机器人系统及其控制方法与流程

文档序号:18742583发布日期:2019-09-21 01:57阅读:247来源:国知局
机器人系统及其控制方法与流程

本发明涉及具备多个远程操作机器人的机器人系统及其控制方法。



背景技术:

以往,为了实现工厂中的生产工序的自动化,提出如下机器人系统:在工厂引入多个工业用机器人,并将那些工业用机器人通过通信网络相互连结或与信息系统连接而集中进行控制。专利文献1中公开有这种机器人系统。

在专利文献1中,公开有如下系统:多个作业机器人以将相对于作业对象的相互作业信息双向自动互相通信自如且共享自如的方式经由协作网络接口进行网络连接。在该系统中,当利用搭载传感器的多个作业机器人对于作业对象执行多任务时,通过网络对传感器的测量信息、作业机器人的状态信息进行共享,使得各作业机器人根据作业对象来修正各自的动作。传感器的测量信息中包括对作业对象的位置姿势进行辨识的信息、由作业机器人的动作产生的误差信息、以及传感器检测到的作业对象的特征量与给定的模型的误差信息。另外,作业机器人的状态信息中包括表示作业效率的信息、作业所需的时间、以及待机时间。

专利文献1:日本特开平10-225885号公报

本申请的发明人们提出,使用远程操作装置和由该远程操作装置操作的多个远程操作机器人来实现工厂中的生产工序的半自动化。该远程操作机器人能够切换如预先示教那样进行动作的自动动作、根据与操作员输入至远程操作装置的操作进行动作的手动动作、以及使操作员输入至远程操作装置的操作反映为自动动作的修正自动动作,并根据作业的内容适当地切换自动动作、手动动作、以及修正自动动作。

在上述那样的远程操作机器人中,在进行手动动作或者修正自动动作时,操作员向远程操作装置输入操作,从而能够对于作业对象以较高的定位精度使机器人的手臂动作。另外,能够基于机器人的手臂的姿势求出机器人与作业对象的相对位置关系。这样,若在进行自动动作或者修正自动动作时利用在进行手动动作或者修正自动动作时取得的机器人与作业对象的相对位置关系,则能够自动地修改机器人与作业对象的相对位置关系,特别是在进行修正自动动作时,能够减少远程操作装置的操作。



技术实现要素:

鉴于以上情况,本发明的目的是,在具备多个远程操作机器人的机器人系统中,减轻由操作员实施的操作的负担。

对于本发明的一方式所涉及的机器人系统的控制方法而言,该机器人系统具备远程操作装置和多个机器人,

上述机器人系统的控制方法的特征在于,

上述多个机器人分别具有多个控制模式,上述多个控制模式包括基于预先存储的任务程序进行动作的自动模式、以及基于上述远程操作装置接受到的操作员的操作进行动作的手动模式,

作为上述多个机器人中的1个的第1机器人在上述手动模式下对于某作业对象进行第1作业,并取得上述第1机器人的机器人坐标系中的上述作业对象的位置数据,

作为上述多个机器人中的1个的第2机器人当在上述自动模式下对于上述作业对象进行第2作业时,根据上述第1机器人的机器人坐标系中的上述作业对象的位置数据以及上述第1机器人的机器人坐标系与上述第2机器人的机器人坐标系的相对关系,对上述第2机器人的机器人坐标系中的上述作业对象的位置数据进行修改,上述第2机器人使用修改后的上述作业对象的位置数据进行上述第2作业。

另外,对于本发明的另一方式所涉及的机器人系统的控制方法而言,该机器人系统具备远程操作装置和多个机器人,

上述机器人系统的控制方法的特征在于,

上述多个机器人分别具有多个控制模式,上述多个控制模式包括基于预先存储的任务程序进行动作的自动模式、基于上述远程操作装置接受到的操作员的操作进行动作的手动模式、以及一边被上述远程操作装置接受到的操作员的操作逐次修改一边基于上述任务程序进行动作的修正自动模式,

作为上述多个机器人中的1个的第1机器人在上述修正自动模式或者上述手动模式下对于某作业对象进行第1作业,并取得上述第1机器人的机器人坐标系中的上述作业对象的位置数据,

作为上述多个机器人中的1个的第2机器人当在上述修正自动模式或者上述自动模式下对于上述作业对象进行第2作业时,根据上述第1机器人的机器人坐标系中的上述作业对象的位置数据以及上述第1机器人的机器人坐标系与上述第2机器人的机器人坐标系的相对关系,对上述第2机器人的机器人坐标系中的上述作业对象的位置数据进行修改,上述第2机器人使用修改后的上述作业对象的位置数据进行上述第2作业。

另外,本发明的一方式所涉及的机器人系统的特征在于,具备:

远程操作装置,其接受操作员的操作;

多个机器人,它们具有多个控制模式,上述多个控制模式包括基于预先存储的任务程序进行动作的自动模式、以及基于上述远程操作装置接受到的操作员的操作进行动作的手动模式;以及

主控制器,其以可通信的方式与上述远程操作装置以及上述多个机器人连接并对它们的动作进行控制,

上述主控制器具有:机器人控制部,其执行第1任务程序,将作为上述多个机器人中的1个的第1机器人在上述手动模式下进行控制,使之对于某作业对象进行第1作业,并执行第2任务程序,将作为上述多个机器人中的1个的第2机器人在上述自动模式下进行控制,使之对于上述作业对象进行第2作业;以及

修改部,其在上述第1作业中对上述第1机器人的机器人坐标系中的上述作业对象的位置数据进行存储,并根据上述第1机器人的机器人坐标系中的上述作业对象的位置数据以及上述第1机器人的机器人坐标系与上述第2机器人的机器人坐标系的相对关系,对上述第2机器人的机器人坐标系中的上述作业对象的位置数据进行修改,使用该修改后的上述作业对象的位置数据修改上述第2任务程序。

另外,本发明的另一方式所涉及的机器人系统的特征在于,具备:

远程操作装置,其接受操作员的操作;

多个机器人,它们具有多个控制模式,上述多个控制模式包括基于预先存储的任务程序进行动作的自动模式、基于上述远程操作装置接受到的操作员的操作进行动作的手动模式、以及一边被上述远程操作装置接受到的操作员的操作逐次修正一边基于上述任务程序进行动作的修正自动模式;以及

主控制器,其能够通信地与上述远程操作装置以及上述多个机器人连接并对它们的动作进行控制,

上述主控制器具有:机器人控制部,其执行第1任务程序,将作为上述多个机器人中的1个的第1机器人在上述修正自动模式或者上述手动模式下进行控制,使之对于某作业对象进行第1作业,并执行第2任务程序,将作为上述多个机器人中的1个的第2机器人在上述修正自动模式或者上述自动模式下进行控制,使之对于上述作业对象进行第2作业;以及

修改部,其在上述第1作业中对上述第1机器人的机器人坐标系中的上述作业对象的位置数据进行存储,并根据上述第1机器人的机器人坐标系中的上述作业对象的位置数据以及上述第1机器人的机器人坐标系与上述第2机器人的机器人坐标系的相对关系,对上述第2机器人的机器人坐标系中的上述作业对象的位置数据进行修改,使用上述第2机器人修改后的上述作业对象的位置数据修改上述第2任务程序。

根据上述机器人系统及其控制方法,第1机器人的第1作业中被操作员经由远程操作装置输入的操作修改的作业对象的位置数据在第2机器人的第2作业中被利用。由此,在第2作业中,无需进行使用有远程操作装置的相对于作业对象的位置修改的操作,或者减少该操作的程度。

根据本发明,能够在具备多个远程操作机器人的机器人系统中,减轻由操作员实施的操作的负担。

附图说明

图1是表示引入有本发明的一个实施方式所涉及的机器人系统的汽车装配工厂的情况的图。

图2是表示机器人系统的简要结构的框图。

图3是表示机器人的控制系统的结构的框图。

图4是对第1机器人的动作的情况进行说明的图。

图5是对第2机器人的动作的情况进行说明的图。

图6是对变形例所涉及的第2机器人的动作的情况进行说明的图。

具体实施方式

接下来,参照附图对本发明的实施方式进行说明。如图1所示,本发明的一个实施方式所涉及的机器人系统100具备多个机器人1A、1B、远程操作装置2、以及主控制器6。该机器人系统100例如使用配置于制造工厂的作业工作台的周围的多个机器人1A、1B,对于位于作业工作台的工件进行移送、部件的安装、焊接等作业。

在图1中,例示有如下情况:在汽车装配工厂的作业工作台的周围装配有2个机器人(第1机器人1A以及第2机器人1B),第1机器人1A进行在作业工作台上的主体嵌入带轮胎的车轮(以下,仅称为“车轮”)的作业,第2机器人1B进行将被嵌入的车轮螺栓结合至车轴的作业。但是,机器人系统100并不限定于这种汽车装配工厂,而能够在各种制造设备中广泛应用。

多个机器人1A、1B在作业工作台的周围分离配置,并分别具有固有的机器人坐标系。在本说明书中,当不对第1机器人1A以及第2机器人1B进行区别时,省略对数字添加的字母而仅表示为“机器人1”。

本实施方式所涉及的机器人1具有自动模式、手动模式、以及修正自动模式这3个控制模式。能够以在这多个控制模式中的被选择的一个模式下控制动作的方式,切换机器人1的控制模式。

在本说明书中,将机器人1根据预先设定的任务程序进行动作的控制模式称为“自动模式”。在自动模式下,与现有的示教再现机器人相同,机器人1不受操作员对远程操作装置2进行的操作控制,自动地进行规定的作业。

另外,在本说明书中,将机器人1基于远程操作装置2接受到的操作员的操作进行动作的控制模式称为“手动模式”。远程操作装置2能够接受操作员直接操作远程操作装置2而输入的操作。此外,在手动模式下,也可以自动地修改远程操作装置2接受到的操作员的操作、基于该操作进行动作的机器人1的活动。

另外,在本说明书中,将机器人1一边被远程操作装置2接受到的操作员的操作逐次修改一边根据预先设定的任务程序进行动作的控制模式称为“修正自动模式”。在修正自动模式下,基于远程操作装置2接受到的操作员的操作,对根据预先设定的任务程序进行动作的机器人1的变动进行修改。

以下,对机器人系统100的结构详细地进行说明。

〔机器人1〕

各机器人1具备:基台10;机器人手臂11,其支承于基台10;末端执行器12,其安装于机器人手臂11的手末端部;以及机器人控制器15,其对机器人手臂11以及末端执行器12的动作进行控制。在本实施方式中,各机器人1的机器人手臂11是实质上具有相同结构的6轴的垂直多关节型机器人手臂。但是,各机器人1的机器人手臂11的方式并不限定于本实施方式,只要是具有3个以上的关节数(轴数)的水平或者垂直多关节机器人手臂即可。另外,多个机器人手臂11中也可以包括连杆长度、关节数不同的多种机器人手臂。

机器人手臂11具备串联连结的多个连杆。本实施方式所涉及的机器人手臂11具有6个关节JT1~JT6,在各关节JT1~JT6设置有独立的驱动部。各驱动部例如可以由电动马达、以及将电动马达的输出传递至对应的关节JT1~JT6的传动机构构成(均未图示)。

在机器人手臂11的前端部设置有机械接口。在该机械接口以能够装卸的方式安装有与作业内容对应的末端执行器12。在本实施方式中,2个机器人1A、1B中的一个机器人1A的末端执行器12是把持车轮的卡盘,另一个机器人1B的末端执行器12是紧固螺栓的螺栓紧固工具。

图2是表示机器人系统100的简要结构的框图,图3是表示机器人1的控制系统的结构的框图。如图2以及图3所示,在机器人手臂11的各关节JT1~JT6设置有作为使各关节所连结的2个部件相对旋转的促动器的一个例子的驱动马达M1~M6。另外,在各驱动马达M1~M6设置有用于检测该旋转位置的位置传感器E1~E6、以及用于对控制该旋转的电流进行检测的电流传感器C1~C6。位置传感器E1~E6例如可以是编码器、旋转变压器、脉冲发生器等能够检测旋转位置的部件。此外,在上述的驱动马达M1~M6、位置传感器E1~E6、以及电流传感器C1~C6的记载中,与各关节JT1~JT6对应地对字母标注有后缀的1~6。以下,在表示关节JT1~JT6中的任意的关节的情况下省略后缀而称为“JT”,驱动马达M、位置传感器E、以及电流传感器C也一样。

驱动马达M、位置传感器E、以及电流传感器C与机器人控制器15电连接。机器人控制器15包括指令生成部151和伺服控制部152。指令生成部151基于预先存储的或者由主控制器6给出的位置指令值生成驱动指令值,并将驱动指令值向伺服控制部152传递。伺服控制部152将与驱动指令值对应的驱动电流向驱动马达M供给。表示由位置传感器E检测到的旋转角的信号被向指令生成部151反馈。

〔远程操作装置2〕

远程操作装置2是接受操纵机器人1的操作员的操作的机构。远程操作装置2配置为远离机器人1。在本实施方式中,对于2个机器人1A、1B设置有1个远程操作装置2。换言之,能够利用1个远程操作装置2对2个机器人1A、1B进行远程操作。

本实施方式所涉及的远程操作装置2具备:主手臂20,其呈现多关节机器人手臂的形态;以及控制器25,其控制主手臂20的动作或取得主手臂20接受到的操作员的操作。当机器人1的控制模式为手动模式和修正自动模式时,机器人手臂11随着主手臂20的变动而变动。换句话说,远程操作装置2构成为能够直观地对机器人手臂11的位置、姿势进行操作。

主手臂20是具有与机器人手臂11相同数量的多个关节JTm1~JTm6的多关节机器人手臂,是支承于基台的多个连杆21a~21f的连接体。主手臂20的连杆21a~21f的连接结构与机器人手臂11的连杆11a~11f的连接结构实质上相同,省略详细的说明。也可以在主手臂20的前端部安装有与安装于机器人手臂11的末端执行器12相似或者对应的伪末端执行器。

在关节JTm1~JTm6设置有作为使其连结的2个部件相对旋转的促动器的一个例子的驱动马达Mm1~Mm6(省略图示)。另外,在各驱动马达Mm1~Mm6设置有用于检测该旋转位置的位置传感器Em1~Em6(省略图示)、以及用于对控制该旋转的电流进行检测的电流传感器Cm1~Cm6(省略图示)。位置传感器Em1~Em6例如为编码器。此外,在上述的驱动马达Mm1~Mm6、位置传感器Em1~Em6、以及电流传感器Cm1~Cm6的记载中,与各关节JTm1~JTm6对应地对字母标注有后缀的1~6。以下,在表示关节JTm1~JTm6中的任意的关节的情况下省略后缀而称为“JTm”,驱动马达Mm、位置传感器Em、以及电流传感器Cm也一样。

与上述的机器人1的驱动系统相同,驱动马达Mm、位置传感器Em、以及电流传感器Cm与控制器25电连接。控制器25包括指令生成部251和伺服控制部252。指令生成部251基于预先存储的或者由主控制器6给出的位置指令值生成驱动指令值,并将驱动指令值向伺服控制部252传递。伺服控制部152将与驱动指令值对应的驱动电流向驱动马达M供给。表示由位置传感器E检测到的旋转角的信号被向指令生成部151反馈。

伺服控制部252与上述的伺服控制部152相同,基于从后述的主控制器6取得的位置指令值、伺服增益等生成驱动指令值(转矩指令值),并将与驱动指令值对应的驱动电流向驱动马达Mm供给。驱动马达Mm的输出旋转角由位置传感器Em检测,并被向伺服控制部252反馈。

〔主控制器6〕

主控制器6控制多个机器人1的动作。在主控制器6能够通信地连接有状况取得装置5、输出装置4、输入装置7、各机器人1的机器人控制器15、以及远程操作装置2的控制器25等。

输入装置7为如下输入机构:与远程操作装置2共同设置于作业空间外,接受来自操作员的操作指示,并将接受到的操作指示输入至主控制器6。在输入装置7中,输入有机器人1的位置、姿势所涉及的操作以外的操作。在输入装置7设置有用于选择机器人1的控制模式的操作输入件、紧急停止开关等的输入除机器人1的位置、姿势以外的操作指令的1个以上的操作输入件。1个以上的操作输入件中例如也可以包括触摸面板、钥匙、杆、按钮、开关、拨盘等已知的操作输入件。另外,作为输入装置7,也可以使用悬架式操纵台、平板电脑等便携终端。

状况取得装置5是取得表示各机器人1的作业空间内的状况的状况信息的机构。状况取得装置5例如能够由传感器、拍摄装置(照相机)、通信器、编码器等实现。状况信息包括作业空间内的机器人1的位置以及姿势等、或者用于识别围绕机器人1的周围的状况的信息。更具体而言,状况信息例如包括作业空间内的机器人1的位置以及姿势、机器人1与工件的位置关系、或者机器人1与组装工件的被组装部件的位置关系等的为了能够在作业空间内识别机器人1的状况以及机器人1的周围的状况所必需的信息。

状况取得装置5依次取得状况信息,所取得的状况信息被输入至主控制器6,并在主控制器6中用于机器人1的动作控制。状况取得装置5可以安装于机器人1本身,也可以安装于作业空间内的适当位置。另外,安装的状况取得装置5的数量可以为1个也可以为多个。只要在能够适当地取得状况信息的位置安装有适当个数的状况取得装置5即可,安装位置以及安装个数是任意的。

输出装置4输出从主控制器6发送的信息。输出装置4设置于从正在操作远程操作装置2的操作员容易视觉确认的位置。输出装置4中至少包括显示器装置41,也可以进一步包括打印机、扬声器、警报灯等。在显示器装置41中,显示输出有从主控制器6发送的信息。例如在扬声器中,从主控制器6发送的信息被作为声音输出。另外,例如在打印机中,从主控制器6发送的信息被打印输出于纸等记录介质。

主控制器6是所谓的计算机,具有CPU等运算处理部和ROM、RAM等存储部(均未图示)。存储部中存储有供主控制器6执行的控制程序、各种固定数据等。运算处理部向外部装置发送数据并从外部装置接收数据。另外,运算处理部从各种传感器输入检测信号、向各控制对象输出控制信号。在主控制器6中,通过运算处理部读出并执行存储于存储部的程序等软件,从而进行用于对系统100的各种动作进行控制的处理。此外,主控制器6可以通过由单一的计算机实施的集中控制来执行各处理,也可以通过由多个计算机的协作实施的分散控制来执行各处理。另外,主控制器6也可以由微控制器、可编程序逻辑控制器(PLC)等构成。

主控制器6作为功能模块,具备:主控制部60,其负责机器人系统100的整体动作;多个机器人控制部61;操作装置控制部62;以及修改部63。在图2中,这些功能模块集中在1个主控制器6而被示出,但各功能模块或者多个功能模块的组合也可以由独立的1个以上的计算机实现。在该情况下,也可以是这些功能模块中的一部分配置于作业空间,剩余部分配置于作业外空间。

机器人控制部61控制机器人1的动作。更详细而言,机器人控制部61基于预先存储的程序、或者基于远程操作装置2接受到的操作员的操作生成位置指令值,并将该位置指令值给出至机器人1的机器人控制器15。

操作装置控制部62控制远程操作装置2的动作。更详细而言,当机器人1为修正自动模式或者手动模式时,操作装置控制部62以使机器人1的机器人手臂11的姿势与远程操作装置2的主手臂20的姿势对应的方式控制主手臂20的动作。另外,当机器人1为修正自动模式或者手动模式时,操作装置控制部62基于在主手臂20的各关节的驱动部设置的位置传感器Em1~Em6的检测值,求出主手臂20的姿势、主手臂20的手末端部的位置。

修改部63在基于远程操作装置2接受到的操作员的操作对由程序预定的机器人1的轨道进行修改时,使用该修改所涉及的信息来修改以后的作业中的机器人1的轨迹。随后对修改部63的处理进行详述。

〔机器人系统100的动作〕

接着,对上述结构的机器人系统100的动作的一个例子进行说明。在主控制器6预先存储有动作次序信息,主控制器6基于该动作次序信息对各机器人1的动作进行控制。以下,将机器人1的位置基准作为手臂11的手末端部进行说明,但机器人1的位置基准并不限定于此。

图4是对第1机器人1A的动作的情况进行说明的图。如图4所示,首先,第1机器人1A使手臂11的手末端部移动到被规定在收容有车轮的托盘的取出位置P1,利用作为末端执行器12的卡盘把持规定的车轮而将其取出,并使手臂11的手末端部从取出位置P1向待机位置P2沿着规定的轨迹移动。待机位置P2被规定于进行将车轮安装至主体的作业时的安装位置P3(即,作业位置)的近前。从该取出位置P1向待机位置P2移送车轮的移送任务在自动模式下进行。换句话说,主控制器6执行预先存储的移送任务程序,由此,第1机器人1A以手臂11的手末端部沿着示教出的轨迹移动的方式被进行控制。

接下来,第1机器人1A保持以卡盘把持车轮的状态不变地使手臂11的手末端部从待机位置P2向安装位置P3移动而将车轮嵌合至车轴,并将被卡盘把持的车轮释放。该一系列的车轮的安装任务在修正自动模式下进行。

主控制器6在修正自动模式和手动模式下,以使被操作机器人1(即,被远程操作装置2操作的机器人)与主手臂20的姿势对应的方式对主手臂20的动作进行控制。并且,主控制器6在修正自动模式和手动模式下,使被操作机器人1(特别是,手臂11的手末端部、末端执行器12)的状况信息显示输出至显示器装置41。操作员能够一边对映出至显示器装置41的被操作机器人1的状况信息进行视觉确认,一边操作远程操作装置2。

主控制器6执行预先存储的安装任务程序,由此,第1机器人1A以手臂11的手末端部沿着示教出的轨迹移动的方式被进行控制。在此期间,主控制器6基于远程操作装置2接受到的操作员的操作对第1机器人1A的变动进行修正。

例如,在第1机器人1A使手臂11的手末端部从待机位置P2向安装位置P3沿着示教出的轨迹移动的期间,主手臂20以成为与作为被操作机器人1的第1机器人1A对应的姿势的方式,与第1机器人1A的变动一致地使姿势变化。而且,若操作员操作主手臂20使其手末端部的移动的轨迹变化,则远程操作装置2接受主手臂20的手末端部的从示教出的轨迹开始的位移作为修正指示,并将其向主控制器6传递。

主控制器6基于取得的修正指示信号求出修改指令値。根据修正指示信号求出修改指令値的运算式也可以预先存储于主控制器6。主控制器6向第1机器人1A的指令生成部151给出根据生成的修改指令値修改的位置指令值,其结果是,第1机器人1A的动作成为在以给定的安装任务程序为基础的活动中反映有远程操作装置2接受到的修正指示的动作。

这样,在修正自动模式下,被操作机器人1原则上如基于给定的任务程序示教的那样自动地进行动作,当远程操作装置2接受到来自操作员的修正指示时,上述的自动动作基于该修正指示被修正。此外,虽然将进行安装任务的第1机器人1A的控制模式设为修正自动模式,但操作员也可以能够选择修正自动模式和手动模式中的任一个。在进行安装任务的第1机器人1A的控制模式为手动模式的情况下,远程操作装置2接受操作员操作主手臂20而输入的操作,主控制器6基于远程操作装置2接受到的操作信号生成位置指令值,并将该位置指令值向被操作机器人1的机器人控制器15给出。

如上述那样,若手臂11的手末端部到达安装位置P3,则主控制器6取得第1机器人1A的机器人坐标系中的车轮的位置数据,并将其存储至存储部。主控制器6能够基于安装位置P3处的位置传感器E1~E6的检测值求出第1机器人1A的手臂11的手末端部的位置,并能够根据手臂11的手末端部与被卡盘把持的车轮的已知的位置关系来确定车轮的位置数据。取得的第1机器人1A的机器人坐标系中的车轮的位置数据有时由于安装任务中远程操作装置2接受到的修正指示,而与示教出的位置数据不同。

若以上的安装任务结束,则主控制器6将第1机器人1A的控制模式设为自动模式,再次开始车轮的移送任务。另一方面,主控制器6使第2机器人1B开始进行螺栓紧固任务。

图5是对第2机器人1B的动作的情况进行说明的图。如图5所示,在螺栓紧固任务中,第2机器人1B以依次进行手臂11的手末端部从退避位置P4向待机位置P5移动的第1步骤、手臂11的手末端部从待机位置P5向作为作业位置的拧紧位置P6移动的第2步骤、以及在拧紧位置P6紧固螺栓的第3步骤的方式,在修正自动模式下受到控制。但是,进行螺栓紧固任务的第2机器人1B也可以在自动模式下受到控制。退避位置P4被规定为不使进行移送任务以及安装任务的第1机器人1A与第2机器人1B干涉。待机位置P5也可以位于拧紧位置P6的紧靠近前处。

在开始进行螺栓紧固任务时,主控制器6读出上述的安装任务中存储的第1机器人1A的机器人坐标系中的车轮的位置数据,并修改螺栓紧固任务程序。主控制器6也可以取代第1机器人1A的机器人坐标系中的车轮的位置数据,而将修改指令値、修正指示信号用作用于修改的信息。

第1机器人1A的机器人坐标系与第2机器人1B的机器人坐标系的相对位置关系是已知的。主控制器6使用第1机器人1A的机器人坐标系与第2机器人1B的机器人坐标系的相对位置关系、以及第1机器人1A的机器人坐标系中的车轮的被修改的位置数据,对第2机器人1B的机器人坐标系中的车轮的位置数据进行修改。并且,主控制器6基于第2机器人1B的机器人坐标系中的车轮的被修改的位置数据,对螺栓紧固任务的待机位置P5进行修改。由此,在螺栓紧固任务中,第2机器人1B的手臂11的手末端部从退避位置P4向修改后的待机位置P5移动,并从修改后的待机位置P5按照螺栓紧固任务程序、即通过示教出的轨迹向拧紧位置P6移动。

上文中,待机位置P5是向要求位置精度的作业位置(拧紧位置P6)移动之前的目标位置。由于待机位置P5被修改,所以车轮的位置与待机位置P5始终为恒定的位置关系。因此,在由于螺栓被结合部相对于车轮的位置误差等而需要在从待机位置P5向拧紧位置P6的移动中修改轨迹的情况下,能够抑制其修改量。

此外,上文中,待机位置P5被规定在机器人1的手臂11的轨迹中的要求位置精度的作业位置的附近。但是,如图6所示,在手臂11的轨迹具有干涉避免区域90(例如,避开障碍物进行移动的区域)的情况下,也可以在手臂11的轨迹中的进入干涉避免区域90的近前设定待机位置。由此,应避开的障碍物与待机位置P5始终为恒定的位置关系,因而若从待机位置P5沿着示教出的轨迹移动,则能够可靠地避免障碍物与机器人1的干涉。

如以上说明的那样,在本实施方式所涉及的机器人系统100中,多个机器人1分别具有多个控制模式,该多个控制模式为基于预先存储的任务程序进行动作的自动模式、基于远程操作装置2接受到的操作员的操作进行动作的手动模式、以及一边被远程操作装置2接受到的操作员的操作逐次修改一边基于任务程序进行动作的修正自动模式。而且,机器人系统100的控制方法的特征在于,作为多个机器人1中的1个的第1机器人1A在修正自动模式(或者,手动模式)下对于某作业对象进行第1作业,并取得第1机器人的机器人坐标系中的作业对象的位置数据,作为多个机器人1中的1个的第2机器人1B当在修正自动模式(或者,自动模式)下对于作业对象进行第2作业时,根据第1机器人1A的机器人坐标系中的作业对象的位置数据以及第1机器人1A的机器人坐标系与第2机器人1B的机器人坐标系的相对关系,对第2机器人1B的机器人坐标系中的作业对象的位置数据进行修改,第2机器人1B使用修改后的作业对象的位置数据进行第2作业。

另外,本实施方式所涉及的机器人系统100具备:远程操作装置2,其接受操作员的操作;多个机器人1,它们具有多个控制模式,该多个控制模式为基于预先存储的任务程序进行动作的自动模式、基于远程操作装置2接受到的操作员的操作进行动作的手动模式、以及一边被远程操作装置2接受到的操作员的操作逐次修正一边基于任务程序进行动作的修正自动模式;以及主控制器6,其能够通信地与远程操作装置2以及多个机器人1连接并对它们的动作进行控制。而且,本实施方式所涉及的机器人系统100的特征在于,主控制器6具有:机器人控制部61,其执行第1任务程序,将作为多个机器人1中的1个的第1机器人1A在修正自动模式(或者,手动模式)下进行控制,使之对于某作业对象进行第1作业,并执行第2任务程序,将作为多个机器人1中的1个的第2机器人1B在修正自动模式(或者,自动模式)下进行控制,使之对于作业对象进行第2作业;以及修改部63,其在第1作业中对第1机器人1A的机器人坐标系中的作业对象的位置数据进行存储,并根据第1机器人1A的机器人坐标系中的作业对象的位置数据以及第1机器人1A的机器人坐标系与第2机器人1B的机器人坐标系的相对关系,对第2机器人1B的机器人坐标系中的作业对象的位置数据进行修改,使用该修改后的作业对象的位置数据修改第2任务程序。

根据上述机器人系统100及其控制方法,第1机器人1A的第1作业中被操作员经由远程操作装置2输入的操作修改的作业对象的位置数据在第2机器人1B的第2作业中被利用。由此,在第2作业中,无需进行使用有远程操作装置2的相对于作业对象的位置修正的操作,或者减少该操作的程度。换句话说,当第2机器人1B在自动模式或者修正自动模式下进行第2作业时,第2机器人1B与作业对象的相对位置关系被自动地修改,尤其是当第2机器人1B在修正自动模式下进行第2作业时,可减少远程操作装置2的操作。由此,能够减轻机器人系统100的操作员的操作的负担。

另外,在上述实施方式所涉及的机器人系统100的控制方法中,第2作业包括第2机器人1B的手臂11的手末端部从规定的退避位置P4向规定的待机位置P5移动的第1步骤、以及第2机器人1B的手臂11的手末端部从待机位置P5向规定的作业位置(拧紧位置P6)移动的第2步骤。而且,以待机位置P5与作业对象的位置关系保持为恒定的方式,基于修改后的作业对象的位置数据对第1步骤的轨道进行修改。

相同地,在上述实施方式所涉及的机器人系统100中,修改部63以待机位置P5与作业对象的位置关系保持为恒定的方式,基于修改后的作业对象的位置数据对第1步骤的轨道进行修改。

这样,例如即使在第2机器人1B与作业对象的相对位置产生误差,由于待机位置P5与作业对象的位置关系维持为规定的关系,所以第2机器人1B若追踪如第2步骤中示教那样的轨迹,则也能够到达作业位置P6。当第2机器人1B在修正自动模式下进行动作,或在作业对象与作业位置P6的相对位置产生误差的情况下,能够抑制作业位置P6自待机位置P5开始的轨迹的修正量,而能够减轻操作员的操作的负担。

另外,在上述实施方式所涉及的机器人系统100及其运转方法中,可以以从待机位置P5至作业位置(拧紧位置P6)为止的轨迹包括避开与障碍物的干涉进行移动的干涉避免区域90的方式,规定待机位置。

这样,在干涉避免区域90的近前设置有待机位置P5,并以待机位置P5与作业对象的位置关系保持为恒定的方式对第2机器人1B的第1步骤的轨迹进行修改,据此,第2机器人1B若追踪如第2步骤中示教那样的轨迹,则能够可靠地避开障碍物而到达作业位置P6。并且,当第2机器人1B在修正自动模式下进行动作,或在作业对象与作业位置P6的相对位置产生误差的情况下,能够抑制作业位置P6自待机位置P5开始的轨迹的修正量,而能够减轻操作员的操作的负担。

以上对本发明的优选的实施方式进行了说明,但在不脱离本发明的精神的范围内,本发明中也可包括将上述实施方式的具体构造和/或功能的详细变更了的方式。

例如,在上述实施方式所涉及的机器人系统100中,各机器人1具有自动模式、手动模式、以及修正自动模式这多个控制模式,但即使在变更为机器人1具有包括自动模式以及手动模式的多个控制模式的情况下,也能够应用本发明。

在上述的变更例的情况下,对于机器人系统100的控制方法而言,作为多个机器人1中的1个的第1机器人1A在手动模式下对于某作业对象进行第1作业,并取得第1机器人的机器人坐标系中的作业对象的位置数据,作为多个机器人1中的1个的第2机器人1B当在自动模式下对于作业对象进行第2作业时,根据第1机器人1A的机器人坐标系中的作业对象的位置数据以及第1机器人1A的机器人坐标系与第2机器人1B的机器人坐标系的相对关系,对第2机器人1B的机器人坐标系中的作业对象的位置数据进行修改,并使用第2机器人1B修改后的作业对象的位置数据进行第2作业。

而且,在上述的变更例的情况下,机器人系统100具备:远程操作装置2,其接受操作员的操作;多个机器人1,它们具有多个控制模式,上述多个控制模式包括基于预先存储的任务程序进行动作的自动模式、以及基于远程操作装置2接受到的操作员的操作进行动作的手动模式;以及主控制器6,其能够通信地与远程操作装置2以及多个机器人1连接并对它们的动作进行控制。而且,主控制器6具有:机器人控制部61,其执行第1任务程序,将作为多个机器人1中的1个的第1机器人1A在手动模式下进行控制,使之对于某作业对象进行第1作业,并执行第2任务程序,将作为多个机器人1中的1个的第2机器人1B在自动模式下进行控制,使之对于作业对象进行第2作业;以及修改部63,其在第1作业中对第1机器人1A的机器人坐标系中的作业对象的位置数据进行存储,并根据第1机器人1A的机器人坐标系中的作业对象的位置数据以及第1机器人1A的机器人坐标系与第2机器人1B的机器人坐标系的相对关系,对第2机器人1B的机器人坐标系中的作业对象的位置数据进行修改,使用该修改后的作业对象的位置数据修改第2任务程序。

在上述的变更例的情况下,也与上述的实施方式相同,第1机器人1A的第1作业中被操作员经由远程操作装置2输入的操作修改的作业对象的位置数据在第2机器人1B的第2作业中被利用。由此,在第2作业中,即使作业者不另外输入修改,在自动模式下进行动作的第2机器人1B也按照修改后的轨迹进行动作,而能够对于作业对象进行精确的作业。

附图标记说明:

1、1A、1B...机器人;2...远程操作装置;4...输出装置;5...状况取得装置;6...主控制器;60...主控制部;61...机器人控制部;62...操作装置控制部;63...修改部;7...输入装置;10...基台;11...机器人手臂;11a~11f...连杆;12...末端执行器;15...机器人控制器;20...主手臂;21a~21f...连杆;25...控制器;41...显示器装置;100...机器人系统;C1~C6...电流传感器;E1~E6...位置传感器;JT1~JT6、JTm1~JTm6...关节;M1~6M...驱动马达

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1