多层电池隔板的制作方法

文档序号:2473744阅读:261来源:国知局
专利名称:多层电池隔板的制作方法
技术领域
本发明涉及电池隔板,特别是带有改进的强度性能的电池隔板,以及其制造方法。
在锂电池内,特别是在二次的锂电池(可充电的锂电池)内,可能产生过热问题,以及引起电池内的热逸出。因此,发展了断路隔板,以防止热逸出。例如,参见美国专利No.4,650,730和No.4,731,304。一种断路电池隔板具有一个微孔隔膜,在温度实质上低于能引起锂电池内热逸出的温度时,它封闭其微孔。
一些多层的断路隔板已在技术中公开,例如,美国专利No.4,650,730公开一种双层电池隔板,它具有一个未充填的微孔板和一个充填的微孔板。每个板是借助使用适当的溶剂的一种提取过程单独地成形的。此两个微孔板随后层叠到一起,以形成断路隔板。
Celgard电池隔板已经在商业上使用许多年,它是典型地借助拉伸法成形。例如,一种无孔的管形聚丙烯薄膜首先借助吹膜挤压法成形。随后管形薄膜在自身上压扁,以形成具有两个聚丙烯层片的无孔的平板。任选地,模具组件可以转动,以缓慢地轻度扭转管形薄膜,以防止和消除皱折和不均匀的分布,从而使薄膜的表面实质上是平滑的。平板随后退火和拉伸,以便在其中形成微孔。这两个微孔平板随后分层成为微孔电池隔板的两层。通常,平板内两个层片之间的粘接力应该足够低,这样可使两个层片分离,而不损伤层片。然而,当最好的隔板具有两层微孔聚丙烯薄膜时粘接力可能较高,例如,为5g/in至约35g/in,它可能引起,例如,在管形薄膜压扁后两个层片的接合。
美国专利No.5,691,077公开一种三层的电池隔板。在其公开的一个最佳实施例中,隔板具有一个聚丙烯—聚乙烯—聚丙烯结构,以及是用叠层和接合微孔层制成的。每个微孔层是借助上述的Celgard过程成形的,它包括一个分层步骤。
美国专利No.5,691,047还公开一种微孔的三层电池隔板,它具有一个聚乙烯—聚乙烯—聚乙烯结构。一组无孔的单层的预制件首先借助铸挤法挤压。这些无孔的单层叠合和接合到一起成为一个聚丙烯—聚乙烯—聚丙烯结构的预制件。此预制件随后经退火和拉伸,以形成一个微孔的三层电池隔板。
还提议出用于制造多层的电池隔板的一系列的共挤压过程。例如,英国专利出版物No.GB2,298,817公开一种微孔的三层电池隔板,它是借助使用T形模具共挤压具有无孔的聚乙烯—聚乙烯—聚乙烯结构的三层薄膜预制件制造的,三层的预制件退火,以及随后拉伸退火的三层的预制件,以形成多孔的三层的电池隔板。
一种多孔的三层的电池隔板也公开于日本的专利申请书No.56320/1995(JP8-250097A)filed by Kureha Chemical IndustryCo.Ltd.此Kureha隔板是用这样一种过程制造的,它包括以下的步骤共挤压一个三层的强制件,它含有一种溶剂可提取材料,作为成孔辅助剂和用溶剂提取预制件内的可提取材料来形成松孔。
美国专利No.6,346,350公开一种三层的电池隔板的制造方法,它借助吹制薄膜过程中的共挤压。共挤压的熔融的薄膜迅速地激冷,从而使其处于实质上凝固的状态。共挤压的薄膜随后退火和拉伸,以便在其中形成微孔。
一个多层的微孔断路隔板应尽可能地薄,以减少它在电池内占据的空间,以及允许降低电阻。但是,断路隔板还必须具有足够的强度以抵抗穿孔。穿孔的电池隔板在防止相反的极性的电极之间的接触中是无效的。在过热的条件下,一个穿孔的电池隔板不能有效地断路,以防止电解液横穿电池隔板,以及因此在防止热逸出方面是无效的。带有低的穿孔强度的电池隔板是难以处理的,特别是在电池隔板的制造过程中。一旦被穿孔,电池隔板倾向于破裂,即撕裂。
因此,在技术中的一个目的是继续发展有效的方法,用以制造具有改进的穿孔强度的较薄的电池隔板。
隔板最好是借助首先挤压一个管形的多层的薄膜制成的。管形薄膜在自身上压扁,以形成具有两个多层的薄膜的叠层的预制件。预制件经接合和退火。随后,预制件经拉伸以形成一个微孔的多层的电池隔板。


图1是本发明的具有4层的电池隔板的横剖面示意图;图2是本发明的具有4层的电池隔板的另一个实施例的横剖面的示意图;图3是本发明具有6层的电池隔板的一个实施例的说明性的示意图;图4是本发明的具有6层的电池隔板的不同结构的横剖面图;图5是本发明的具有6层的另一电池隔板的结构的示意图;图6是本发明的具有4外聚丙烯层和2内聚乙烯层的电池隔板的横剖面图;图7是本发明的具有4内聚乙烯层和2外聚丙烯层的电池隔板的横剖面图;图8是本发明的具有4外聚乙烯层和2内聚丙烯层的电池隔板的横剖面图。
电池隔板可以具有很宽的厚度范围。最好,电池隔板具有的厚度小于5mil(密耳),通常不大于2mil,以及最最好不大于1.5mil。电池隔板的穿孔强度是至少约400g(克),最好是至少约450g。通常,穿孔强度是至少约500g,以及有利的是大于约550g。
按照本发明,隔膜层可以是由任何适合于制造电池隔板的薄膜形成聚合物组分挤压而成,最好是由聚烯烃、均质聚合物、非均质聚合物,比如,嵌段聚合物、无序共聚物和三元共聚物全部可以使用。聚合物应该这样选择,使由其制造的电池隔板显示低的电阻以及适合于在电池环境中工作。聚合物树脂组分中还可以包括添加剂,比如抗氧化剂、稳定剂、表面活化剂以及在技术中已知的其它加工助剂。最好,聚合物这样选择,使电池隔板显示断路性能。这就是说,隔板在典型地低于能引起锂电池中热逸出的温度隔板可以封闭其微孔。最好,可以使用聚烯烃,包括,但不局限于聚乙烯、聚丙烯、聚丁烯、乙烯—丁烯共聚物、乙烯—乙烯共聚物、乙烯—丙烯酸共聚物以及它们的掺合物。各种聚乙烯,比如低密度聚乙烯(LDPE),线性低密度聚乙烯(LLDPE)和高密度聚乙烯(HDPE)全部可以使用。典型地,适当的聚烯烃具有的平均分子量由约100000至约5000000。通常,本发明的电池隔板显示断路性能,也就是说,在典型地低于能引起锂电池中热逸出的温度隔板的微孔封闭。通常,本发明的电池隔板具有一个闭路温度,即在此温度电池隔板封闭其微孔,此温度由约80℃至约140℃,最好,由约100℃至约135℃。
在这里使用的术语“微孔”表示本发明的电池隔板具有的微孔通常的平均孔尺寸为由约0.005至约10μm(微米),最好,由约0.01至约5μm,有利的是,平均的微孔尺寸为由约0.05至约2μm。本发明的电池隔板典型地具有Gurley value(盖尔莱值)由约5s(秒)至约100s,最好,由约10s至约60s,它是按ASTM-D726(B)测量的。
本发明的电池隔板的两个部分中的每个部分具有2层或多层,它们是在制造电池隔板过程中共挤压的。如同在技术中已知,共挤压是指通过一个单独的模具,例如,多支腔内部组合模具同时挤压两个或多个聚合物组分,接合此两层或多层到一起。典型地,两个或多个聚合物组分是单独地进入模具,以及在正好通过最后的模具模孔前接合。在挤压时,此多层聚合物组分形成多层的最好的叠层,以及立即相互接触。通常,共挤压的各层不需要经受接合步骤就变为彼此不可以分离的。这就是说,通常不能实现一层由相邻层剥离,而又保持各层的完整性。
任何普通的共挤压技术可以使用于本发明的目的。例如,共挤压可以借助技术中已知的使用T型模具的熔化挤压法进行。代替的方式是,共挤压可从借助吹塑薄膜过程进行,它也称为吹塑薄膜挤压。在“吹塑薄膜挤压”时,聚合物组分由两台或多台挤压机用环形模具挤压,以形成一个管形薄膜(或型胚),它具有两层或多层。管形薄膜或型胚随后由模具拉出,以及使用压扁框架,压扁滚筒等压扁。通常,当管形薄膜形成时,一种流体,比如空气由型胚内吹到管形薄膜上。因此,空气泡被吸入模具和压扁装置之间的管形薄膜内。此外,当管形薄膜由模具拉出时,空气也吹在薄膜的外表面周围,以便由外部稳定和激冷管形薄膜。作为其结果,挤压的薄膜在其压扁之前已冷却至实质上结晶固化状态。许多普通的吹塑薄膜过程在技术中是已知的,全部可以使用于本发明。
最好,接合是在两个部分中每个部分挤压之后和它们成为微孔的之前进行的。典型地,两个多层的非微孔的平板(例如,压扁的气泡)粘接以形成一个电池隔板预制件。此预制件可以粘接,以及随后借助技术中已知的普通的方法制成微孔的,以形成一个多层的电池隔板。
粘接用于使两个多层的部分接合到一起(由于粘接)从而使两个部分不容易分离以及不能够容易地脱层。因此,本发明的电池隔板必须具有最小的粘接,它可以作为剥离强度测量。这里使用的术语“剥离强度”是使用拉伸和压缩试验机测量的,以确定在10in/min剥离速率下两个1in宽的接合隔膜段分离所需的力,g(克)。剥离强度应该为至少约5g/in,最好,至少为约8g/in,以及有利的是,应该至少为约10g/in。两个隔膜的叠层和接合用的方法是通常技术中已知的,以及已公开的,例如,美国专利No.5,565,281在这里列出供参考。本发明适合使用的接合方法包括辗压和用粘接剂粘接,以及焊接。涂覆粘接剂的方法包括空气雾化,凹版/漏印,液压喷涂以及超声喷涂。粘接剂和涂覆粘接剂速率的选择必须是这样的,使对形成的电池隔板没有不利的作用。焊接技术包括热焊接和超声焊接。任何一种焊接程序的能量和焊接图样应该这样选择,使对隔板的微孔没有不利的作用。最好,本发明中的接合是借助热压缩接合进行的,例如,接合可以借助辗压,使用压扁滚筒闭合,在温度至少低于多层的部分中聚合物的熔点1℃进行,最好,在温度至少低于多层的部分的熔点5℃进行。通常,对于聚丙烯和聚乙烯制造的预制件,接合温度的范围为由约100℃至约150℃,最好,为由约125℃至约135℃。在接合温度的驻留时间可以至约30min。由其它聚合物制造的预制件的接合条件对于了解本发明公开的技术人员是显而易见的。
多层的部分,分离的或接合在一起的,可以使用技术中已知的制造微孔隔膜的普通的方法制成微孔的。包括,但不局限于拉伸法,提取法(或相反转法),以及颗粒拉伸法。
简单地说,在相反转法中,可以由含有一种聚合物和一种可提取材料的组分形成一种微孔隔膜。可提取材料这样选择,它至少可以在聚合物的熔化温度与聚合物掺合。因此,在本过程中,组分加热至聚合物的熔化温度,以形成一种均质的相。随后由均质的液体组分挤压隔膜。当隔膜被挤压时,以及当温度下降时在聚合物和可提取材料之间产生相分离。可以借助一种适当的溶剂由隔膜提取此可提取材料,这种溶剂能溶解可提取材料,但不能溶解聚合物,因此在隔膜内形成一种微孔结构。任选地,在移走可提取材料之前或之后,在相反转法中的挤压的隔膜可以取向或拉伸超过其弹性极限,从而获得一种交错的网络的永久结构。在技术中已知的任何拉伸方法,可以适用于本发明。拉伸可以在单轴向或横向进行。例如,见美国专利No.5,281,491和日本专利申请No.56320/1995,filed by Kureha Chemical IndustryCo.Ltd.on March15,1995,这里列出它们供参考。
使用“颗粒拉伸法”是指一种微孔薄膜的成形方法,它借助拉伸聚合物基体中充填有分散颗粒的一种预制件薄膜。这种拉伸导致由于应力集中而形成微孔,而它产生的薄膜是移交微孔的。技术中已知的任何颗粒拉伸法可以使用于本发明。这种方法的实例,例如可以见于美国专利No.3,870,593;4,350,655;4,698,372和4,777,073,这里列出它们供参考。
最好,本发明的电池隔板内的微孔组织是借助拉伸法获得的,它包括使预成形的非微孔平板经受单轴向的或双轴向的拉伸,使其成为微孔的。广泛地说,这种优选的拉伸方法包括多层的非微孔平板(分离的或接合到一起的)的退火,以及退火平板的随后拉伸。借助非限制的实例,这种目的的适当的方法公开于美国专利No.5,565,281;5,691,047;5,691,077和5,824,430,这里列出它们供参考。
最好,在拉伸法中,在挤压之后,在无微孔的平板进一步拉伸之前进行退火。如技术中通常已知那样,退火是一种加热的过程,它可改进预制件的结晶结构,以及有利于拉伸步骤时微孔的形成。退火可采用任何普通的方法进行。例如,薄膜预制件可以与一个加热的滚筒或加热的金属板接触,或者在空气或惰性气体内加热。代替的方式是,薄膜预制件可以围绕在一个心杆上以及以成卷的形状在气体相中加热。一种释放板材,比如聚乙烯,对苯二甲酸酯薄膜,氟树脂薄膜,用硅树脂涂面的纸或塑料薄膜,可以用于防止成卷形状的薄膜的粘结。典型地,退火可在温度由约90℃至约150℃进行,保温时间由约5min至约30min。
退火的薄膜预制件随后进行拉伸(或“定向”)以便引起在薄膜预制件的结构中形成微孔。典型地,退火的薄膜预制件是在机器方向上单轴地拉伸,以及任选地也可在横向方向上拉伸。拉伸可包括数个步骤,例如,一个冷拉步骤,一个热拉步骤和一个松弛或热处理步骤。此松弛或热处理步骤是为了降低隔板内的内应力,以及可以在不同的热型面上以负的拉制比或实质上没有拉制延伸进行。拉伸可以是一个连续的过程,在含有拉制框架的炉中进行。温度和拉制比可以由技术熟练人员调节,不需要过多的实验。
在一个最佳实施例中,本发明的电池隔板中的每个共挤压的多层部分具有至少一个强度层和至少一个断路层。在这里术语“断路层”是指一种微孔的隔膜层,它在电池隔板的断路温度,即较低的温度,由约80℃至约135℃封闭微孔。与其对比,“强度层”是指一种微孔的隔膜层,它具有实质上较高的熔点,例如超过145℃,最好为约160℃。强度层典型地能够在较高的温度保持电池隔板的熔化整体性。最好,本发明的电池隔板内的断路层是由以下材料制造的聚乙烯,乙烯—丁烯共聚物,乙烯—丙烯共聚物,乙烯—乙烯共聚物或它们的掺合料。最好,使用高密度聚乙烯(HDPE)。更最好,HDPE具有的密度范围由0.959-0.964g/min(ASTM D792)以及MF1由0.42-0.33dg/min@190℃/2.16Kg(ASTM D1238)。本发明的电池隔板中的强度层典型地是由聚丙烯或聚丙烯共聚物制造的。最好,使用一种聚丙烯均质聚合物,具有密度约0.905g/cc(ASTM D1505)和MFI约1.5g/10min@230℃/2.16Kg。
在本发明的一个最佳实施例中,电池隔板的两个部分是实质上相同的和面对面的接合到一起的。在这里“实质上相同”是指两个接合的多层部分在它们的物理结构和化学组分上是相同的。在这里使用的术语“面对面”是指两个实质上相同的部分是这样接合到一起的,使此两部分实质上在最终的结构内对称地排列,如下面图1-8中所示。
图1-8是本发明的电池隔板的一些最佳实施例的横断面示意图。每个实施例具有两个叠层的部分,它各具有两个或多个共挤压层。如图1所示,电池隔板10具有两个实质上相同的部分12和12’。此部分12具有一个共挤压的双层结构,它包括一个聚丙烯层14和一个聚乙烯层16。此部分12’具有一个共挤压的双层结构,它包括一个聚丙烯层14’和一个聚乙烯层16’。两部分12和12’以面对面的方式接合到一起,这样使两个聚乙烯层16和16’相互接触。
在图2中,电池隔板20具有两个部分22和22’,它们是与图1中的两个部分12和12’相同的。然而,电池隔板20的此两部分是面对面地接合到一起,使两个聚丙烯层相互接触。
现在参见图3,电池隔板30的两个部分32和32’具有一个三层结构,它带有两个聚丙烯层34(34’)和38(38’),夹着一个聚乙烯层36(36’)。此两个部分面对面地接合,这样使聚丙烯层38和38’相互接触。
图4是本发明的另一个实施例。电池隔板40具有接合到一起的两个相同部分42和42’。每个部分具有一个三层结构,它包括一个聚丙烯层44或44’,夹置在两个聚乙烯层46和48之间,或者46’和48’之间。此两部分面对面地接合到一起,这样使聚乙烯层48和48’相互接触。
现在参见图5,电池隔板50具有两个部分52和52’。每个部分具有一个聚乙烯层(54或54’)和两个相邻的聚丙烯层(56和58或56’和58’)。此两部分借助接合两个聚丙烯层58和58’面对面地接合到一起。
在图6内所示的电池隔板60的两个部分62和62’与图5内所示的电池隔板50的两个部分是相同的。然而,此两个部分62和62’是借助接合两个聚乙烯层64和64’而接合到一起。因此,在电池隔板60内,第一、第二、第五和第六层是聚丙烯层,以及第三和第四层是聚乙烯层。
图7示出的电池隔板70具有一个六层结构,它具有接合到一起的两个部分72和72’。每个部分具有两个聚乙烯层74和76或74’和76’,以及一个聚丙烯层78或78’。此两个部分是借助接合两个聚乙烯层76和76’而接合到一起。
在图8中,电池隔板80与图7具有两个部分72和72’的电池隔板70相同,其不同之处是它的两个部分82和82’是借助接合两个聚丙烯层88和88’而接合到一起。因此,电池隔板80具有一个六层结构,带有两个内丙烯层夹置在4个聚乙烯层之间。
最好,本发明的电池隔板的两个多层的部分以一种横向叠层的方式排列,即一个部分的单轴取向与另一个部分的单轴取向呈一定的角度。此角度可以在由约0°至约90°的范围内。可以借助在此两个多层的部分接合时,此两个多层的部分横向叠层层合法达到横向叠层。
电池隔板预制件随后接合和退火。接合是为了将电池隔板的两个叠层部分连接到一起。接合可以借助在加热的压扁滚筒之间由两个封闭的压扁滚筒施加压力来压缩预制件而实现。最好,接合在温度范围由约100℃至约150℃,在温度由约125℃至约135℃进行。接合温度这样选择,使两层合并和粘接到一起,使在最终的电池隔板内达到有效的粘接,而不会影响预制件内的分子取向。压扁滚筒施加的压力可以大于1pound per 1inear inch(pli)即1英磅/1直线英寸,或者由约1至约3英磅/1直线英寸,或者最好,约1.2至约2.5英磅/1直线英寸。目标的粘接为至少约5g/in,最好为至少约10g/in。电池隔板预制件110的退火可在温度范围由105-150℃进行。如果使用聚乙烯—聚丙烯,最好由约110℃至130℃温度进行,如果使用其它聚合物,应采用其它退火温度。
作为管形薄膜扭转的结果,当管形薄膜在其自身压扁以形成一个电池隔板预制件时,一个部分的单轴取向相对于另一个部分的单轴取向偏离一个角度,以及从而达到横向叠层层合。在上述的接合、退火和拉伸后继步骤之后,可以获得横向叠层的电池隔板。
本发明进一步参见下列的实例予以说明。在下列的实例中,Gurley values(盖尔莱值)是按ASTM D-726(B)方法测量的。这里使用的Gurley值是用Gurley Densometer(盖尔莱密度计)测量的对空气的阻力(例如使用Model 4120)。在这里列出的Gurley values是指要求10cc(厘米3)空气在水压12.2in下通过1英寸2产品的时间,sec(秒)。
剥离强度(粘接)是使用拉伸和压缩试验机测量的,以确定分离接合的隔膜的两个1in宽的段所需的力,g(克)。剥离速率为10in/min(分)。三次测量是横过幅宽取的以及随后平均。
电池隔板的厚度用T411om-83方法测量,它是在TechnicalAssociation of the pulp and paper Industry赞助下发展的。厚度使用精密测微计测量,它带有一个1/2 in直径的圆靴,在7psi(英磅/英寸2)下接触试样。横过试样的宽度取30个单独的测微计读数,随后平均。
穿孔强度的测量方法如下横过拉伸产品的宽度取30个测量值和随后平均。使用一种Mitech Stevens LFRA Texture Analyzer,针头直径为1.65mm,带有0.5mm半径。下降速度为2mm/sec以及偏移量为6mm。薄膜紧密地保持在带有一个中心孔11.3mm的夹具内。被针头穿刺的薄膜的位移(mm)记录下来与被试薄膜产生的阻力(g力)比较。最大的阻力就是穿孔强度。
实例CE1和CE2是比较的实例。CE1是一个普通的三层电池隔板,它具有聚乙烯—聚丙烯—聚乙烯(PE/PB/PE)结构,以及是用普通的方式借助吹塑薄膜挤压过程制备的。CE2是一个普通的三层电池隔板,它具有PP/PE/PP结构,以及是用普通的方式借助吹塑薄膜挤压过程制备的。CE1和CE2不是使用本发明技术制造的。
E1,E1A,E2,E3和E3A是本发明的实例。E1和E1A由三层的型胚PE/PP/PP开始,以及制成一个六层产品PE/PP/PE/PE/PP/PE。E2由三层的型胚PP/PE/PP开始,以及制成一个六层产品PP/PE/PP/PP/PE/PP。E3和E3A由两层型胚PP/PE开始,以及制成一个四层产品PP/PE/PE/PP。
全部实例是按照普通的方式用普通的材料制造PE-HDPE,密度=0.959g/cc(ASTM D792),MFI=0.42dg/min@190℃/2.16kg(ASTMD1238);以及pp-全同立构PP,密度=0.905g/cc(ASTM D 1505),MFI=1.5g/10min@230℃/2.16Kg。产品的结果列于表1。
表1

说明NA-不适用;NR-未报告;*-粘接是在接合的叠层之间的粘接,个别的共挤压层是不可分离的。
比较CE1和E1,E1A表明,使用本发明技术可获得一种隔板,它具有在相等厚度和Gurley值条件下极高的强度,以及同样,比较CE2和E2,E3,E3A表明,在相等厚度和Gurley值条件下本发明技术的隔板具有极高的强度。
本发明可以在不脱离其精神和实质特征的条件下以其它形式实现,以及因此,在指明本发明范围时,应参照所附权利要求书,而不是前面的说明书。
权利要求
1.一种电池隔板,它具有一个微孔薄膜,薄膜具有一个第一共挤压的多层部分以及一个第二共挤压的多层部分,上述的第一部分和上述的第二部分实质上是相同的,它们是面对面接合的。
2.按照权利要求1的电池隔板,其特征在于,上述的薄膜是借助压扁一个管形薄膜在自身上而形成的。
3.按照权利要求1的电池隔板,其特征在于,上述的共挤压的多层部分还具有至少一个强度层和至少一个断路层。
4.按照权利要求1的电池隔板,其特征在于,上述的第一部分的单轴的取向相对于上述的第二部分的单轴的取向呈一个角度。
5.按照权利要求1的电池隔板,其特征在于,上述的薄膜还具有四层,第一和第四层实质上是聚丙烯,第二和第三层是接合到一起的,实质上是聚乙烯。
6.按照权利要求1的电池隔板,其特征在于,上述的薄膜还具有六层,第二和第五层实质上是聚乙烯,第一,第三,第四和第六层实质上是聚丙烯,上述的第三和第四层是接合到一起的。
7.按照权利要求1的电池隔板,其特征在于,上述的薄膜具有厚度由约0.5mil至约1.5mil。
8.按照权利要求1的电池隔板,其特征在于,上述的薄膜具有剥离强度为至少约5g/in。
9.按照权利要求1的电池隔板,其特征在于,上述的电池隔板具有厚度由约0.5mil至约1.5mil以及穿孔强度为至少约500g。
10.按照权利要求3的电池隔板,其特征在于,每个上述的多层部分具有一个上述的强度层和一个上述的断路层,其中上述的多层的两个部分是接合到一起的,这样使每个部分的单轴的取向相对于另一个部分呈一个角度,以及上述的薄膜具有两个强度层,夹置接合在一起的两个断路层,上述的薄膜具有厚度由约0.5mil至约1.5mil,以及穿孔强度为至少约500g。
11.按照权利要求3的电池隔板,其特征在于,每个上述的多层部分具有两个上述的强度层,夹置一个上述的断路层,上述的强度层和上述的断路层,其中两个多层部分接合到一起,这样使每个部分的单轴取向相对于另一个呈一个角度,以及上述的薄膜具有六层结构,第一、第三,第四和第六层是强度层,以及第二和第五层是断路层,上述的薄膜具有厚度由约0.5mil至约1.5mil,以及穿孔强度为至少约500g。
12.一种制造多层电池隔板的方法,它包括下列步骤挤压一个管形的多层薄膜;管形的多层薄膜在自身上压扁,以形成一个多层的电池隔板预制件,它具有两个多层的薄膜的叠层;预制件经接合和退火;以及拉伸此接合和退火的预制件以形成一个微孔的多层电池隔板。
13.按照权利要求12的方法,其特征在于,上述的预制件是借助热压缩接合接合的。
14.按照权利要求13的方法,其特征在于,上述的多层的管形薄膜具有两层,包括一个断路层和一个强度层。
15.按照权利要求14的方法,其特征在于,上述的强度层实质上是聚丙烯,以及上述的断路层实质上是聚乙烯。
16.按照权利要求12的方法,其特征在于,上述的多层的管形薄膜具有三层,包括两个强度层和夹置的一个断路层。
17.按照权利要求16的方法,其特征在于,上述的强度层实质上是聚丙烯,以及上述的断路层实质上是聚乙烯。
18.一种制造多层的电池隔板的方法,它包括下列步骤共挤压一个第一多层的平板;共挤压一个第二多层的平板;层合上述的第一和第二平板,以形成一个电池隔板预制件;预制件经接合和退火;以及拉伸此接合和退火的预制件,以形成一个多层的电池隔板。
19.按照权利要求18的方法,它还包括由上述的预制件提取一种可提取的材料。
全文摘要
提供一种微孔的电池隔板,它具有第一共挤压的多层部分和第二共挤压的多层部分。此两个部分是接合到一起的。在一个最佳实施例中,电池隔板具有两个实质上相同的多层部分,它们面对面地接合到一起。每个多层部分具有至少一个强度层和至少一个断路层。还提供制造电池隔板的方法。最好,一种管形的多层薄膜是挤压的,以及在其自身上压扁,以形成一个多层的电池隔板预制件。此预制件随后在拉伸之前经接合和退火,以形成一个微孔的多层电池隔板。
文档编号B32B37/15GK1447460SQ031072
公开日2003年10月8日 申请日期2003年3月18日 优先权日2002年3月27日
发明者罗纳德·W·考尔, 唐纳德·K·西蒙斯, 余大华 申请人:思凯德公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1