陶瓷粉末及其制备方法

文档序号:1900884阅读:244来源:国知局
陶瓷粉末及其制备方法
【专利摘要】本发明涉及能够在涂层中使用以允许部件经受住诸如燃气轮机的恶劣热环境的高温环境的陶瓷粉末和形成所述陶瓷粉末的方法。所述陶瓷粉末包括各自具有由第一材料形成的内核和由第二材料形成的外区的粉末颗粒。所述内核具有比所述外区低的导热率且相对于所述内核而言,所述外区更耐侵蚀。
【专利说明】陶瓷粉末及其制备方法
发明领域
[0001]概括地讲,本发明涉及用于在暴露于诸如燃气轮机的恶劣热环境的高温的部件上形成涂层的陶瓷粉末。更详细地讲,本发明涉及用于诸如阻热涂层(TBCs)的应用的具有改善的隔热性和耐侵蚀性的陶瓷粉末。
【背景技术】
[0002]不断地探索改善以增加燃气轮机的操作温度,从而实现较高的能量输出和效率。由于较高的操作温度,在汽轮机内需要热气路径(HGP)部件以经受日益增加的温度。常常期望热气路径部件在接近其熔点的温度下操作。因此,使用复杂的冷却过程和改善的材料来减轻对热气路径部件的损坏。在许多情况下,形势可能需要通过将阻热涂层沉积在直接暴露于热气路径的热气路径部件的外表面上而进一步增加热气路径部件的操作温度。在诸如燃烧器、高压汽轮机(HPT)静叶(blade)、动叶(vane)和罩子的部件上使用阻热涂层(TBCs)在商业以及军用燃气轮机发动机中逐渐增加。由TBC提供的隔热使得这类部件能够经受住较高的操作温度,增加部件耐用性并且改善发动机可靠性。TBCs通常由陶瓷材料形成且沉积在环保粘结涂层上以形成所谓的TBC系统。
[0003]用于TBCs的陶瓷材料的著名实例包括用氧化钇(钇氧化物;Y203)部分或完全稳定化的氧化锆或诸如氧化镁、氧化铈、氧化钪和/或氧化钙的另一氧化物及任选的用以降低导热率的其他氧化物。二元氧化钇稳定的氧化锆(YSZ)由于其高温性能、低导热率和相对易于沉积而作为TBC材料广泛使用。使氧化锆稳定化以抑制在约1000°c下的四方晶到单斜晶的相变,该相变引起可造成剥落的体积变化。在室温下,如果氧化锆用至少约6重量%的氧化钇稳定化,则获得更稳定的四方晶相且单斜晶相减至最少。17重量%或更多的稳定剂(例如氧化钇)含量确保完全稳定的立方晶相。常规做法是用6-8重量%的氧化钇(6-8% YSZ)部分稳定化以获得在经受高温热循环时粘着且耐剥落的TBC。另外,已知部分稳定的YSZ (例如,6-8% YSZ)比完全稳定的YSZ (例如,20%YSZ)更耐侵蚀。
[0004]可使用各种方法来沉积TBC材料,包括热喷涂法,诸如空气等离子体喷涂(APS)、真空等离子体喷涂(VPS)、低压等离子体喷涂(LPPS)和高速氧-燃料法(HVOF)。在燃气轮机发动机的最高温度区域内采用的TBCs常通过物理气相沉积(PVD)且特别是电子束物理气相沉积(EBPVD)来沉积,其产生能够在不引起导致剥落的破坏应力的情况下膨胀和收缩的柱状耐应变性晶粒结构。类似的柱状微结构可使用其他原子和分子气相方法生成,诸如派射(例如,高压和低压的标准或准直羽流(standard or collimated plume))、等离子体/阴极电弧沉积及所有形式的熔融和蒸发沉积法(例如,激光熔融等)。通过上述各种方法形成的TBCs由于在TBC微结构的晶界处和晶界之间存在微结构缺陷和孔而通常具有比相同组成的致密陶瓷低的导热率。
[0005]为了改善TBC涂层,已经研发了复合材料或复合粉末(clad powder),其包含多于一种材料,其中各材料提供其自身固有的材料益处。例如,该粉末可为包含韧性金属基质和坚硬耐磨碳化物相的金属-陶瓷复合材料。或者,该粉末可为包含包封在聚合物中的陶瓷颗粒或包封在陶瓷中的聚合物的陶瓷-聚合物复合材料。该聚合物材料可通过在凝固之后氧化所得涂层而除去。该聚合物材料的去除在该涂层内产生开孔孔隙度,使得陶瓷顺应汽轮机静叶摩擦事件。然而,由多于一种陶瓷材料形成的复合粉末由于加工局限性而难以可靠地形成。
[0006]鉴于上述,可以了解,不断地探索改善的涂布材料以使得部件能够在较高的温度环境中操作。

【发明内容】

[0007]本申请涉及以下方面。
[0008]第I项.含有粉末颗粒的陶瓷粉末,多个所述粉末颗粒各自包括由第一材料形成的内核和在所述内核的表面上由第二材料形成的外区,其中所述内核具有比所述外区低的导热率且相对于所述内核而言,所述外区更耐侵蚀。
[0009]第2项.根据第I项的陶瓷粉末,其中所述内核具有约0.5-约1.0WnT1Ir1的导热率。
[0010]第3项.根据第I项的陶瓷粉末,其中所述内核的第一材料包含选自以下的组合物:基于Yb-La-Zr-的氧化物组合物、基于Yb-Sm-Zr-的氧化物组合物和基于Yb-Zr-的氧化物组合物。
[0011]第4项.根据第I项的陶瓷粉末,其中所述外区的第二材料包含选自以下的组合物:基于Yb-Zr的氧化物组合物、基于La-Zr的氧化物组合物、基于Yb-La-Zr的氧化物组合物、基于Yb-Sm-Zr的氧化物组合物、基于Yb-混合稀土金属-Zr的氧化物组合物和基于混合稀土金属-Zr的氧化物组合物。
[0012]第5项.根据第I项的陶瓷粉末,其中所述内核的第一材料由约30-约40重量%的氧化镱、约10-约25重量%的氧化镧和/或氧化钐、剩余量的氧化锆和偶然的杂质组成,且所述外区的第二材料由以下物质组成:
约8-约18重量%的氧化镱、剩余量的氧化锆和偶然的杂质;或 约25-约75重量%的混合稀土金属、剩余量的氧化锆和偶然的杂质。
[0013]第6项.第I项的陶瓷粉末,其中所述内核的第一材料由约40-约70重量%的氧化镱、剩余量的氧化锆和偶然的杂质组成,且所述外区的第二材料由以下物质组成:
约1-约5重量%的氧化镱、约2-约8重量%的氧化镧、剩余量的氧化锆和偶然的杂质;

约8-约18重量%的氧化镱、剩余量的氧化锆和偶然的杂质。
[0014]第7项.由根据第I项的陶瓷粉末形成且布置在部件的表面区域上的涂层体系。
[0015]第8项.在其上具有根据第7项的涂层体系的部件。
[0016]第9项.根据第8项的部件,其中所述部件安装在燃气轮机中。
[0017]第10项.形成含有粉末颗粒的陶瓷粉末的方法,所述方法包括:
形成所述粉末颗粒的核心,其中所述核心由第一材料形成;且随后
表面涂布所述核心以形成所述粉末颗粒的外区,其中所述外区各自由第二材料形成,所述核心各自具有比其外区低的导热率,且相对于其核心而言,所述外区各自更耐侵蚀。
[0018]第11项.根据第10项的方法,其中所述形成步骤包括通过反向共沉淀形成沉淀物且随后加工所述沉淀物以形成所述核心。
[0019]第12项.根据第11项的方法,其还包括共混所述核心与有机粘合剂且在所述加工步骤之后但在所述表面涂布步骤之前喷雾干燥所述核心。
[0020]第13项.根据第10项的方法,其中所述表面涂布步骤通过化学气相沉积方法进行。
[0021]第14项.根据第10项的方法,其中将所述核心表面涂布以具有约1-约90微米的平均粒度。
[0022]第15项.根据第10项的方法,其中所述核心完全由所述第一材料组成。
[0023]第16项.根据第10项的方法,其中所述外区完全由所述第二材料组成。
[0024]第17项.根据第10项的方法,其中所述第一材料具有约0.5-约1.0WnT1Ir1的导热率。
[0025]第18项.根据第10项的方法,其中所述第一材料选自基于Yb-La-Zr的氧化物组合物、基于Yb-Sm-Zr的氧化物组合物和基于Yb-Zr的氧化物组合物。
[0026]第19项.根据第10项的方法,其中所述第二材料选自基于Yb-Zr的氧化物组合物、基于La-Zr的氧化物组合物、基于Yb-La-Zr的氧化物组合物、基于Yb-Sm-Zr的氧化物组合物、基于Yb-混 合稀土金属-Zr的氧化物组合物和基于混合稀土金属-Zr的氧化物组合物。
[0027]第20项.通过根据第10项的方法生产的陶瓷粉末。
[0028]本发明提供能够用于形成涂层以使得部件能够经受住诸如燃气涡轮机的恶劣热环境的高温环境的陶瓷粉末和形成所述陶瓷粉末的方法。
[0029]根据本发明的第一方面,陶瓷粉末包括具有由第一材料形成的内核和在所述内核的表面上由第二材料形成的外区的粉末颗粒。所述内核具有比所述外区低的导热率且相对于所述内核而言,所述外区更耐侵蚀。
[0030]根据本发明的第二方面,提供形成陶瓷粉末的方法。所述方法包括由第一材料形成所述粉末颗粒的核心。随后将所述核心表面涂布以在所述核心上形成第二材料的外区,并产生粉末颗粒。所述核心各自具有比其外区低的导热率,且相对于其核心而言,所述外区各自更耐侵蚀。
[0031]本发明的技术效果在于能够形成能够沉积以在部件上形成涂层且使得所述部件能够经受较高温度的定制陶瓷粉末。具体地讲,认为由所述陶瓷粉末形成的阻热涂层(TBC)能表现出低导热率和改善的耐侵蚀性二者。
[0032]从以下发明详述中可以更好地理解本发明的其它方面和优势。
【专利附图】

【附图说明】
[0033]图1示意性表示根据本发明的一方面的涂层体系的横截面。
[0034]图2示意性表示根据本发明的另一方面的涂层体系的横截面。
[0035]图3示意性表示根据本发明的各种方面可制造的并且用于形成涂层的粉末颗粒的横截面。
[0036]图4为通过在本发明范围内的方法制造的涂层体系的扫描图像。
[0037]图5示意性表示根据本发明的另一方面的涂层体系的横截面。【具体实施方式】
[0038]本发明通常适用于经受高温的部件且特别适用于诸如高压和低压汽轮机动叶(喷嘴)和静叶(叶片),燃气轮机发动机的罩子、燃烧室衬套和增强器部件的组件。本发明提供陶瓷粉、形成陶瓷粉的方法和可用所述陶瓷粉形成且适合保护经受热燃烧气体的燃气轮机部件的表面的涂层体系。虽然本发明的优势将参考燃气轮机发动机部件来描述,但是本发明的教导通常适用于可在其上使用涂层体系以保护部件不受高温环境影响的任何部件。
[0039]根据本发明的第一实施方案,多层阻热涂层体系14在图1中示意性表示。如所示,部件10的基材(表面区域)12由涂层体系14保护。涂层体系14降低部件10的操作温度,由此使得部件10能够经受住否则将不可能经受的较高温度环境。虽然涂层体系14在图1中表示为含有多个层16、18、20、22和24中的每一个,这些层的组成和功能将在下文论述,但从以下论述中将显而易见可从涂层体系14中省略这些层中的一个或多个。因此,图1的涂层体系14表示在本发明范围内的多种不同涂层体系中的一种。例如,图2表示没有层18或24的多层热涂层体系14。
[0040]在图1中表示的涂层体系14的内部层22将被称为阻热涂层(TBC) 22,该阻热涂层22通过直接施用到基材12的粘结涂层16粘着到基材12。在图1中表示的其他任选层包括在TBC 22与粘结涂层16之间的中间层20、作为部件10的最外层沉积的阻侵蚀涂层18和在TBC 22与阻侵蚀涂层18之间的过渡层24。 [0041]如上所述,涂层体系14的粘结涂层16用以将其他层18、20、22和24粘着到基材12。粘结涂层16可为通常与用于燃气轮机部件的TBC系统一起使用的类型的富铝组合物,诸如MCrAlX合金的覆盖涂层或诸如本领域已知类型的扩散铝化物的扩散涂层(包括由例如钼的贵金属改性的扩散铝化物涂层)。特定的实例为本领域已知类型的NiCrAH组合物。粘结涂层16的合适厚度为约0.007英寸(约175微米),尽管可以预见更小和更大的厚度且它们在本发明的范围内,只要粘结涂层16能够提供保护基材12且锚定TBC系统14的所要功能。上述类型的富铝粘结涂层扩大了铝氧化物(氧化铝)规模(未示出),其通过氧化粘结涂层16而热生长。
[0042]采用TBC 22以保护其所覆盖的基材12以免受高操作温度影响。在燃烧液体燃料的汽轮机发动机中的诸如叶片、喷嘴和罩子的热气路径(HGP)部件常由阻热涂层(TBCs)保护。根据下文详细论述的本发明的一个优选的方面,TBC 22优选含有与本领域已知的传统的部分稳定的YSZ(例如,6-8% YSZ)涂层相比具有相对低的导热率的材料。增加的隔热性质降低涂层体系14在较高温度下的不稳定性,由此允许较高的效率、增加的可靠性,且因此允许较长的涂层体系寿命。根据本发明的另一优选的方面,TBC 22优选通过诸如空气等离子体喷涂(APS)的热喷涂方法由粉末沉积。尽管可以预见更小和更大的厚度并且它们在本发明的范围内,但根据特定的应用,TBC 22的合适厚度范围为约125-约1600微米。
[0043]可提供阻侵蚀涂层18以进一步保护部件10和下方的层16、20、22和24以在操作期间免受固体粒子侵蚀和外来物损坏。阻侵蚀涂层18可由本领域已知的任何合适的耐侵蚀材料形成,但在优选的实施方案中,如将在下文论述,其由用于形成TBC 22的粉末的成分形成。尽管可以预见更小和更大的厚度并且它们在本发明的范围内,但根据特定的应用,阻侵蚀涂层18的合适厚度范围为约100-约400微米。
[0044]中间层20是任选的,但在某些应用中可用于促进TBC 22到粘结涂层16和部件10的下方的基材12的粘着。中间层20的合适材料将取决于粘结涂层16和TBC 22的特定组成,尽管著名的材料包括用氧化钇部分或完全稳定的氧化锆(YSZ)或诸如氧化镁、氧化铈、氧化钪和/或氧化钙的另一氧化物及任选的用以降低导热率的其他氧化物。尽管可以预见更小和更大的厚度并且它们在本发明的范围内,但根据特定的应用,中间层20的合适厚度范围为约50-约150微米。
[0045]过渡层24为涂层体系14的另一任选的层,如果存在的话,其可用以减轻在TBC 22与阻侵蚀涂层18之间的潜在CTE不匹配和/或抑制在TBC 22与阻侵蚀涂层18之间的反应。过渡层24的合适材料将取决于TBC 22和阻侵蚀涂层18的特定组成,尽管著名的材料包括用氧化钇部分或完全稳定的氧化锆(YSZ)或诸如氧化镁、氧化铈、氧化钪和/或氧化钙的另一氧化物及任选的用以降低导热率的其他氧化物。过渡层24的合适厚度将取决于特定的应用,尽管在约20-约130微米范围内的厚度通常足够。可以预见过渡层24的更小和更大的厚度并且它们在本发明的范围内。
[0046]根据本发明的另一方面,定制用于形成TBC 22的粉末的粒子,使得TBC 22表现出低导热率和增强的耐侵蚀性。如由在图3中所示的粉末颗粒30所表示,粉末表面性质和晶界相互作用可通过形成具有由粒子30的外区34包围且优选完全埋入粒子30的外区34内的内核32的粒子30来定制,其中内核32和外区34由不同的材料形成。在优选的实施方案中,内核32含有陶瓷组合物且更优选完全由陶瓷组合物形成,该陶瓷组合物具有比完全或至少部分地形成粒子30的外区34的陶瓷组合物低的导热率,且外区34的组合物比形成内核32的组合物更耐侵蚀。另外,认为在内核32与外区34之间的组成界面本身将阻碍热传导。
[0047]内核32的陶瓷组合物优选最初以可通过反向共沉淀法制成的粒子的形式。典型的共沉淀法在初始酸性反应环境中进行,该酸性反应环境随后缓慢变成碱性,而反向共沉淀法在恒定的强碱性反应环境中发生。认为这种反应环境改善了对水解复杂过程的控制,引起对最终沉淀物的形态、尺寸、结晶相和化学组成的良好控制。例如,可在约90°C下在约10-约13的pH下将具有所要摩尔比的氧化物溶解于硝酸(0.1M)和蒸馏水中。反应一旦完成,则可加工所得沉淀物以形成粉末颗粒30的内核32。该沉淀物的加工可包括过滤、用去离子水洗涤、煅烧和研磨。随后可将由以此方式形成的内核32组成的粉末与诸如乙醇和聚乙烯亚胺的有机粘合剂共混,且在诸如约100-约150°C的高温下喷雾干燥以得到具有更均匀的一致性的粉末。或者,内核32可通过在浆料中共混亚微米成分而形成。随后可将该浆料喷雾干燥以实现所要的粒度并且烧结以增加强度。又一方法包括以电弧熔融方法形成内核32,接着研磨粒子到所要尺寸。
[0048]此后,表面涂布内核32以形成各粉末颗粒30的外区34。内核32可通过化学气相沉积(CVD)法或通过在包含用于外区34的材料的浆料中共混内核32涂布,将其喷雾干燥并烧结所得粉末颗粒30以便增加强度。所得粉末颗粒30的优选的平均粒度(如沿长轴测量)通常取决于将要沉积 其的方法。例如,如果粉末颗粒30将通过空气等离子体喷涂(APS)沉积,则合适的平均粒度为约10-约90微米。如果粉末颗粒30将通过溶液前体等离子体喷涂(SPPS)沉积,则合适的平均粒度为约1-约15微米。认为,相对于由较大粒度形成的涂层而言,较小的粒度促进在由其形成的涂层中单位长度的层片边界数目增加,认为其增强应变耐受性、增加裂缝蔓延扭曲度且因此改善断裂韧性和耐侵蚀性。
[0049]内核32优选定制成具有高达约IWnT1Ir1且更优选约0.5_约lWnTl.1的导热率,且可由各种材料形成,所述材料包括但不限于掺有原子尺寸和重量明显不同的至少两种掺杂剂的氧化锆(ZrO2)或掺有镱氧化物(Yb2O3;氧化镱)的氧化锆。认为具有低浓度的氧化镱的组合物提供减小的导热率。内核32优选的基于Yb-Zr的氧化物组合物包含约20-约70重量%的氧化镱且更优选约45-约70重量%的氧化镱,其余为氧化锆和偶然的杂质。本文使用的术语偶然的杂质是指由于加工局限性可能难以从合金中完全除去、又以不足以显著改变或降级合金的所要性质的量存在的元素,例如在该氧化物组合物中具有小于约2重量%的水平的稀土氧化物杂质和具有小于约0.5重量%的水平的其他杂质。
[0050]在掺有原子尺寸和重量明显不同的至少两种掺杂剂的氧化锆的情况下,认为通过用另一更重且更小的离子替代大离子,则被替代的大离子将保持处于松弛状态。认为声子散射效应则归因于较小离子的局部振动和固有的氧空位,产生异常的热容量。例如,TBC 22可包含掺有氧化镱和镧氧化物(La2O3 ;氧化镧)的氧化错,其中氧化镱(Yb3+, 0.985A)的含量和氧化镧(La3+,1.16A)的含量足够高以促进在该材料内的Yb3+和La3+离子替代。这些基于Yb-La-Zr的氧化物组合物可被视为在La2Zr2O7陶瓷中的Yb3+占了 La3+位点的固溶体或在Yb2Zr2O7陶瓷中Yb3+被La3+替代。优选的基于Yb-La-Zr的氧化物组合物包含约30-约40重量%的氧化镱和约10-约25重量%的氧化镧,其中该氧化镧可被衫氧化物(Sm2O3 ;氧化钐)部分或完全地取代。例示性组合物还可包括氧化铪(HfO2)和/或氧化钽(Ta2O5),其非限制性实例为约30.5重量%的氧化镱、约24.8重量%的氧化镧和/或氧化钐、约1.4重量%的氧化铪、约1.5重量%的氧化钽,其余为氧化锆和偶然的杂质。
[0051]上文关于内核32描述的基于Yb-La-Zr的氧化物组合物的特征在于混合的烧绿石型结构表现出导热率的显著下降。然而,与传统部分稳定的YSZ (例如6-8% YSZ)相比较,这种烧绿石型结构具有固有的不良断裂韧性。因此,提供外区34以保护内核32在操作期间不受固体粒子侵蚀和外来物损坏。沉积在内核32的表面上的外区34可由耐侵蚀性材料形成,所述耐侵蚀性材料包括但不限于掺有低浓度的氧化镧(低于约20重量%的氧化镧、优选约3-约10重量%的氧化镧)的氧化锆、掺有低浓度的氧化镱(低于约10重量%的氧化镱、优选约2-约12重量%的氧化镱)的氧化锆、混合稀土金属的氧化物(以天然存在的比例的稀土元素的任何合金)、掺有混合稀土金属(低于约75重量%的混合稀土金属)的氧化锆、掺有氧化镱和混合稀土金属(低于约30重量%的氧化镱和低于约25重量%的混合稀土金属)的氧化锆、掺有高水平的氧化镱(低于约55重量%的氧化镱)的氧化锆、掺有氧化镱和氧化镧(低于约55重量%的氧化镱和低于约8重量%的氧化镧和/或氧化衫)的氧化锆等。内核32和外区34的合适厚度范围取决于特定的沉积方法。例如,对于SPPS,内核32优选具有约5-约6微米的直径且外区34具有约1-约2微米的厚度。对于APS,内核32优选具有约10-约60微米的直径且外区34具有约3-约30微米的厚度。然而,可以预见更小和更大的厚度并且它们在本发明的范围内。
[0052] 例示性粉末组合物包含粉末颗粒30,粉末颗粒30包括由由约45重量%-约70重量%的氧化镱和余量的氧化锆和偶然的杂质组成的组合物形成的内核32 ;和由由约I重量%-约5重量%的氧化镱和约2重量%-约8重量%的氧化镧和余量的氧化错和偶然的杂质组成的组合物形成的外区34。在另一实施例中,粉末颗粒30可包括由由约45重量%-约70重量%的氧化镱和余量的氧化锆和偶然的杂质组成的组合物形成的内核32和由由约8重量%-约18重量%的氧化镱组成的组合物形成的外区34。在另一实施例中,粉末颗粒30可包括由由约30重量%-约40重量%的氧化镱、约10重量%-约25重量%的氧化镧和/或氧化钐和余量的氧化锆和偶然的杂质组成的组合物形成的内核32和由由约8重量%-约18重量%的氧化镱组成的组合物形成的外区34。在又一实施例中,粉末颗粒30可包括由由约30重量%-约40重量%的氧化镱、约10重量%-约25重量%的氧化镧和/或氧化钐和余量的氧化锆和偶然的杂质组成的组合物形成的内核32和由由约25重量%-约75重量%的混合稀土金属和余量的氧化锆和偶然的杂质组成的组合物形成的外区34。
[0053]如先前所述,任选的阻侵蚀涂层18可由上文关于粉末颗粒30的外区34所述的组合物中的一种或多种形成。因此,如上文关于用于形成TBC 22的粉末颗粒30的外区34所述,阻侵蚀涂层18可通过沉积粉末形成,该粉末的粒子例如为具有低浓度的氧化镱的基于Yb-Zr的氧化物组合物、具有低水平的氧化镧的基于La-Zr的氧化物组合物、具有低水平的氧化镱的基于Yb-Sm-Zr的氧化物组合物、基于混合稀土金属的氧化物组合物或基于Yb-La-Zr的氧化物组合物。或者,阻侵蚀涂层18可由通过例如爆炸喷枪热喷涂或高速氧气和/或空气燃料喷涂(HV0F/HVAF)沉积的YSZ组合物或例如通过APS沉积的氧化铝或掺有钛的氧化铝形成。根据本发明的一方面,如在图5中示意性表示(不按比例),阻侵蚀涂层18可例如通过诸如SPPS的低温方法或溶胶-凝胶法来形成以包含随机分布在阻侵蚀涂层18中的氧化物晶须(丸状纤维(shot fiber)) 36,从而改善耐侵蚀性和耐氧化性。晶须36优选具有约1-约5微米的直径和约5-约20微米的长度,尽管更小和更大的直径和长度也在本发明的范围内。晶须36在阻侵蚀涂层18中随机分布,其体积分数为约10%-约40%。晶须36可由诸如但不限于氧化铝和氧化钛的任何合适的氧化物组成。氧化物晶须36的非限制性实例可在Ryznic等的美国专利8,272,843中见到,该专利涉及氧化物晶须的内容通过引用结合到本文中来。
[0054]一旦沉积到了部件10的基材12上,认为阻热涂层体系14提供给基材12改善的热和侵蚀保护作用,这可归因于用于形成TBC 22的粒子30的内核32和外区34的组合物和任选的阻侵蚀涂层18。沉积上述实施方案的层18、20、22和24的合适方法包括但不限于溶胶-凝胶法、溶液等离子体喷涂法、悬浮体等离子体法、高速空气燃料热喷涂法、高速氧-燃料热喷涂法和等离子体喷涂(空气(APS)、真空(VPS)、溶液前体等离子体喷涂(SPPS)和低压LPPS))。特别合适的结果通过经诸如空气等离子体喷涂(APS)的热喷涂法沉积TBC 22获得,软化的粒子通过其在由粘结涂层16形成的沉积表面上沉积为“层片”,且使得TBC 22具有非柱状不规则的平坦晶粒和不均匀度和孔隙度。这类阻热涂层包括称为致密垂直裂纹(DVC) TBCs的涂层,其通过等离子体喷涂沉积以具有垂直的微裂缝,从而改善耐用性。所述方法及其参数公开在美国专利5830586号、5897921号、5989343号和6047539号中。或者,TBC 22可形成以具有适于TBC 22的结构完整性的限定空间的柱状晶粒。
[0055]在将其层沉积在基材12上之后,阻热涂层体系14优选经历热处理以释放残余应力。例示性热处理在约2000-约2100 0F (约1090-约1150°C )的温度范围内在真空中历时约2-约4小时的持续时间。认为特别优选的热处理是在约2050 0F (约1120°C )下在真空中历时约2小时。该公开的热处理仅为例示性的且可采用其他有效的热处理。[0056]在产生本发明的研究中,观察到上述类型且通过诸如APS以形成DVC TBCs以及SPPS的等离子体喷涂沉积的基于Yb-La-Hf-Ta-Zr的氧化物组合物的层形成具有外形是圆形的孤立孔的连接良好的微结构。在晶界处识别出诸如氧化铪和氧化钽的其他掺杂剂。另外,所述层的微结构包含由La-Zr氧化物晶界包围的Yb-Zr氧化物晶粒。认为Yb-Zr氧化物晶粒提供低导热率性质,而La-Zr氧化物晶粒促进耐侵蚀性。例示性微结构示于图4中。其中,较暗的晶粒对应于具有相对较高含量的氧化镱的晶粒,而较亮的晶粒对应于具有相对较高含量的氧化镧的晶粒。
[0057]虽然根据特定的实施方案描述了本发明,但显然其他形式可由本领域的技术人员采用。例如,可增加或减小所用层的数目,且可使用除所述材料和方法之外的材料和方法。因此,本发明的范围将 仅由以下权利要求书限制。
【权利要求】
1.含有粉末颗粒的陶瓷粉末,多个所述粉末颗粒各自包括由第一材料形成的内核和在所述内核的表面上由第二材料形成的外区,其中所述内核具有比所述外区低的导热率且相对于所述内核而言,所述外区更耐侵蚀。
2.权利要求1的陶瓷粉末,其中所述内核具有约0.5-约1.0Wn^k—1的导热率。
3.权利要求1的陶瓷粉末,其中所述内核的第一材料包含选自以下的组合物:基于Yb-La-Zr-的氧化物组合物、基于Yb-Sm-Zr-的氧化物组合物和基于Yb-Zr-的氧化物组合物。
4.权利要求1的陶瓷粉末,其中所述外区的第二材料包含选自以下的组合物:基于Yb-Zr的氧化物组合物、基于La-Zr的氧化物组合物、基于Yb-La-Zr的氧化物组合物、基于Yb-Sm-Zr的氧化物组合物、基于Yb-混合稀土金属-Zr的氧化物组合物和基于混合稀土金属-Zr的氧化物组合物。
5.权利要求1的陶瓷粉末,其中所述内核的第一材料由约30-约40重量%的氧化镱、约10-约25重量%的氧化镧和/或氧化钐、剩余量的氧化锆和偶然的杂质组成,且所述外区的第二材料由以下物质组成: 约8-约18重量%的氧化镱、剩余量的氧化锆和偶然的杂质;或 约25-约75重量%的混合稀土金属、剩余量的氧化锆和偶然的杂质。
6.权利要求1的陶瓷粉末,其中所述内核的第一材料由约40-约70重量%的氧化镱、剩余量的氧化锆和偶然的杂质组成,且所述外区的第二材料由以下物质组成: 约1-约5重量%的氧化镱 、约2-约8重量%的氧化镧、剩余量的氧化锆和偶然的杂质;或 约8-约18重量%的氧化镱、剩余量的氧化锆和偶然的杂质。
7.由权利要求1的陶瓷粉末形成且布置在部件的表面区域上的涂层体系。
8.在其上具有权利要求7的涂层体系的部件。
9.权利要求8的部件,其中所述部件安装在燃气轮机中。
10.形成含有粉末颗粒的陶瓷粉末的方法,所述方法包括: 形成所述粉末颗粒的核心,其中所述核心由第一材料形成;且随后表面涂布所述核心以形成所述粉末颗粒的外区,其中所述外区各自由第二材料形成,所述核心各自具有比其外区低的导热率,且相对于其核心而言,所述外区各自更耐侵蚀。
【文档编号】C04B35/628GK103992117SQ201410054143
【公开日】2014年8月20日 申请日期:2014年2月18日 优先权日:2013年2月18日
【发明者】S.S.帕布拉, J.L.马戈利斯, P.帕拉卡拉 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1