薄板状工件的搬送装置的制作方法

文档序号:2336084阅读:121来源:国知局

专利名称::薄板状工件的搬送装置的制作方法
技术领域
:本发明涉及通过由负压产生的吸附作用来保持基板或半导体晶片等薄板状的工件并进行搬送的搬送装置。
背景技术
:在半导体器件制造工序中,在圆板状的半导体晶片的表面上利用格子状的分割预定线划分出大量的矩形区域,在这些矩形区域的表面上形成IC(integratedcircuit:集成电路)、LSI(large-scaleintegration:大规模集成电路)等电路,然后将所有的分割预定线切断、即进行切割,从而从一块晶片得到大量的半导体芯片。这样得到的半导体芯片被树脂封闭件封装起来,从而广泛应用于移动电话或PC(个人计算机)等各种电气和电子设备。在这样的制造工序中,在将半导体晶片切割成大量半导体芯片之前,对与形成有电路的表面相反一侧的背面进行研削,使半导体晶片减薄至预定的厚度。关于晶片的薄化,其目的除了使设备更加小型化或轻量化以外,还在于使散热性提高,例如,从700m左右的初始厚度减薄至大约50100iim、甚至50iim以下的厚度。在薄化后,对晶片进行切割从而切割成大量半导体芯片,然而,在晶片的研削加工面上形成有作为研削痕迹的机械破损层,如果就在该状态下进行切割,则会产生半导体芯片的抗弯强度弱的问题。因此,在对晶片的背面进行研削后,需要对研削加工面进行研磨,以除去机械破损层。然而,作为对晶片的背面进行研削的加工装置,已知有具有以下部分等的加工装置收纳盒,其对研削前的大量晶片进行收纳;定位部,从收纳盒中取出的研削前的晶片被临时载置在该定位部上,该定位部用于进行搬送系统的定位;卡盘工作台,其将从定位部移送来的晶片保持为背面露出的状态;磨床等研削装置,其对保持在卡盘工作台上的晶片的背面进行研削;清洗部,背面被研削后的晶片从卡盘工作台被移送至该清洗部,该清洗部对晶片进行清洗;以及盒,其对利用清洗部清洗后的晶片进行收纳(专利文献1)。晶片按照上述工序顺序被搬送,在上述专利文献1所述的加工装置中,作为将晶片从卡盘工作台搬送至清洗部的搬送装置具有如下形式将晶片吸附在设置于搬送臂前端的吸盘上,并使搬送臂回转来搬送晶片。吸盘具有吸附衬垫,该吸附衬垫由多孔质体构成并且形成有平坦的吸附面,通过经由吸附衬垫抽吸空气而产生负压,来将晶片吸附在吸附面上进行保持。吸附衬垫使用由氧化铝(A1203)等陶瓷、烧结金属、树脂发泡体等形成的吸附衬垫。专利文献1:日本特开2000-21952号公报上述搬送装置的吸盘是通过将晶片吸引在开口于多孔体的吸附面上的大量的孔部来将该晶片吸附在吸附面上的结构。然而,在吸附晶片时,由于在与吸附面的孔的周缘接触的部分等上作用有局部应力、或者在晶片与吸附面抵接的瞬间产生了破损等,因而会引起晶片的强度降低,并且晶片的厚度越薄该强度降低就越显著。因此,如果将这样的吸附式搬送装置应用于在研削后实施了研磨的晶片的搬送装置,则会使通过研磨提高了抗弯强度的晶片的强度再次受到损害,因此要谋求改进。
发明内容本发明是鉴于上述情况而完成的,其目的在于提供一种薄板状工件的搬送装置,该薄板状工件的搬送装置即使为吸附式也能够抑制作为搬送物的工件的强度的降低,能够将工件在健全的状态下搬送至搬送目的地。本发明人着眼于构成如上所述的吸附式搬送装置的吸附衬垫的多孔材的材质进行了专心研究,结果发现在利用含有氟树脂的吸附衬垫对半导体晶片等工件进行吸附时,抑制了强度的降低,在强度的维持上是有效的。本发明的搬送装置是基于这样的见解而完成的,该搬送装置装备在加工装置上,用于搬送薄板状工件,上述加工装置具有保持上述工件的保持装置、以及对保持在该保持装置上的工件实施预定加工的加工装置,上述搬送装置的特征在于,该搬送装置至少包括吸附衬垫,其具有吸附面,该吸附面与保持在保持装置上的工件的露出面接触;负压产生通道,其从负压源一直设置到上述吸附衬垫,该负压源使上述吸附衬垫的吸附面产生吸附作用;以及移动装置,其使吸附衬垫从保持装置移动至预定的搬送目的地,吸附衬垫利用含有氟树脂的多孔材形成。作为本发明所涉及的上述加工装置所实施的加工,列举出研削和/或研磨。根据本发明,具有与工件直接抵接的吸附面的吸附衬垫利用含有氟树脂的多孔材形成,因而具有对所吸附的工件的强度降低进行抑制的效果。关于利用含有氟树脂的多孔材形成的本发明所述的吸附衬垫,谋求气孔率(气孔相对于整个体积的比例)在适当的范围内。当气孔率过低时,无法获得足够的吸附作用,当气孔率过高时,容易产生气孔以外的体积损失而在吸附面上形成凹凸这些缺陷,因此气孔率优选为30%50%。此外,当气孔本身的尺寸过小时,无法获得足够的吸附作用,当气孔本身的尺寸过大时,工件被向孔内抽吸而容易受到损坏。作为不产生这些问题的气孔的大小(直径),优选为小101000iim。此外,吸附衬垫的硬度也有适当的范围,优选在JISK6253中规定的肖氏D硬度为40S0。这是基于以下原因当该硬度过低时,容易产生缺陷,当该硬度过高时,工件容易受到损坏。此外,在研削或研磨时,存在一边向工件供给药液(柠檬酸、氨、双氧水等公知的表面活性剂)一边进行该研削或研磨的情况,因此优选使用耐药品性能高的PCTFE(聚三氟氯乙烯)。此外,PCTFE的机械强度比较高,在这一点上也是优选的材料。另外,本发明中所说的工件并没有特别限定,例如列举出硅晶片等上述半导体晶片、或者陶瓷、玻璃、蓝宝石、硅类的基板等要求精密级精度的各种加工材料等。根据本发明,利用含有氟树脂的多孔材来形成吸附并搬送工件的吸附衬垫,由此起到了以下效果能够抑制工件强度的降低,能够将工件在健全的状态下搬送到搬送目的地。图1是利用基片(substrate)对使用本发明的一个实施方式所述的晶片加工装置进行加工的半导体晶片进行支撑的状态,是表示晶片的背面侧的立体图。图2是本发明的一个实施方式所述的晶片加工装置的立体图。图3是表示该晶片加工装置所具有的、本发明所述的第二搬送装置与卡盘工作台的的剖视图。图4是表示第二搬送装置的吸盘的变形例的仰视图。图5是该变形例的剖视图。图6是表示实施例中的抗弯强度测量的试验方法的图。标号说明1:晶片;9:工件;10:晶片加工装置;20B:第二搬送装置;30:卡盘工作台(保持装置);40A:粗研削用研削单元(加工装置);40B:精研削用研削单元(加工装置);60:研磨单元(加工装置);92:臂(移动装置);93:空气抽吸通道(负压产生通道);94:配管(负压产生通道);95:负压源;100:吸盘;110:吸附衬垫;111:吸附面。具体实施例方式下面,参照附图对具有本发明所述的搬送装置的晶片加工装置进行说明。[1]半导体晶片首先,对图l所示的一个实施方式所述的半导体晶片进行说明。该半导体晶片1(以下称为晶片1)是硅晶片等,其加工前的厚度例如为700i!m左右。在晶片1的表面(在图1中晶片1的背面侧朝上)利用格子状的分割预定线2划分有多个矩形的芯片3。在这些芯片3的表面上,形成有IC或LSI等未图示的电路。此外,在晶片1的周面的预定部位,形成有表示半导体的结晶方位的V字形的切口(凹口)4。关于晶片l,利用图2所示的晶片加工装置10对背面进行研削,然后进行研磨,从而减薄至例如大约50100ym、或者50iim以下。关于提供给晶片加工装置10的晶片1,为了能够可靠地保持由于变薄而刚性降低了的该晶片1来进行搬送,如图1所示,在表面(图1中的下表面)上粘贴有基片5。基片5使用如下所述的部件,该部件由例如作为半导体晶片的材料的硅、或者玻璃等形成为外径与晶片1大致相同的圆板状、且形成为不会产生挠曲的程度的厚度,上述基片5通过适当的粘接材料粘贴在晶片1的表面上。通过粘贴基片5,即使晶片1的背面被研削而减薄,该晶片1也能够维持平坦的状态而不会产生挠曲,从而能够在该状态下搬送该晶片1。在以下的说明中,将在图1所示的晶片1上粘贴有基片5的结构称为工件9,该工件9是本实施方式中的搬送对象物。[2]晶片加工装置的结构和动作图2所示的晶片加工装置10是如下所述的装置将上述工件9吸附在一般公知的负压卡盘式的卡盘工作台(保持装置)30上进行保持,利用两台研削单元(粗研削用和精研削用的加工装置)40A、40B对晶片1的背面依次进行粗研削和精研削,然后利用研磨单元60对研削加工面实施研磨。下面,对晶片加工装置10的结构和动作进行说明。图2中的标号11是对晶片1实施研削加工的加工台,在该加工台11的Y方向近前侧,并列设置有供给/回收台12,该供给/回收台12向加工台11供给工件9,并且将具有研削和研磨后的晶片1的工件9回收。在供给/回收台12的Y方向近前侧的端部,设置有在X方向上并列的两个升降机13A、13B。在这些升降机13A、13B中的、靠X方向近前侧的升降机13A上设置有供给盒14A,该供给盒14A对具有背面被研削和研磨前的晶片1的多个工件9进行收纳。此外,在靠X方向里侧的升降机13B上设置有回收盒14B,该回收盒14B对具有背面被研削和研磨后的晶片1的多个工件9进行收纳。这些盒14A、14B具有托盘,该托盘以逐枚层叠状态收纳工件9。利用搬送机械手15将收纳在供给盒14A内的工件9从供给盒14A内搬出,并在晶片1的背面朝上的状态下将该工件9临时载置到设置于供给/回收台12的定位工作台16上。载置于定位工作台16上的工件9被定位在固定的搬送开始位置。在加工台11上,设置有向箭头R方向被旋转驱动的回转工作台17。并且,在该回转工作台17上的外周部,在周向上隔开相等间隔地配设有多个(该情况下为4个)圆板状的卡盘工作台30。如图3所示,卡盘工作台30是在框体31的上表面上嵌合由陶瓷等多孔材料形成的吸附部32而构成的,当进行负压产生运转时,吸附部32上侧的空气被抽吸,从而将工件9吸附并保持在吸附部32的水平的上表面上。工件9在基片5与卡盘工作台30的吸附部32抵接、且晶片1的背面朝上的状态(即背面露出的状态)下保持在卡盘工作台30上。各卡盘工作台30旋转自如地支撑在回转工作台17上,并且各卡盘工作台30通过未图示的旋转驱动机构向一个方向或两个方向旋转。将在定位工作台16上进行了定位的工件9利用第一搬送装置20A从定位工作台16上拾起,并搬送至定位于预定的工件供给位置并且正在进行负压产生运转的一个卡盘工作台30的上方。然后,将工件9在使晶片1的背面向上露出的状态下呈同心状地载置到该卡盘工作台30上。该情况下的工件供给位置是卡盘工作台30最接近供给/回收台12的位置,通过回转工作台17的旋转,卡盘工作台30被定位在工件装卸位置。第一搬送装置20A设置在供给/回收台12的、接近工件装卸位置的位置。关于第一搬送装置20A,在设置成能够旋转且能够上下移动的沿Z方向延伸的旋转轴21上,固定有水平状延伸的臂22,在该臂22的前端下方,水平地设置有利用负压作用吸附工件9的圆板状的吸盘23。在吸盘23的下部安装有由陶瓷等多孔材构成的吸附衬垫(省略图示),晶片1吸附在作为该吸附衬垫的下表面的吸附面上,从而工件9被保持。根据第一搬送装置20A,通过使旋转轴21旋转从而使臂22回转,由此使吸盘23位于定位工作台16上的工件9的上方,接着,通过使旋转轴21下降并进行负压产生运转,来将晶片1连同工件9一起吸附在吸盘23的吸附衬垫上进行保持。在将定位工作台16上的工件9保持在吸盘23上之后,旋转轴21上升,臂22回转,从而将工件9搬送至上述工件供给位置,在此处旋转轴21下降,使负压产生运转停止。由此,工件9被载置到正在进行负压产生运转的卡盘工作台30上,并被吸附和保持。通过回转工作台17向R方向旋转预定角度,将保持在卡盘工作台30上的工件9送入粗研削用研削单元40A的下方的粗研削加工位置,在该位置利用该研削单元40A对晶片1的背面进行粗研削。接着,通过再次使回转工作台17向R方向旋转预定角度,将工件9送入精研削用研削单元40B的下方的精研削加工位置,在该位置利用该研削单元40B对晶片1的背面进行精研削。在加工台11的靠Y方向里侧的端部,竖立设置有在X方向上并列的两个柱50A、50B,在这些柱50A、50B的前表面上,分别以沿Z方向(铅直方向)升降自如的方式设置有各研削单元40A、40B。各研削单元40A、40B经由滑块52滑动自如地安装在引导件51上,该引导件51设置在各柱50A、50B的前表面上并且沿Z方向延伸,通过由伺服电动机53驱动的滚珠丝杠式的进给机构54,上述各研削单元40A、40B经由滑块52沿Z方向升降。各研削单元40A、40B是相同的结构,通过所装配的磨具分别是用于粗研削和用于精研削来进行区分。研削单元40A、40B具有轴向沿Z方向延伸的圆筒状的主轴壳体41,在该主轴壳体41内,支撑有由主轴电动机42驱动而旋转的未图示的主轴。另外,在该主轴的下端,经由凸缘43安装有研削轮44。在研削轮44的下表面上,呈环状地排列有多个磨具45。由这些磨具45的下表面所形成的研削加工面设定成与上述主轴的轴向正交的水平状。因此,该研削加工面与卡盘工作台30的上表面平行。磨具45例如使用在树脂结合材料中混合金刚石磨粒进行成形并烧结而成的磨具。安装在粗研削用的研削单元40A上的磨具45例如使用含有大约为#330#400的较粗磨粒的磨具。此外,安装在精研削用的研削单元40B上的磨具45例如使用含有大约为#3000#8000的较细磨粒的磨具。在各研削单元40A、40B上,设置有供给研削液的研削液供给机构(省略图示),该研削液用于研削加工面的冷却或润滑、或者研削屑的排出。晶片1的背面在粗研削和精研削的各自的研削加工位置处被各研削单元40A、40B研削。背面研削如下所述地进行卡盘工作台30旋转从而使工件9自转,通过进给机构54使研削单元40A(40B)向下方进给,并且将旋转中的研削轮44的磨具45压靠在晶片1的露出的背面上。虽然将晶片1从粗研削经过精研削而减薄至目标厚度,但是厚度的测量由设置在各加工位置附近的未图示的厚度测量计来完成。在进行晶片1的背面研削的同时利用该厚度测量计测量晶片1的厚度,根据该测量值,来控制进给机构54对研削轮44的进给量。另外,在粗研削中,研削至比精研削后的目标厚度要厚例如3040iim的厚度,残余量通过精研削来研削掉。在将晶片l从粗研削经过精研削而减薄至目标厚度后,接着通过回转工作台17向R方向再次旋转预定角度,来将工件9送入研磨单元60的下方的研磨加工位置,在该位置利用该研磨单元60对晶片1的背面进行研磨。在加工台11的靠X方向里侧的端部设置有滑动板70,研磨单元60以沿Z方向升降自如的方式设置在该滑动板70的前表面上。研磨单元60固定在半圆筒状的保持架71上。在该保持架71上,设置有左右一对进给机构72。这些进给机构72与设置在滑动板70的前表面上的沿Z方向延伸的一对齿条73卡合,并且沿着该齿条73在Z方向上升降。研磨单元60伴随着左右进给机构72沿着齿条73同步升降而升降。研磨单元60具有轴向沿Z方向延伸的圆筒状的主轴壳体61,在该主轴壳体61内,内置有主轴电动机、以及由该主轴电动机驱动而旋转的主轴(均省略图示)。并且,在主轴的下端,经由凸缘63安装有研磨轮64。研磨轮64是在圆板状的框架的下表面上粘贴研磨衬垫(省略图示)而构成的,根据作为研磨对象物的晶片1来选择研磨衬垫。例如在研磨单元60实施CMP(化学机械研磨化学机械抛光(ChemicalMechanicalPolishing)或者化学机械平坦化(ChemicalMechanicalPlanarization))处理的情况下,研磨衬垫使用发泡聚氨酯、或者由纤维状的材料呈薄片状地成形而成的聚氨酯。并且,在CMP的情况下,向晶片1的研磨加工面供给研磨浆(研磨液)。研磨浆根据晶片1的种类来选择,例如可以使用在KOH(氢氧化钾)、NaOH(氢氧化钠)、NH30H(氨)等碱性药液的水溶液、或者酸性水溶液中悬浮有Si02(二氧化硅)、Ce0(氧化铈)、A1203(氧化铝)等磨粒的研磨浆。研磨轮64与主轴壳体61内的主轴一体旋转,旋转的上述研磨衬垫的研磨外径设定成比晶片1的直径要大。此外,回转工作台17旋转预定角度而确定的、晶片1的研磨加工位置设定在如下所述的位置该位置成为直径比研磨衬垫小的晶片1的外周缘的一部分始终与研磨衬垫的外周缘的一部分一致的内切圆的状态,从而能够对通过卡盘工作台30的旋转而自转的晶片1的整个背面进行研磨。晶片1的背面在研磨加工位置被研磨单元60研磨。背面研磨如下所述地进行卡盘工作台30旋转从而使工件9自转,通过进给机构72使研磨单元60向下方进给,并且将旋转的研磨轮64的研磨衬垫压靠在晶片1的露出的背面上。当晶片1的背面研磨持续了预定时间时,使研磨终止,接着,如下所述地转移为工件9的回收。首先,研磨单元60上升而从工件9上退开,接着,通过回转工作台17向R方向旋转预定角度,使工件9返回上述工件装卸位置。接着,使卡盘工作台30的负压产生运转停止,然后,利用设置在供给/回收台12上的本发明所述的第二搬送装置20B将工件9搬送至旋转清洗装置80。关于第二搬送装置20B,基本结构与上述第一搬送装置20A相同,在设置成能够旋转且能够上下移动的沿Z方向延伸的旋转轴91上,固定有水平状延伸的臂92,在该臂92的前端下方,水平地设置有利用负压作用吸附工件9的圆板状的吸盘100。如图3所示,吸盘100具有由不锈钢等构成的圆板状的框体101、和由多孔材构成的吸附衬垫110。在框体101的下表面的大部分上,残留外周缘部102地呈同心状地形成有圆形的凹部103,在该凹部103中嵌合有吸附衬垫110。吸附衬垫110的下表面是水平的,并且与框体101的外周缘部102的下表面共面,吸附衬垫110的下表面构成为吸附工件9的吸附面。臂92是在内部形成有空气抽吸通道(负压产生通道)93的管状结构,臂92的前端固定在框体101的上表面的中心部。在框体101的固定有臂92的中心处,形成有空气抽吸口104,该空气抽吸口104将臂92的空气抽吸通道93与吸附衬垫110内的气孔连通。在固定有臂92的上述旋转轴91内,形成有与空气抽吸通道93连通的空气抽吸通道,该旋转轴91侧的空气抽吸通道经由配管(负压产生通道)94与真空泵等负压源95连接。当负压源95工作时,经由配管94、旋转轴91的空气抽吸通道、臂92的空气抽吸通道93、以及框体101的空气抽吸口104,对吸附衬垫110内的气孔中的空气进行抽吸,由此,吸附面lll的下方部分的空气被抽吸从而产生负压。通过使这样的负压产生作用发生,靠近吸附面111的工件9的晶片1被吸附到吸附面111上,从而工件9被吸附面111保持。吸附衬垫110由可使空气通过的多孔材构成为外径与工件9大致相等或者稍小的圆板状,工件9呈同心状地保持在吸附面111上。使用氟树脂作为构成吸附衬垫110的多孔材的材料,特别是即使在氟树脂中也优选使用耐药品性能高的PCTFE(聚三氟氯乙烯Polychloro-TrifluoroEthylene)。使用于吸附衬垫110的氟树脂制的多孔材优选气孔率(气孔相对于整个体积的比例)为30%50%,此夕卜,气孔的大小(直径)优选为小101000iim,更优选为小1050iim。另外,该多孔材优选使用在JISK6253中规定的肖式D硬度为4080的材料。根据上述第二搬送装置20B,通过使旋转轴91旋转从而使臂92回转,由此将吸盘100定位于返回到上述工件装卸位置的卡盘工作台30上的工件9的上方,接着,通过使旋转轴91下降并使负压源95工作,来将晶片1吸附在吸附衬垫110的吸附面111上,从而工件9被保持在吸附衬垫110的吸附面111。在这样将卡盘工作台30上的工件9保持到吸盘100上之后,旋转轴91上升,臂92回转,从而将工件9搬送至旋转式清洗装置80。旋转式清洗装置80具有负压式的旋转工作台81,该负压式的旋转工作台81的结构与上述卡盘工作台30的结构相同,当工件9被搬送来的时候,旋转工作台81预先进行负压产生运转。关于如上所述地被第二搬送装置20B搬送至旋转式清洗装置80的工件9,通过旋转轴91下降,该工件9被载置到旋转工作台81上,与此同时,使吸附衬垫110的负压产生运转停止。由此,工件9被吸附在进行着负压产生运转的旋转工作台81上进行保持。在旋转式清洗装置80中,向保持在旋转工作台81上进行旋转的工件9的晶片1供给清洗液对晶片1进行清洗,然后,在使旋转工作台81旋转的状态下停止清洗液的供给,接着进行如下处理向晶片1喷出干燥空气使晶片1干燥。对供给盒14A内的工件9连续地重复进行以上工序,对晶片1的背面进行研削使其变薄,然后将研磨后的多个工件9收纳在回收盒14B内。此后,将使晶片1减薄后的工件9连同回收盒14B—起搬运至下一工序,最终,在剥离了基片5后,将晶片l的分割预定线2切断,从而晶片1被切割成多个芯片3。[3]第二搬送装置的作用效果根据本发明所述的上述第二搬送装置20B,吸附衬垫110利用含有氟树脂的多孔材形成,该吸附衬垫110具有与工件9的晶片1直接抵接的吸附面111。因此,具有对被吸附的晶片的强度降低进行抑制的效果。此外,由于氟树脂制的吸附衬垫110与陶瓷等不同,其不会产生碎屑,因此不会引起使吸附的晶片1损伤的问题,能够安全地搬送晶片1。此夕卜,由于本实施方式的吸附衬垫110使用气孔率为30%50%的多孔材,所以能够获得足够的吸附作用,并且不易产生体积损失、在吸附面11上形成凹凸这些缺陷(亡"5)。此外,由于气孔的大小(直径)为(M01000iim、更优选为(M050iim,所以能够获得足够的吸附作用,并且与吸附面111直接抵接的晶片1不会由于被抽吸向开口于吸附面111上的气孔而受到损坏。另外,关于吸附衬垫IIO,在JISK6253中规定的肖氏D硬度为4080,因此不会产生由于硬度低而引起的缺陷,并且不会由于过硬而使晶片l产生破损。这样,关于本实施方式所述的氟树脂制的吸附衬垫IIO,在能够不损害晶片1的强度且健全的状态下进行搬送这一点上,是极为优秀的。[ooes][4]吸盘的变形例图4和图5表示吸盘的变形例。在该变形例的吸盘100B的框体101的上述凹部103上,呈同心状地形成有环状的分隔部105,该分隔部105具有与外周缘部102相同的宽度和突出量。并且,在凹部103的位于分隔部105与外周缘部102之间的部分嵌合有环状的外侧吸附衬垫IIOB,此夕卜,在分隔部105的内侧嵌合有圆形的内侧吸附衬垫IIOC。如图5所示,在该情况的臂92上,形成有具有分支通道96的分支管部97,分支管部97固定在框体101的与外侧吸附衬垫110B对应的预定部位。在框体101上形成有空气抽吸口106,该空气抽吸口106将分支通道96与外侧吸附衬垫110B内的气孔连通。在空气抽吸通道93的朝向分支通道96的分支点上设置有阀99。通过该阀99在如下两种形式下进行切换即,负压源95工作时的该分支点前方的空气抽吸路径仅为从该分支点通向内侧吸附衬垫110C的空气抽吸通道93的情况(小径模式)、以及上述空气抽吸路径为通向内侧吸附衬垫110C的空气抽吸通道93和通向外侧吸附衬垫110B的分支通道96双方的情况(大径模式)。该吸盘IOOB作为能够保持外径不同的两种晶片的吸盘是有用的,两种晶片是指直径与外侧吸附衬垫110B的外径大致相同的晶片(大径晶片)、和直径与内侧吸附衬垫IIOC的外径大致相同的晶片(小径晶片)。在保持小径晶片时,将阀99切换为小径模式,使小径晶片的外径与内侧吸附衬垫110C的外径重合地进行吸附和保持。在阀99为小径模式的情况下,外侧吸附衬垫110B内的空气不被抽吸,仅在内侧吸附衬垫IIOC上产生负压吸附作用,从而将小径晶片吸附在该内侧吸附衬垫110C上。此外,在保持大径晶片时,将阀99切换为大径模式,通过使大径晶片的外径与外侧吸附衬垫110B的外径重合,来将大径晶片吸附在产生了负压吸附作用的外侧吸附衬垫110B和内侧吸附衬垫110C双方上。实施例下面,通过实施例来证实本发明的效果。[实施例]对于直径为12英寸且在表面上形成有大量(144个)芯片的厚度为200ym的硅晶片的背面,在粗研削后进行精研削,接着实施CMP处理。然后,在利用本发明所述的由氟树脂制的多孔材构成的吸附衬垫对该晶片进行吸附和保持并将该晶片搬送至清洗装置进行清洗后,对该晶片进行切割从而得到了大量的芯片。对所有的芯片进行抗弯强度测量,求出强度的平均值。使用如下所述的吸附衬垫吸附衬垫的氟树脂是PCTFE,气孔率为40%±5%,气孔的大小(直径)为小40士10iim,在JISK6253中规定的肖氏D硬度为60±15。另外,芯片是20mmX20mm的长方形,厚度为200iim。抗弯强度测量如图6所示,在将芯片C的长度方向端部架设于左右底座201的状态下,利用球状的按压件202在芯片C的上表面中央处施加载荷,对在芯片C上产生了破坏的瞬间的载荷进行测量,并将载荷作为强度。按压件202的直径R为3mm,芯片C的挠曲跨距a为3.5mm。[比较例]将在研磨后搬送晶片的吸附衬垫改为由氧化铝构成的陶瓷制成,除此以外的部分与上述实施例相同,对各芯片的抗弯强度进行测量。[未搬送]将研磨后的晶片在未利用吸附衬垫进行搬送的状态下进行清洗,除此以外的部分与上述实施例相同,对各芯片的抗弯强度进行测量。在表l中,作为强度测量值的结果,将实施例和比较例相对于未搬送的强度为100%的情况的强度比例用%表示。对平均值的强度比例进行观察,本发明所述的实施例为99.54%,与未搬送的情况相比显示出了相差无几的强度,与此相对,比较例为4.31%,强度大幅度降低。根据该结果可以知道本发明的吸附衬垫即使与未利用吸附衬垫进行吸附的情况相比,强度的降低也极小,能够有效地维持强度。表1抗弯强度的强度比例<table>tableseeoriginaldocumentpage11</column></row><table>权利要求一种薄板状工件的搬送装置,该搬送装置装备在加工装置上,用于搬送薄板状工件,上述加工装置具有保持上述工件的保持装置、以及对保持在该保持装置上的工件实施预定加工的加工装置,上述薄板状工件的搬送装置的特征在于,该薄板状工件的搬送装置至少包括吸附衬垫,其具有吸附面,该吸附面与保持在上述保持装置上的上述工件的露出面接触;负压产生通道,其从负压源一直设置到上述吸附衬垫,该负压源使上述吸附衬垫的上述吸附面产生吸附作用;以及移动装置,其使上述吸附衬垫从上述保持装置移动至预定的搬送目的地,上述吸附衬垫利用含有氟树脂的多孔材形成。2.根据权利要求1所述的薄板状工件的搬送装置,其特征在于,上述吸附衬垫的气孔率为30%50%。3.根据权利要求1或2所述的薄板状工件的搬送装置,其特征在于,上述吸附衬垫的气孔的大小是直径为9101000iim。4.根据权利要求1至3中的任一项所述的薄板状工件的搬送装置,其特征在于,上述吸附衬垫的、在JISK6253中规定的肖氏D硬度为4080。5.根据权利要求1至4中的任一项所述的薄板状工件的搬送装置,其特征在于,上述氟树脂是聚三氟氯乙烯。6.根据权利要求1至5中的任一项所述的薄板状工件的搬送装置,其特征在于,上述加工装置所实施的上述加工是研削和/或研磨。全文摘要本发明提供一种薄板状工件的搬送装置,其是吸附式的,该搬送装置能够抑制工件强度的降低,能够将工件在健全的状态下搬送到搬送目的地。利用负压吸附作用来吸附晶片(1)且由多孔材构成的吸附衬垫(110)由氟树脂制成。文档编号B25J15/06GK101740442SQ20091017945公开日2010年6月16日申请日期2009年10月13日优先权日2008年11月12日发明者高田畅行申请人:株式会社迪思科
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1