用于制造陶瓷部件的方法

文档序号:1962352阅读:238来源:国知局
专利名称:用于制造陶瓷部件的方法
技术领域
本发明涉及一种用于将陶瓷部件或碳部件制造成所期望的最终形状的方法,使用
至少一个含纤维素的半成品部件,它在非氧化的气体氛围中热解。
背景技术
由EP-B-1 453 773已知一种相应的用于制造板状的、具有平面形状的零部件的 方法。作为半成品使用高密度的纤维板,具有在板对角线上均匀分布的密度,然后这样使其 热解,使得可以实现所期望的密度。接着进行硅化。通过这些措施可以批量制造均质的大 面积的陶瓷部件。 DE-A-198 23 507涉及一种用于制造成形体的方法,它以碳、碳化物和/或碳氮化 物为基础。在此使用生物材料,它们通过碳化作用转变成主要含碳的生成物,用于接着加工 成含高碳的成形体。作为生物原始材料建议使用无纺布、苇席或织物、即长复合纤维形式的 复合纤维以及大面积的薄壁的平面形成物。相应技术的平面形成物在其作为具有机械功能 的碳材料的使用中受到重要的限制,因为可实现的碳密度对于大多数使用是太低的,因此 强度不满足高机械承载部件的要求。作为用于硅化反应的碳接受器也只能有限地使用这种 产品,因为高含量的自由硅在最终产品中在耐腐蚀和耐高温方面受到显著的限制。
由"Krenkel :由工艺木材制成生物的SiC陶瓷、Symposium "复合材料和材料 复合,,Herausg. K. Schulte, K. Kaine, Wiley化学出版社,Weinheim1999以及"Low cost ceramics from wooden products",材料周刊,慕尼黑,22-28. 9. 2000已知使用含木材产品 作为成本有利的碳化硅陶瓷的原材料,它们通过所谓的"双碳-预颗粒"通过液相硅化形 成。在此在试验上已经首先使由热解阻烟木材组成的碳颗粒硅化并转化成C/SiC/Si材料。
由DE-A-199 47 731已知一种用于制造SiC陶瓷部件的方法。在此由含纤维素的 原颗粒通过热解并接着渗硅制成陶瓷部件。原颗粒由工艺半成品制成,它由含纤维素的材 料以碎屑形式和/或由单层平面木材部件形成。在此通过不同的含纤维素材料与粘接剂的 比例调节半成品组织,其中粘接剂含量大于5% 。通过形成层并选择含纤维素的材料产生具 有大量横层的多孔通道的半成品,它们易于渗液体硅。这个过程在层式构造的半成品中还 通过在热解时形成裂纹得到支持。但是通过这个非均质的、明显多孔的组织产生只用于非 常有限的SiSiC特殊应用的碳接受器。在最终产品中得到的高自由硅含量不仅限制机械特 性而且也显著限制耐腐蚀性和温度特性。 由JP-A-2001 048648已知,在使用含木纤维素的半成品部件的条件下制造碳基 的零部件,它在断氧条件下热解。碳成形件具有微小的机械强度。 W0-A-01/64602涉及陶瓷部件,它以含木纤维素的半成品成形件为基础制成。由于 材料组分和加工技术产生微小的材料密度以及组织或密度不均匀度。 由DE-C-39 22 539已知一种用于加工高精度的由CFC组成的热元件,它作为初始 物具有挤压的碳纤维织物或缠绕的碳丝纤维。在此存在可能性,硅化由此热解的初始物。
JP-A-2026817A涉及制造木纤维基的碳板。
GB-A-1346735涉及由再浸渍的含纤维素的薄半成品制成的碳部件。既没有谈及硅化,也没有给出关于均匀的密度分布或各向同性特性的说明。 由文献Greil. P "Biomorphous ceramics from lignocellulosics,,,欧洲|陶瓷科学,Elsevier Science Publishers Barking Essex, GB Bd. 21, Nr 22001年2月(2001-02) 105-118页已知一种含木纤维素半成品成形件为基础的陶瓷部件。在此出发点是单体天然木材和无木材的纤维素_预制品。多孔时的低材料密度只有低的机械强度。
由于陶瓷材料在高温时突出的强度、低密度、高硬度和弹性模量以及特别耐磨损和耐腐蚀在机械和设备结构中得到广泛的应用。低热膨胀系数注定陶瓷的结构组件满足在外界气候条件下的轻型结构支架功能和精度要求。 只通过这种陶瓷结构内在的特性就能够实现在光学、空间飞行技术和特殊设备结构中的许多应用。 经常由于这种复杂的结构组件的成本限制更广泛的应用。有限的加工方法抵制对这些产品的高需求。已知典型的粉末技术加工工艺,通过加工粉末、成形和用于脱气和烧结的高温热处理直到热技术和机械的最终加工工艺。在此在技术和经济方面很快达到极限,尤其是当涉及单件或小批量的大且复杂的结构组件的时候。 现代的制造方法如选择性激光烧结或碾压物体模铸是特别费事的并且大多在提高机械效率方面使生产受到限制。 已经谈到通过单个模制部件的硅化接合加工复杂的Si-SiC结构组件,它们必需事先以严格的误差最终加工。但是这种方法是非常成本昂贵的并且只能有限地实践。
对于按照上面所述的方法制造的陶瓷已经证实上述的生物的以植入可再生长的原料为基础的陶瓷材料是可靠的。在此特别有利地是,利用上述的板状半成品涉及木纤维基。 但是三维尺寸大于10—^的陶瓷结构组件既不能通过多层这种纤维板制成,也不能通过挤压加工的天然纤维或其热解产品经济地制成。 原木形状的无缺陷碳化的重要障碍除了结构上的不均匀性以外还在对于气体形式的热解产品必需稳定的初始途径。对于厘米范围尺寸的部件在未注意时已经成形裂纹、分层和变形。

发明内容
本发明的目的是,这样改进上述形式的方法,在热解含植物纤维的毛坯时避开工艺技术的限制。但是同时保持成本优点,这些优点在利用公知的原料半成品如纤维板半成品时可以实现。 尤其可以制造大体积的结构部件,而不会使在热解时产生的副产品如气体导致产生裂纹、分层或变形。 为了实现这个目的本发明主要规定,将至少两个半成品成形件或者以毛坯或者在至少部分地碳化以后材料连接地接合,为了达到所期望的最终形状或所期望的含有余量的最终形状使接合的成形件加工成相应的形状并且在非氧化的气体氛围中碳化后作为碳部件供使用或者必要时通过接着渗金属过程在同时使至少两个成形件反应接合时转换成陶瓷部件、艮卩CMC (ceramic matrix composite)复合材料。
5
根据按照本发明的理论通过成形件的模块式组合制造复杂的结构部件,用于提供所期望的复杂的复合部件供使用。在此单个的半成品成形件具有尺寸,它们保证在热解时产生的副产品不导致形成裂纹、分层或变形。因此尤其规定,使半成品的壁厚D为D《160mm、尤其是D《120mm、最好D《50mm。 尤其规定,在原始状态利用有机粘接树脂如木胶实现半成品成形件的材料连接的
接合。为了接合可以有利地使用有机的粘接树脂,其在热解时的碳浸出率通过混合一种或
多种碳载体如石墨、碳黑、沥青和/或热解纤维匹配于接着的反应的陶瓷化的需求。 通过粘接和/或通过浸透实现最好至少部分碳化、即或者还未完全碳化或完全碳
化的成形件的材料连接的接合。尤其是通过树脂基的含碳粘接剂实现模块式组成的成形件
的材料连接的接合,粘接剂同样可以通过附加地添加物如石墨、碳黑、沥青和/或热解纤维
在粘接剂的用于接着的反应的陶瓷化的碳含量方面优化。 按照本发明规定,利用能够实现材料连接的接合的接合剂如粘接剂或浸透介质在每个成形件中实现多孔结构的匹配。尤其是通过有目的地在所使用的接合剂中配量碳实现这一点。 可以通过树脂和/或其它陶瓷的预制品可以浸透半成品成形件,由此符合要求地控制陶瓷部件的组织和最终产品特性。在此预制品是这种材料,它们通过热处理转换成陶瓷。 在本发明的改进方案中建议,作为半成品在其毛坯中使用这些具有轮廓的毛坯,该轮廓在考虑在加工陶瓷部件时产生的收縮的条件下粗略地匹配于所期望的最终形状。
尤其规定,使组合的成形件在碳化后加工成最终成形件形状或几乎最终成形件形状,其中由于软的碳状态也可以将组合的成形件加工成复杂的几何轮廓、倒切、缺口、台阶或螺纹或复杂组合的形状。 此外规定,在碳状态实现在圆周上的加工,通过磨削使陶瓷部件的精加工局限于必需的功能面如密封面。 尤其规定,作为半成品成形件使用600kg/m3至800kg/m3原始密度的MDF板(中密度纤维板)和/或> 800kg/m3的HDF板(高密度纤维板)。相应的板可以接合到一起,然后置于上述的工艺步骤,用于提供陶瓷的复合部件供使用。在此尤其规定,在原始状态、即在有机的致密状态加工出以以后的波动程度放大的粗轮廓。 本发明的扩展结构规定,为了避免陶瓷化必要时使木纤维板减薄有害的密度梯度,即,在需要时通过机械加工去除更高密度的表面部位。 此外按照本发明规定,通过用于能挤压填充的金属和/或金属有机物的添加剂将无机的作用成分为了形成碳和/或形成以后特有的陶瓷部件特性加入到有机的半成品成形件里面。所述添加剂可以是硅、钛、铬、硅氧烷或硅氮烷,只示例地列举金属或金属有机物的添加剂,它们作为添加物位于能挤压的填充。在此能挤压的填充是这种原料,即,植物纤维或木纤维加粘接剂。 按照本发明存在这种可能性,已经在有机的致密状态加工出以以后的波动程度放大的粗轮廓或者通过粘接接合适合的单个分段。 复杂的结构部件不仅可以在木材状态或原始状态通过木胶而且可以在碳化状态(在可能需要的中间加工以后)通过碳粘接剂接合各个系统部件。通过在碳状态粘接接合
6可以通过形状配合的接合的措施得到支持,用于支持在接缝位置上的组织均匀化并排除分层。 在断空气的条件下以> 25(TC的温度热解预制件。接合的结构部件的完全碳化同样需要再在断空气的条件下〉90(TC的温度,用于可以排除在以后的硅化时加工到最终尺寸的结构部件的不能接受的形状变化。必要时可以进行预碳化。在预碳化后还不使整个内部材料碳化。然后材料连接且必要时附加地形状配合地实现接合。接着使相应的由接合的成形件组成的模块完全碳化。 也可以选择在成形件完全碳化后实现接合。接着重新执行热处理,用于碳化接合剂。 为了最终加工碳形状最好使用机械的去屑方法。但是特殊工艺如水射流切割或激光加工也是适合的。 在接着的在完成加工的碳结构部件中的反应的渗金属熔液或气相渗透时不再发生体积或形状变化。 优选列举硅化工艺,用于形成Si-SiC-C复合材料。在毛细工艺中Si熔液渗透到微孔空间里面并且立刻与碳晶格反应成碳化硅。利用含硅蒸汽硅化在很大程度上控制扩散并需要相应较长的过程时间。 按照本发明方法的令人惊奇的认识是,尽管在树脂基接合区与植物纤维基接合伙伴中存在重大差别但是仍然可以制造非常稳定和尽可能结构均匀的陶瓷的结构组件。通过使微孔结构匹配于各个组分、部分地也通过在所使用的粘接剂中的碳配量的针对性措施可以保证对于良好的硅化接合质量有足够的基础。 按照本发明的用于复杂的陶瓷复合系统的制造方法的重要优点是充分利用成本有利的木材技术的造型工艺、通过粘接工艺的适合的接合技术、通过纤维形态的复合结构有利于金属熔液渗透工艺和主要是非常有效的在软的碳状态加工出最终形状。在陶瓷最终状态中精加工局限于必需的功能面。 在25(TC至80(TC之间的温度时执行碳化前面的热解。在至少100(TC、尤其是至少IIO(TC的温度时实现碳化。 在接合到一起的半成品成形件热解和/或碳化期间以1K/h至1K/min、尤其是小于0. 1K/min的速度加热。 本发明的特征尤其在于一种用于制造陶瓷复合材料的方法和以其为基础构造的复合部件,其中在模块式构造的陶瓷结构组件同时反应的接合时,作为原料利用由树脂粘接的植物纤维组成的预加工的半成品,由其制成的毛坯以木胶接合或者不接合地在>80(TC的温度时碳化,通过可能的附加的粘接/接合过程或浸透过程在碳化状态和在以〉IOO(TC的温度完全碳化以后通过在碳化状态在考虑必要时必需的磨削余量的条件下的机械加工以陶瓷的完成过程带到最终形状,然后作为碳产品供使用或者通过接着的渗金属过程在断空气的条件下转换成CMC复合材料。


不仅由权利要求、由其得出的特征_其本身和/或其组合_而且由下面借助于附图对优选实施例的描述给出本发明的其它细节、优点和特征。附图中
图1示出球形反射器形式的复合部件,
图2示出热交换器模块。
具体实施例方式
下面作为示例1以用于曝光光路的调整段详细解释按照本发明的理论。 对于用于曝光光路的调整段在高系统强度和低热膨胀系数方面提出特出的要求,
由金属材料越来越不再能够满足这些要求。 在这里陶瓷材料提供了问题解决方案。但是对于较大的结构部件产生明显的成本,它们通过按照本发明的方法可以显著降低。附加地由本发明得到新的定位和调整方法,因为例如已经在碳状态中可以加工出螺纹、环带定位面和斜孔。 在本示例1中已经以中密度木纤维板MDF为基础加工出尺寸为150mmxl50mmx20mm的定位单元。为此将两个210mmx210mmx22mm的MDF板通过有机的含10%重量百分比的石墨粉末的木胶相互连接。事先已经由单个板分别切割出直径110mm的圆盘,它们以后形成直径90mm的圆柱形中心孔作为环形的目标(物镜)支架。粘接的复合体在空气硬化后在氮气下以115(TC碳化。在此每个木纤维板并由此使整个部件在板平面中以23%、在高度中以42%收縮。通过铣削将产生的碳部件加工到最终形状。钻出功能上所需的通孔和螺纹。所达到的0. 62g/cm3的碳密度适合于硅化。作为毛细渗透以液体硅在160(TC在氩氛围下实现硅化。 在硅化的部件上仅仅还要通过石英刀具再磨削出功能重要的密封面。以280MPa的4点弯曲断裂强度达到320GPa的静态弹性模量。2. 9x10—l—1的热线性膨胀系数同样满足要求。 下面借助于在附图中所示的复杂的球形反射器IO(图1)和热交换器模块12 (图2)形式的复合部件详细解释按照本发明的方法。在此考虑在上面解释的示例中描述过的方法步骤。 示例2 (球形反射器10): 作为用于陶瓷的射线反射器的方案已经以MDF板为基础转换成Si-SiC-轻型结构方案。在考虑在示例1中列举的热解收縮的条件下已经使环形和圆形的MDF22mm板部件按照图1的方案在7个板平面中通过木胶粘接并且以170(TC碳化。由此产生的由七个平面的板部件1-7组成的①320mmx90mm的形状通过在碳状态铣削达到最终尺寸。仅仅以后的球形反射面作为磨削余量保留以O. 5mm更小的半径。用于固定部件的孔和结构上引起的台阶已经附加地加入。 通过Si熔液渗透以165(TC在氩氛围中实现陶瓷化。没有可证实的敞开微孔地实现2. 90g/cm3的材料密度。 在陶瓷化以后实现磨削加工,用于通过磨削去除反射面上事先考虑的余量。
示例3 (陶瓷的热交换器12): 多年以来陶瓷的热交换器是研发内容。复合材料SiSiC由于其导热性是特别有希望的。许多加工方面的问题是所需的部件尺寸、气密的连接且特别是显著的加工成本。
通过按照本发明的解决方案提供对应于图2的模块式结构。为了热解已经使150mmxl50mmxl6mm的MDF板以115(TC在氮气氛围下碳化,其中达到0. 64g/cm3的密度。由其铣削出按照图2的热交换器的各个平面,具有保留的支承梁并且可选择以90°旋转通过碳粘接剂接合成分别由2x6通道平面组成的整体。 在氮气氛围下以90(TC热解粘接剂以后使整个系统通过液体硅以165(TC在氩气下陶瓷化,同时材料连接地接合。由于在组织中的高Si含量只以4至6%的剩余微孔实现2. 70至2. 80g/cm3的密度。 热废气流在这样制造的106mmxl06mmxl06mm的热交换器立方体中加热以90°错开进入到各中间平面里面的新鲜空气流。通过侧面气密安置的迎流罩保证两个气流严格的分开。
9
权利要求
一种用于将陶瓷部件或碳部件制造成所期望的最终形状的方法,在使用至少一个含纤维素的半成品部件的条件下,它在非氧化的气体氛围中热解,其特征在于,将至少两个半成品成形件或者以毛坯或者在至少部分地碳化以后材料连接地接合,为了达到所期望的最终形状或所期望的含有余量的最终形状,使接合的成形件加工成相应的形状并且在非氧化的气体氛围中碳化后作为碳部件供使用或者通过接着渗金属过程在同时使至少两个成形件反应接合时转换成CMC复合材料。
2. 如权利要求1所述的方法,其特征在于,在原始状态利用有机粘接树脂如木胶实现 半成品成形件的材料连接的接合。
3. 如权利要求2所述的方法,其特征在于,对粘接树脂混合碳载体如石墨、碳黑、沥青 和/或热解纤维。
4. 如权利要求2或3所述的方法,其特征在于,为了接合使用具有必要时混合碳载体的 粘接树脂,其在热解或碳化时的碳浸出率匹配于反应的陶瓷化的需求。
5. 如权利要求1所述的方法,其特征在于,通过在使用含碳粘接剂的条件下粘接和/或 浸透接合至少部分碳化的成形件。
6. 如权利要求1所述的方法,其特征在于,为了材料连接地接合至少两个成形件在至 少部分碳化后使用树脂基的含碳粘接剂。
7. 如权利要求6所述的方法,其特征在于,通过附加地添加物如石墨、碳黑、沥青和/或 热解纤维在粘接剂的用于反应的陶瓷化的碳含量方面调节用于接合最好至少部分碳化的 成形件的粘接剂。
8. 如权利要求1所述的方法,其特征在于,对于渗金属过程使用硅和/或对于渗金属过 程单独地或混合地使用金属化的碳化物和/或通过毛细控制的渗液和/或含金属蒸汽的气 体氛围执行渗金属过程。
9. 如权利要求1所述的方法,其特征在于,作为半成品在其毛坯中使用这些具有轮廓 的毛坯,该轮廓在考虑在制造陶瓷部件时产生的收縮的条件下粗略地匹配于所期望的最终 形状。
10. 如权利要求1所述的方法,其特征在于,在250°C《TB《80(TC的温度TB时执行碳 化前面的热解和/或在Tv > 100(TC、尤其是Tv > IIO(TC的温度Tv时执行碳化。
11. 如权利要求1或10所述的方法,其特征在于,在接合到一起的半成品成形件热解和 /或碳化期间以1K/h至1K/min、尤其是小于0. 1K/min的速度加热和/或在渗金属期间以 3K/min至7K/min、尤其是约5K/min的速度加热成形件,其中尤其在渗金属时在达到最终温 度以后使这个温度保持20min《t《40min的持续时间t、尤其是以约30min的持续时间。
12. 如权利要求1所述的方法,其特征在于,最好模块式组成的半成品成形件具有最大 《160mm的壁厚D、尤其是D《120mm、最好D《50mm。
13. 如权利要求1所述的方法,其特征在于,所述含纤维素的半成品成形件由至少一种 含树脂的粘接剂和至少一种由植物纤维或木纤维的原料组成。
14. 如权利要求1所述的方法,其特征在于,作为半成品成形件使用600kg/m3至800kg/ m3之间的原始密度的中密度木纤维板(MDF)和/或> 800kg/m3的高密度纤维板(HDF),其 中尤其从木纤维板中去除其密度大于中密度木纤维板的表面部位。
15. 如权利要求1所述的方法,其特征在于,通过以树脂和/或其它陶瓷的母体浸透半成品成形件按照需要控制组织和最终产品特性,和/或通过至少部分、尤其完全碳化的成 形件的接合过程和/或浸透过程有针对性地调节部件形状和材料组织。
16. 如权利要求1所述的方法,其特征在于,在接合的成形件至少部分的碳化以后、尤 其是完全碳化以后符合最终形状或几乎符合最终形状地加工出所期望的形状、倒切、缺口、 台阶和/或螺纹。
17. 如权利要求1所述的方法,其特征在于,通过磨削使陶瓷部件的最终加工局限于必 需的功能表面如密封面。
18. 如权利要求1所述的方法,其特征在于,通过用于能挤压填充的金属或金属有机物 的添加剂将无机的作用成分为了形成碳和/或形成以后特有的陶瓷部件特性加入到半成 品成形件里面。
19. 一种用于制造陶瓷复合材料和由其构造的复合部件的方法,其中在模块式构造的 陶瓷结构组件同时反应的接合时,作为原料利用由树脂粘接的植物纤维组成的预加工的半 成品,由其制成的毛坯以木胶接合或者不接合地在> 80(TC的温度时碳化,通过可能的附加 的粘接/接合过程或浸透过程在碳化状态和在以> IOO(TC的温度完全碳化以后通过在碳 化状态在考虑对于陶瓷的精加工过程必要时必需的磨削余量的条件下的机械加工带到最 终形状,然后作为碳产品供使用或者通过接着的渗金属过程在断空气的条件下转换成CMC 复合材料。
全文摘要
本发明涉及用于制造陶瓷部件的方法,用于将陶瓷部件或碳部件制造成所期望的最终形状,在使用至少一个含纤维素的半成品部件的条件下,它在非氧化的气体氛围中热解。为了制造复杂的部件建议,将至少两个半成品成形件或者以毛坯或者在至少部分地碳化以后材料连接地接合。接着为了达到所期望的最终形状或所期望的含有余量的最终形状使接合的成形件加工成相应的形状。然后在成形件碳化后在非氧化的氛围中作为碳部件供使用。也可以选择在非氧化气体氛围中通过渗金属过程在同时使至少两个成形件反应接合时将它们转换成CMC复合材料。
文档编号C04B37/00GK101747072SQ20091022497
公开日2010年6月23日 申请日期2009年11月26日 优先权日2008年11月26日
发明者A·劳尔, G·诺迪特, R·韦斯, S·西格尔 申请人:弗劳恩霍弗实用研究促进协会;申克碳化技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1