具至少一种氮化硅或氧氮化硅基薄层的透明基体及其制法的制作方法

文档序号:1826296阅读:257来源:国知局
专利名称:具至少一种氮化硅或氧氮化硅基薄层的透明基体及其制法的制作方法
技术领域
本发明涉及一种具有至少一薄层的透明基体。本发明的主要用途是制备所谓的在建筑或在汽车中使用的或作为等离子电视屏使用的功能性玻璃组合件。可设想到的另一用途是玻璃瓶类容器的表面处理。
在本发明的内容中,术语“功能性玻璃组合件”应该理解为是指一种玻璃组合件,其中其构成透明基体的至少一种覆盖有薄层的叠层以便使它们具有特殊性能,特别是热、光、电或机械性能,例如抗刮伤性能。
因此,存在所谓的低比辐射率的薄层,特别地它们由掺杂金属氧化物例如掺杂氟的氧化锡(F∶SnO2)或掺杂锡的氧化铟(ITO)组成,可以使用热解技术将它们沉积在玻璃上。一旦固定在玻璃组合件特别是建筑上的基体涂覆有低比辐射率的层,就可以降低室外或汽车内部外侧通过所述玻璃组合件在远红外区域中的辐射。因此,通过降低由于这种辐射的部分损失造成的能量损失,显著地改善了热的舒适度,特别是在冬季。
可以将由此覆盖的基体固定在双层玻璃组合件中,低比辐射率层转向隔开两个基体的充气空腔,例如作为第三层饰面放置(多层玻璃组合件的饰面通常人相对于室内或汽车内部来说最外侧的饰面开始编号)。因此,这样制成的双层玻璃组合件具有增强的绝热性,和低的热交换余数K,同时保持有利的太阳能射入量和高的太阳能因子(即进入室内的总能量与射入的太阳能的比例)。在该课题上,读者特别可以参阅专利申请EP-0,544,577,FR-2,704,543和EP-0,500,445。
低比辐射射率层通常是由良好的导电体制备的。这可以允许机动车中的玻璃组合件与此配合从而通过提供合适的电线以制备加热/除冰的玻璃组合体,这种用途例如描述在专利EP-0,353,140中。
同样也存在薄的过滤层,也称为选择层或抗太阳光层,它们被沉积在固定在玻璃组合体中的基体上,可以降低由于吸收/反射通过玻璃组合件从太阳光辐射进入室内或汽车内的热流量。这些例如可以是氮化钛TiN(或氧氮化钛)层,例如采用气相热解技术得到的和在专利申请EP-0,638,527和EP-0,650,938中描述的那些层。也可以是一层薄的(小于或等于30nm)的铝的反射层,特别是采用CVD或在1996年3月7日以Saint-Gobain Vitrage的名义申请的国际专利申请PCT/FR-96/00362中描述的沉积技术通过金属蒸汽冷凝得到的。
本发明还涉及沉积这些各种层的技术,更确切地说涉及包括热解反应的那些技术。这些技术的要点是在加热至高温的基体表面上喷涂“前体”,例如具有有机金属特性的前体,这些前体是气态或粉末状或本身是液体,要么就是溶解在一种液体中的液体。所述的前体在与基体接触时在其上分解,从而例如留下一层金属、氧化物、氧氮化物或氮化物层。热解的优点在于可以在浮法平板玻璃的生产线上连续地直接在玻璃板上沉积该层,其优点还在于热解层(一般)与基体具有非常好的粘附性。
上述低比辐射率或过滤层经常构成薄层的叠层的一部分,并且在与另一层接触的其饰面的至少一面上一般是具有光导和/或保护作用的绝缘材料。
因此,在上述专利申请EP-0,544,577和FR-2,704,543中,由两层SiO2、SiOC或金属氧化物类的绝缘层包围着例如由F∶SnO2制成的低比辐射率层,其中可以选择层的折射率和厚度以便调节基体的光学现象,特别是在反射方面,例如其颜色。
在上述专利申请EP-0,500,445中,ITO的低比辐射率层位于氧化铝层的下面以防止其氧化,而且在一定的条件下可以使其避免必须进行的还原退火处理和/或一旦涂覆,允许基体弯曲或韧化,而不会对其性能有副作用。
在上述专利申请EP-0,650,938中覆盖有TiN过滤涂层的TiO2层或TiO2/SiOC双层也具有防止TiN氧化的作用并通常提高其使用寿命。
然而,重要的是能够确定叠层薄层的完整性。因此,它们必须具有— 耐化学侵蚀的能力。这是因为常常会出现这样的情况,即一旦涂覆了多层的,透明基体在被固定到玻璃组合件中之前,要贮存很长的时间。如果不按密封并因而是昂贵的方式仔细地包装它,那么涂覆它的涂层可能直接暴露在污染的空气中或将借助于不太适合于除去其上灰尘的洗涤剂进行清洗,即使紧接着在双层玻璃组合件或在层压玻璃组合件中将基体与沉积的作为第2或3饰面的薄层连结在一起并因此受到保护的情况下。此外,除这种贮存问题外,易受化学侵蚀的涂层将阻碍基体作为“整体玻璃组合件”使用或在多个玻璃组合件的情况下阻碍将作为第一或第四饰面的层的排列,即涂层整年长期暴露在环境气氛中的布置;— 抗机械破损的能力。例如,一旦涂覆了层的透明基体可以在易于使其处于刮伤类损坏的结构中使用。结果,一方面,基体不再具有“合格”的美学外观,这是因为它被部分地刮伤,而另一方面,根据情况可能造成机械上的薄弱点,所以显著地降低了叠层和基体这二者的耐久性。
因此,有必要继续研究具有改进化学和/或机械耐久性的叠层。然而,这些改进不一定损害由基体和薄层的叠层形成的组合件的光学性能。
正如上面所提到的,已经存在绝缘材料的罩面层,它对叠层中的下面涂层提供一定程度的保护作用。为了在暴露于强烈的或者长时间的化学侵蚀下,保持完整性和/或充分保护可能“较弱”的下面涂层,专利申请EP-0,712,815描述了一种基于含硅氧化物和第三种元素例如氟F类的卤素形式的薄层,它们易于形成混合的硅/铝结构。
该涂层特别适用于作为叠层中的最末层,其中在玻璃组合件上功能性涂层是过滤或低比辐射率层,这是因为它可以满足光学功能,特别是在反射中使外观达到最佳的功能,并且可以保证玻璃组合件的外观在一定时间内的持久性。
然而,由于它不具有非常高的硬度,所以不能抗机械磨损,例如刮伤。
已知一种尤其设计成在机械磨损和/或化学侵蚀方面持久和稳定的硬薄层是一种氮化硅基的薄层,其中视情况而定氮化硅可以含有一定量的杂质例如氧和碳。
因此,一种类型的氮化硅基的薄层是已知的,它们是使用两种前体通过气相热解技术沉积在基体上的,其中含硅的前体是硅烷,含氮的前体是无机的氨类,或有机的肼类,特别是甲基取代的肼。
当使用氨类含氮前体进行沉积时,温度过高(大于700℃)使得它们例如不能与金属液槽室中的硅钠钙玻璃带上的沉积相适应,因为,在这些温度下,这些标准玻璃还仍未达到它们的尺寸稳定性。
就肼类含氮前体来说,它们有一定的毒性,从而带来工业应用上的难题。
同样已知,通过使用与上述相同的技术,特别是不是使用两种前体而是仅使用一种含有硅和氮这二者的Si(NMe2)4-nHn类前体来沉积氮化硅基的薄层。可以达到的沉积速率太低使得它们不能进行工业化规模的沉积生产。此外,合成这种产品相当复杂,因而也昂贵,并且含氮和含硅前体的各个比例不再改变。
此外,已知的氮化硅基薄层存在一些缺陷—一方面,它们不具有必需的足够的硬度,并且具有不足的耐久性,特别是当采用真空沉积以便,例如,可以使具有这种单层或含这层的薄层叠层的基体具有耐刮伤性;和—另一方面,特别是当通过热解进行沉积时,它们在可见光范围的波长内有吸收能力,从光学角度来说这是有害的。
因此,本发明的目的是弥补上述缺陷,因而研制出一种具有较大硬度的氮化硅或氧氮化硅基的新型薄层,同时该薄层的吸收能力极弱,它们构成薄层叠层的一部分,特别地就包含该新薄层的薄层叠层的化学侵蚀性而论可以满足起保护性的作用。
本发明的另一目的是提供一种沉积氮化硅或氧氮化硅基薄层的新方法,特别是采用一种能与在金属液槽室中的玻璃带上连续沉积相适应并允许达到高沉积速度的气相热解技术。
为了做到这点,本发明的目的首先是提供一种涂覆有至少一层氮化硅或氧氮化硅基薄层的玻璃基体类的透明基体。根据本发明,薄层包含元素Si、O、N、C,其原子百分率是—Si30-60%,特别是40-50%,—N10-56%,特别是20-56%,—O1-40%,特别是5-30%,—C1-40%,特别是5-30%。
令人惊奇地,已经证明这种薄层与其它已知的氮化硅基薄层相比非常硬并且很透明,因此在可见光范围的波长下具有低的吸收能力或无吸收能力高的Si和N含量表明所涉及的是一种主要由氮化硅组成的材料。通过改变C、O类微量组份之间的比例,可以准确地调节涂层的性能。因此,通过改变C和O的相对比例,可以,例如,微调薄层的密度和折射率以便使它具有非常有用的和所希望的机械硬度和光学性能。为了改变上述的相对比例,例如出于光学上的原因由可以采用温和的CO2类氧化剂来完成。这是因为C和N具有提高折射率的倾向,而氧具有相反的作用。
例如,涂层的折射率大于1.6,特别地是1.8-2.0,优选1.85。
涂层可以包含外加剂形式的其它元素,例如氟、磷或硼,优选地其原子百分比为0.1-5%。该涂层可以是均质的或在厚度上有组成梯度。
有利地,薄层的光吸收系数AL对于100纳米的几何厚度来说小于2%,正如下面所解释的一样,当使用气相热解技术沉积所述层时特别地证明了光学质量。
有利地,薄层构成薄层叠层的一部分,其中至少一层是具有热性能。尤其是过滤性能、太阳光保护性能或低比辐射率性能和/或电学性能和/或光学性能和/或光催化性能例如具有镜面作用的由掺杂金属氧化物、金属氮化物/氧氮化物或铝或硅类金属组成的这类涂层。它同样可以构成抗反射层叠层的一部分,起高指数或“中等”指数层的作用。
作为掺杂金属氧化物或金属氮化物/氧氮化物的物质可以选择掺杂氟的氧化锡F∶SnO2、掺杂锡的氧化铟ITO,掺杂铟的氧化锌In∶ZnO,掺杂氟的氧化锌F∶ZnO,掺杂铝的氧化锌Al∶ZnO,掺杂锡的氧化锌Sn∶ZnO,混合氧化物Cd2SnO4、氮化钛TiN或氮化锆ZrN。
根据附加的特征,该涂层可以位于功能性涂层的下面。那么,它可以起阻挡层的作用以阻止从玻璃类基体上扩散出离子特别是碱金属以及氧气,或者起成核层的作用,和/或具有光学作用(调节颜色、抗虹彩效应、抗反射作用)。在一些等离子屏的用途中,它可以起阻挡层的作用以阻止Ag+离子从银基功能性涂层中迁移到玻璃类基体中。
根据另一特征,该涂层可以固定在功能性能涂层之上。那么它尤其起保护功能性涂层的作用,从而使其免受高温氧化或化学侵蚀,或作为防刮伤类的机械保护层,一种具有光学作用的涂层或一种改进上涂层粘结性的涂层。
根据另一特征,薄层是涂覆基体的唯一涂层,并且有利地满足防刮伤性。涂层的几何厚度可以在5nm-5μm,特别是20-1000纳米的宽范围内非常随意地调节,例如为了增强涂覆有至少上述涂层的基体的防刮伤能力,至少250nm的基本厚度是非常优选的,对于另外的功能(成核、粘结等)来说通常希望厚度较小的涂层。
本发明的目的还涉及得到上面定义的基体的方法,该方法是借助于气相热解技术(也被称为CVD)或使用至少两种前体沉积氮化硅基薄层,其中前体包括至少一种硅前体和至少一种氮前体。根据本发明的方法,至少一种氮前体是胺。
选择这样的含氮前体是特别有利的它具有足够的反应性,使得能在普通硅钠钙基体类的玻璃基体完全达到其尺寸稳定性的温度下进行沉积,特别是在浮法玻璃生产线中。
此外,所达到的沉积速度足够高,从而可以在漂浮中沉积基本厚度。
所选择的含硅前体可以有利地是一种硅烷,氢化硅的和/或烷基类的,或一种硅氮烷。
胺可以选自伯、仲或叔胺,特别是各自具有1-6个碳原子烷基的那些胺。
因此,它可以是乙胺C2H5NH2、甲胺CH3NH2、二甲胺(CH3)2NH、丁胺C4H9NH2或丙胺C3H7NH2。
对于给定几何厚度和/或给定折射率的浮层来说,选择合适的胺可以产生一种将在某些参数例如位阻、反应性等之间发现的折衷方案。
氮前体的用量与含硅前体的用量的比(以摩尔数计)优选地是5-30,有利地是等于10。
事实上,重要的是控制这种比例,以便一方面避免氮加入量的不足,另一方面,避免在玻璃相中存在成核的危险或随后形成粉末的危险。因此限制了堵塞装置或降低生产率的危险。
根据附加的特征,当希望加入外加剂时,选择与含硅前体和胺前体无关的外加剂的前体。例如,当所希望的外加剂是氟F,前体可以是CF4类的氟化气体,或当所希望的外加剂是磷P或硼B时,前体是PO(OCH3)3类的有机磷酸酯载气或亚磷酸三乙酯、亚磷酸三甲酯、亚硼酸三甲酯、PF5、PCl3、PBr3或PCl5类的气体。有利地,这些外加剂一般能使沉积速度提高。
沉积温度合乎于所选择的前体特别是胺。优选地,它为550-760℃。它可以优选地是600-700℃,即玻璃、特别是硅钠钙玻璃的尺寸是稳定的温度至其离开浮法时具有的温度。
有利地,在基体的玻璃组成适合于电学应用的方案中,所述温度为660-760℃。
根据该方案,有利的组成可以是WO96/11887申请中描述的。这类组成是(以重量百分比表示)SiO245-68%Al2O30-20%ZrO20-20%B2O30-20%Na2O 2-12%K2O3.5-9%CaO 1-13%MgO 0-8%同时·SiO2+Al2O3+ZrO2≤70%·Al2O3+ZrO2≥2%·Na2O+K2O≥8%以及任选的BaO和/或SrO,其比例如下11%≤MgO+CaO+BaO+SrO≤30%并且具有至少530℃的较低退火温度和α系数为80-95×10-7℃。
从FR97/00498申请中得到的其它有利的组成是(重量百分比)SiO255-65%,优选55-60%Al2O30-5%ZrO25-10%B2O30-3%Na2O 2-6%K2O 5-9%MgO0-6%,优选1-6%CaO3-11%,优选7-11%SrO4-12%BaO0-2%同时·Na2O+K2O≥10%·MgO+CaO+SrO+BaO>11%,优选>15%并且具有至少600℃的较低退火温度。(另一种变体是选择Al2O3的含量为5-10%和ZrO2含量为0-5%,其它组份的比例保持不变)。
我们会记得所谓的低退火(“应变点”)温度是玻璃的粘度η等于1014.5泊时玻璃的温度。
因此,优选地在基本上呈惰性或还原气氛中例如不含或几乎不含氧气的N2/H2混合气中,在浮法室和/或在便于控制无氧惰性气氛的盒子(为了在浮法生产线之后进行沉积)中,可能地在稍低的温度下连续地在浮法玻璃带上沉积该涂层。
因此,本发明用于制备具有这类叠层的控制太阳光的过滤玻璃组合件— 玻璃/TiN和/或ZrN/本发明的涂层/SiOC和或SiO2。
本发明的所述涂层一方面可以使TiN层和/或ZrN层之间具有更强的界面,另一方面使SiOC层和/或SiO2层之间具有更强的界面。同样在沉积SiOC和/或SiO2层之后的生产线上或离开生产线例如当具有涂层叠层的基体已经被切断进行弯曲/韧化或退火类的热处理时,可以有效地保护TiN和/或ZrN免受表面氧化的危险。有利地,涂层的几何厚度为10-50纳米,本发明薄层的几何厚度为5-20纳米,SiOC和/或SiO2罩面层的几何厚度为30-100纳米;要么是这种类型的叠层— 玻璃/Al/本发明的薄层,当铝反射层具有薄的厚度(小于或等于30nm)或希望具有镜面作用而具有较大的厚度时,例如在上述国际专利申请PCT/FR-96/00362中描述的,本发明薄层起氧化保护剂和防刮伤的作用。
本发明也可以制备其主要功能是防刮伤性能的玻璃组合件,即其中的玻璃基体仅用本发明的Si3N4基薄层涂覆、任选与抗虹彩涂层结合的玻璃组合件例如楼板和玻璃家具。
因此,有利地保护了玻璃免受任何降解作用。本发明的薄层可以与使用这类叠层的低比辐射的涂层相结合— 玻璃/SiOC/F∶SnO2或ITO/本发明的薄层。
在这些叠层中,明显地SiOC次层可以用其它金属氧化物例如在专利申请EP-0,677,493中描述的那些物质代替。
同样,本发明的薄层可以制备任何种类的具有薄层叠层的功能性玻璃组合件,这种玻璃组合件具有持久的耐久性并且当所用的基体是玻璃基体时可以韧化和/或弯曲。
因此,本发明可以使用这类叠层— 玻璃体发明的薄层/TiO2来制备希望具有防污性能的玻璃组合件。
在这些叠层中,本发明的薄层主要具有阻挡层的作用以防止碱金属从玻璃中迁移到氧化钛TiO2基的涂层中,因此提高了后者的光催化作用。此外,如果本发明的涂层厚度适合于进行干扰的相互作用,那么同样它可以当作抗虹彩涂层。
氧化钛TiO2主要以锐钛矿类的晶体颗粒形式存在,如在专利申请WO97/10188中描述的一样。
然而,它也可以以至少部分结晶的膜的形式存在,例如在专利申请WO97/10186中描述的。
最后,本发明可以制备平面屏幕类的发射屏幕,例如等离子体屏幕。那么,本发明的薄涂层可以满足不同的功能,这取决于在该膜上沉积的基体的化学组成的特性,和/或屏幕上该基体的位置(正面或背面)并因此取决于其上的功能性涂层,例如电极和发光体(磷光核),基本上用于屏幕操作的元件。
因此,在玻璃基体是“封闭碱”类基体,也就是说具有一种基本上无碱类扩散物质的情况下,本发明的薄涂层非常有效地满足阻挡层的主要作用以阻止从上涂层扩散的物质向基体迁移,特别是从银基电极。
同样,在玻璃基体组份含碱金属的情况下,它也可以满足阻挡层的作用以防止它们迁移。
本发明也可以用于玻璃瓶类容器的烧瓶的表面处理,因为例如就可能损坏它们的搬运作业而言,本发明的硬涂层可以提高所述容器的强度,而不管所观察的所述涂层的相对厚度不均匀性。因此,为了采用机械方法使其增强,特别是保护它免受冲击,可以在容器外壁进行本发明硬涂层的沉积。并且也可以在容器的内壁上进行本发明硬涂层的沉积例如以便防止组分从基体中漏出。
借助于所附的附

图1和2,由下面非限制性的示意性实施方案将看出其它细节和有利的特征。出于清楚的目的,这些附图未考虑与各种材料的相对厚度有关的性能。
在下面所有的实施例中,所有薄层的沉积均在浮法室中进行。
实施例1附图1表示一种用本发明制备的氮化硅基薄层2涂覆的厚度为3毫米的透明钠钙硅玻璃基体1,例如由Saint-Gobain Vitrage公司以商品名PLANILUX出售的。
氮化硅基的薄层是借助于气相热解技术使用含硅前体硅烷SiH4和含氮前体乙胺C2H5NH2得到的。
选择前体的流速,以使乙胺量和硅烷量的体积比等于约10。该参数有利地是使涂层各组份的沉积最佳化。这是因为已经发现它一定不能— 太高,否则有在玻璃相中成核的危险,并因此而存在形成粉末的危险;或— 太低,否则涂层中氮的加入量不足。
当希望使用硅烷和乙胺沉积厚度为50-300nm的涂层时,5-30的比例范围证明是非常令人满意的。
沉积可以在大气压下,在加热至600-650℃温度的基体上进行。
在这些条件下,本发明涂层2的生长率达60nm/分钟。
正如附图1中所示的一样,所得到的涂层2的厚度约350纳米,折射率约1.85。
微探针分析表明,以原子百分比计,涂层包含32.7%硅、30.6%氮和21.1%碳和15.6%氧。
本发明的沉积技术可以通过改变各种不同的参数,例如进行沉积的温度、一种除乙胺外的胺的使用、或胺的混合物或加入乙胺中作为氮前体的氨的使用,来改变所加入的各种不同组份的量,特别是碳的加入量。
具有合适反应性的各种胺如下甲胺CH3NH2、二甲胺(CH3)2NH、丁胺C4H9NH2和丙胺C3H7NH2。沉积本发明涂层2的令人满意的温度为550-700℃。
下表中给出这样涂层的分光光度特征,其中TL、RL和AL分别表示在几乎正入射下透光率、反光率和光吸收值(%)TLRLAL涂层2 84 13 3将使用D65照明剂测定这些值。
发现本发明的涂层具有非常低的光吸收并且是无任何光雾的。(已知光雾是在550nm波长下漫透射率与透光率之比)。
在用本发明的单层涂层2涂覆的基体1上进行能够测定所述涂层机械强度的试验。采用由嵌入弹性体中的研磨粉末制备的砂轮来进行该试验。该机器是由Taber仪器公司制造的。它是一种174型标准磨耗试验机,砂轮是CSIOF型并能负载500克。使涂覆的基体1局部进行50次旋转,然后使用光学显微镜计数在边长均等于1英寸即2.54厘米的四个正方形上的划痕数目。在计数之后,计算每平方上划痕数目的平均值R。最后,由公式TS=-0.18R+10计算泰伯磨耗数(Taber score)TS。
对于几何厚度为300纳米的本发明的涂层2,该数值等于9.3。该值表示非常小的磨损,因此表现出本发明涂层具有非常好的抗刮伤性。
作为对比实施例,可以注意到几何厚度为340纳米的采用气相热解技术沉积的被称为“特硬”涂层的氟掺杂氧化锡F∶SnO2涂层的泰伯磨耗数Ts按照实验结果为9.1。
因此,可以清楚地看到,本发明的氮化硅基的涂层实质上具有非常好的耐机械磨损性,并且从光学角度看,由于该涂层是高度透明的和在可见光范围内的波长下具有非常低的光吸收能力,所以它们是非常令人满意的。
实施例2附图2表示具有薄层叠层的太阳光保护类玻璃组合件,其中包括本发明的涂层2。
依次采用三种涂层涂覆透明的硅钠钙玻璃基体— 厚度为23nm的第一TiN涂层3,正如在专利申请EP-0,638,527中描述的一样,是使用四氯化钛TiCl4和甲胺CH3NH2通过气相热解得到的;— 厚度约为10纳米、折射率等于1.85的本发明的第二涂层2,在与实施例1相同的条件下进行沉积;和— 厚度为65nm、折射率等于1.65的氧氮化硅SiOC第三涂层4,同样,正如专利申请EP-0,518,755中描述的一样是采用硅烷和乙烯通过气相热解得到的,基本上以含硅形式存在的该涂层在离开浮法室时进行氧化,特别是在退火炉中进行。
因此,这类叠层是
— 玻璃/TiN/Si3N4/SiOC。
实施例3该对比实施例是采用由玻璃/TiN/SiOC组成的叠层制备的,其中这两种涂层TiN和SiOC具有相同的特性(如上所定义的特性)并且是在相同的沉积条件下得到的。
可以观察到,本发明的涂层2,甚至在厚度很薄时,也可以在TiN第一涂层3和SiOC罩面涂层4之间产生非常强的连接。
此外,在沉积SiOC罩面涂层4之后,本发明涂层2可以有效地保护TiN免受生产线中任何表面氧化的危险。如果合适,当已切割的基体进行随后的弯曲/韧化或退火类的热处理时它使TiN隔绝。
同样,在测定分光光度值,特别是实施例2和3中两种叠层各自的透光率TL以及太阳光因子FS之后,发现在具有本发明涂层2夹在TiN和SiOC两种涂层之间的实施例2的三种涂层叠怪的情况下,与差值TL_FS相对应的选择性非常好,因为该值为10%。在实施例3两种涂层叠层的情况下,它小于7%。
最后,应该注意到,在上述两种结构中,如果本发明氮化硅基涂层的厚度均匀的话,那么很清楚可以在其厚度上产生一定的组份不均匀性,以便特别地改变折射率和使该涂层和/或其上或其下涂层的光学和/或化学适应性最佳化,例如,在使用实施例2中相同涂层的太阳光保护玻璃组合件中在TiN侧浓缩Si3N4的涂层和SiOC侧浓缩的涂层。可以借助于相同的气相热解沉积技术但使用能产生化学梯度的喷嘴,例如在专利申请FR-2,736,632中描述的得到该“梯度”涂层。
总之,本发明得到一种新的氮化硅基的涂层,其特别地能够抗机械磨损,而且从光学角度看,因为它具有非常低的光吸收性,所以是非常令人满意的,而对于已知的Si3N4基的涂层并不是这样的。
特别有利地,可以使用含氮前体,在高的沉积速度下,通过工业规模上使用的而不会招致过高成本负担的气相热解沉积本发明涂层。
此外,所用的含氮前体具有合适的反应性,因为它可以达到沉积温度,在此温度下可以毫无困难地在浮法玻璃带生产线上制备三涂层叠层,例如以便制备具有TiN功能性涂层和最后的SiOC涂层的抗太阳光玻璃组合体,而有利地将本发明涂层加入常规的两叠层涂层中以便得到较强的交界面并且在SiOC罩面涂层沉积之后使功能性涂层与氧化作用隔绝,并且不会破坏生产线上的生产,或者也可以在离开生产线进行基底的热处理期间制备三涂层叠层。
权利要求
1.玻璃基体类的透明基体(1),其涂覆有至少一氮化硅基或氧氮化硅基的薄层(2),其特征在于所说的薄层(2)包含元素Si、O、N、C,它们的原子百分比为—Si30-60%,特别是40-50%,—N10-56%,特别是20-56%,—O1-40%,特别是5-30%,—C1-40%,特别是5-30%。
2.根据权利要求1的基体,其特征在于所述的薄层包含至少一种外加剂,特别是卤素优选氟F和/或磷P或硼B,优选地其原子百分比为0.1-5%。
3.根据上述权利要求之一的基体,其特征在于所述的薄层是均质的或在其厚度上具有组份梯度。
4.根据上述权利要求之一的基体,其特征在于对于100纳米的几伺厚度所述薄层的光吸收系数AL小于2%。
5.根据上述权利要求之一的基体,其特征在于,所述薄层的几何厚度为5nm-5μm,特别地是20-1000纳米。
6.根据上述权利要求之一的基体,其特征在于所述的薄层的折射率大于1.6,特别地为1.8-2.0,优选1.85。
7.根据上述权利要求之一的基体,其特征在于所述薄层构成薄层叠层的一部分,这类薄层叠层由金属掺杂氧化物,金属氮化物/氧氮化物或铝或硅类金属组成,其中至少一涂层是具有热学性能、特别是过滤、防太阳光或低比辐射率性能和/或电学性能和/或光学性能和/或光催化性能的功能性涂层,例如具有反射性能的涂层,或构成抗反射涂层叠层的一部分。
8.根据权利要求7的基体,其特征在于所述的薄层在功能性涂层的下面,特别地作为阻挡层以防止从所述玻璃基体类基体中扩散出离子特别是碱金属离子和氧,或作为阻挡层以防止离子从功能性涂层迁移到用于生产等离子屏的玻璃基体类的基体中,或作为成核层或具有光学作用的涂层。
9.根据权利要求7的基体,其特征在于所述薄层在功能涂层之上,特别地作为保护功能性涂层免受高温氧化或化学侵蚀的涂层,一种抗刮伤类的机械保护涂层,具有光学作用的涂层或改进顶涂层粘结性的涂层。
10.根据权利要求7-9之一的基体,其特征在于功能性涂层由氟掺杂的氧化锡F∶SnO2、锡掺杂的氧化铟ITO,铟掺杂的氧化锌In∶ZnO,氟掺杂的氧化锌F∶ZnO,铝掺杂的氧化锌Al∶ZnO,或锡掺杂的氧化锌Sn∶ZnO,混合氧化物Cd2SnO4、氮化钛TiN或氧氮化钛或氮化锆ZrN。
11.根据权利要求1-6之一的基体,其特征在于所述薄层(2)是涂覆基体的唯一涂层或与一抗虹色涂层相粘结并满足抗刮伤性能。
12.根据权利要求11的基体,其特征在于所述薄层(2)的几何厚度至少为250纳米。
13.根据权利要求1-10之一的基体,其特征在于所述薄层构成玻璃/TiN和/或ZrN/薄涂层(2)/SiOC和/或SiO2类叠层的一部分,并且特别地满足生产线上和/或离开生产线沉积SiOC和/或SiO2罩面涂层之后满足TiN和/或ZrN和SiOC和/或SiO2之间强交界面的功能和抗氧化功能。
14.根据权利要求13的基体,其特征在于所述TiN涂层的几何尺寸厚度为10-50纳米,所述薄层(2)的几何厚度为5-20纳米,所述SiOC和/或SiO2罩面层的几何厚度为30-100纳米,并且其中所述叠层的选择性至少为7%。
15.用于沉积上述权利要求之一的薄层(2)的方法,其中采用至少两种前体借助于气相热解技术进行,两种前体包括至少一种硅前体和至少一种氮前体,其特征在于至少一种氮前体以胺的形式存在。
16.根据权利要求15的方法,其特征在于硅前体是硅烷,氢化硅的和/或烷基类的,或一种硅氮烷。
17.根据权利要求15或16的方法,其特征在于胺是伯、仲或叔胺,特别是具有1-6个碳原子的烷基的。
18.根据权利要求17的方法,其特征在于胺是乙胺C2H5NH2、甲胺CH3NH2、二甲胺(CH3)2NH、丁胺C4H9NH2或丙胺C3H7NH2。
19.根据权利要求15-18之一的方法,其特征在于以摩尔数计,氮前体量与硅前体量的比例是5-30,优选10。
20.根据权利要求15-19之一的方法,其特征在于外加剂的前体与硅和氮前体无关,并且,特别地,当外加剂是氟F时前体是CF4类的氟化气体和当外加剂是磷P或硼B时前体是PO(OCH3)3类有机磷酸酯载气或亚磷酸三乙酯、亚磷酸三甲酯、亚硼酸三甲酯,PF5或PCl3、PBr3或PCl5类的气体。
21.根据权利要求15-20之一的方法,其特征在于所选择的沉积温度是550-760℃,有利地是660-760℃。
22.根据权利要求15-21之一的方法,其特征在于在不含氧的基本上呈惰性或含氢气氛中,在浮法室和或在用于控制惰性或还原气氛的盒子中将所述的薄层连续地沉积在浮法玻璃带上。
23.权利要求1-12之一的基体或权利要求15-22之一的方法的用途,用于制备具有薄层的玻璃组合件,其用于过滤类或低比辐射类太阳光保护和/或抗刮伤和/或具有反射或抗反射功能和/或具有抗积灰功能,可用在平面屏幕类发射屏幕例如等离子屏幕的“正面或背面”。
24.根据权利要求23的用途,用于制备具有可韧化/可弯曲和/或长期耐久性薄层的玻璃组合件。
25.根据权利要求24的用途,用于单片、层压或多层玻璃组合件,其中基体是透明的或纯粹是浅色的。
26.权利要求1-11之一的产品或权利要求15-22之一方法的用途,用于玻璃瓶类容器或烧瓶的内和/或外表面处理。
全文摘要
本发明涉及一种使用至少一种氮化硅基或氧氮化硅基薄层涂覆的玻璃基体类透明基体。根据本发明薄层包含元素Si、O、N、C,其原子百分子是:Si:30—60%,特别是40—50%,N:10—56%,特别是20—56%,O:1—40%,特别是5—30%,C:1—40%,特别是5—30%。本发明还涉及它们的制备方法和其用途,特别是采用气相热解技术来制备的。
文档编号C03C17/36GK1201023SQ98107059
公开日1998年12月9日 申请日期1998年2月10日 优先权日1997年2月10日
发明者L·乔雷特 申请人:圣戈班玻璃制造公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1