:振荡法》所述方法进行棉织物的抗菌性能测试。取退浆和煮炼的棉织物按照实施例1~3的方法进行改性,经退浆和煮炼的原棉织物为空白样品,活性壳聚糖改性的抗菌棉织物为测试样品。对空白织物样品和测试织物样品进行抑菌性能测试,接种细菌为金黄色葡萄球菌(s.aureus,atcc6538)和大肠杆菌(e.coli,atcc8099),测试结果参见表1。

表1活性壳聚糖半缩醛接枝棉织物的抑菌率(%)

从表中可见,原棉织物的抑菌率很低,对金黄色葡萄球菌及大肠杆菌几乎没有抑制作用。而高接枝率的活性壳聚糖改性棉织物对金黄色葡萄球菌及大肠杆菌的抑菌率分别达到98.63%和94.49%,且活性壳聚糖接枝棉织物显示出良好的抗菌耐水洗性能,经30次洗涤后改性织物样品仍保持了较高的抑菌率(≥90.51%)。

综上所述,采用活性壳聚糖化学改性棉织物,使活性壳聚糖分子中的醛基与棉织物的羟基进行半缩醛交联反应,获得接枝率高、抗菌持久、安全舒适的功能性棉织物。本发明采用活性壳聚糖改性棉技术,工艺简单,不使用化学交联剂,绿色环保,活性壳聚糖可回收循环利用,成本低,具有广阔的市场前景。

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1