显示装置和信号处理装置的制作方法

文档序号:17932386发布日期:2019-06-15 01:00阅读:157来源:国知局
显示装置和信号处理装置的制作方法

本技术涉及显示装置和信号处理装置,并且具体地涉及使得能够最大程度地积极利用显示面板可以表示的色域的显示装置和信号处理装置。



背景技术:

近年来,作为在施加电压时元件本身发光的发光元件,使用已应用所谓的有机电致发光(有机el)现象的有机发光二极管(oled:有机发光二极管)的自发光型显示装置(诸如,有机el显示装置等)的发展已经取得了进展。

作为关于有机el显示装置的技术,例如,已知专利文献1中公开的技术。在专利文献1中,已经公开了用于补充与发光元件的发光效率的劣化相关的发光亮度的降低的技术。

引用列表

专利文献

专利文献1:jp2012-58634a



技术实现要素:

技术问题

顺便提及,在自发光型显示装置中,存在一种显示装置,其中每个像素包括四个子像素(即,红色(r)、绿色(g)、蓝色(b)和白色(w)的子像素)。

除了发射基色光的红色(r)、绿色(g)和蓝色(b)的子像素之外,通过添加白色(w)的子像素,可以扩展每个像素的颜色表示范围。然而,尚未建立用于最大程度地积极利用能够由这种显示面板表示的色域的技术系统。

本技术已经鉴于这种情况而实现,并且使得可以最大程度地积极利用显示面板可以表示的色域。

问题的解决方案

本技术的一个方面的显示装置是一种显示装置,包括:显示部,其中显示像素以二维方式布置,显示像素均包括发射三基色光的第一子像素、第二子像素和第三子像素以及发射非基色光的第四子像素;第一信号处理部,扩展正被输入且对应于基色光的视频信号,并且使视频信号适于显示部可以表示的色域;以及第二信号处理部,将作为已经扩展的视频信号的扩展视频信号转换成对应于基色光的第一信号、第二信号和第三信号以及对应于非基色光的第四信号,并且将信号输出至显示部。

在本技术的一个方面的显示装置中,扩展正被输入且对应于基色光的视频信号,并且使视频信号适于显示部可以表示的色域,在显示部中显示像素以二维方式布置,显示像素均包括发射三基色光的第一子像素、第二子像素和第三子像素以及发射非基色光的第四子像素。将作为已经扩展的视频信号的扩展视频信号转换成对应于基色光的第一信号、第二信号和第三信号以及对应于非基色光的第四信号,并且将信号输出至显示部。

本技术的一个方面的信号处理装置是一种信号处理装置,包括:信号处理部,扩展作为输入的视频信号,并且输出适于显示部可以表示的色域的扩展视频信号。在显示部中,显示像素以二维方式布置,显示像素均包括发射三基色光的第一子像素、第二子像素和第三子像素以及发射非基色光的第四子像素,并且视频信号是对应于基色光的信号。

在本技术的一个方面的信号处理装置中,扩展作为输入的视频信号,并且输出适于显示部可以表示的色域的扩展视频信号,此时,在显示部中,显示像素以二维方式布置,显示像素均包括发射三基色光的第一子像素、第二子像素和第三子像素以及发射非基色光的第四子像素,并且视频信号是对应于基色光的信号。

本技术的一个方面的显示装置和信号处理装置可以是独立的装置,或者可以是构造一个装置的内部块。

发明的有益效果

根据本技术的一个方面,可以最大程度地积极利用能够由显示面板表示的色域。

就此而言,本文中描述的效果不必受限制,并且可以是本公开中描述的任何效果。

附图说明

[图1]是示出液晶显示装置中的基板的接口的实例的示图。

[图2]是示出rgb像素的颜色表示范围的实例的图示。

[图3]是示出应用了本技术的显示装置的一个实施方式的构造的实例的框图。

[图4]是示出有机el显示装置中的基板的接口的实例的图。

[图5]是示出wrgb像素的颜色表示范围的实例的图示。

[图6]是示出当前状态下的信号处理电路和定时控制器电路的构造的实例的框图。

[图7]是示出在当前状态下的定时控制器电路中从rgb信号到wrgb信号的转换的实例的示意图。

[图8]是示出平均亮度水平(apl)与显示面板的亮度之间的关系的图。

[图9]是概念性地表示在采用当前状态的lsi的构造的情况下的上推区域的示意图。

[图10]是示出应用了本技术的信号处理电路和定时控制器电路的构造的实例的框图。

[图11]是示出在应用了本技术的定时控制器电路中从rgb信号到wrgb信号的转换的实例的示意图。

[图12]是概念性地表示在采用应用了本技术的lsi的情况下的上推区域的示意图。

具体实施方式

在下文中,参考附图,将描述本技术的实施方式。应注意,将按以下顺序给出描述。

1.本技术的实施方式

2.变形例

<1.现有技术的实施方式>

作为例如自发光型显示装置的薄型平板显示装置(例如,薄型电视接收器),诸如使用液晶的液晶显示装置和使用有机电致发光(有机el)的有机el显示装置已投入实际使用。

在液晶显示装置中,提供了背光,并且液晶分子的布置适于通过施加电压而改变,使得来自背光的光通过或被阻挡,由此显示视频图像。

(液晶显示装置的构造)

图1示出了在分别作为设置在液晶显示装置中的lsi(大规模集成电路)的信号处理电路902与定时控制器电路903之间的接口(i/f)的实例。就此而言,在图1中,信号处理电路902设置在tv主基板921中,并且定时控制器电路903设置在tcon(定时控制器)基板922中。

在图1中,显示面板904被构造为液晶显示面板。在该液晶显示面板中,多个像素(显示像素)以二维形式(矩阵形式)布置,并且每个像素包括红色(r)、绿色(g)和蓝色(b)的三个子像素。也就是说,在作为液晶显示面板的显示面板904中,以二维形式布置的每个像素被制成为rgb像素。

这里,由于布置在显示面板904中的每个像素被构造为rgb像素,所以信号处理电路902可以经由预定接口(i/f)将作为接通布置在显示面板904中的每个像素的rgb信号的信号(其中rgb中每一者分配10位)发送至定时控制器电路903。

以此方式,在液晶显示装置中,作为tv主基板921侧的信号处理电路902与tcon基板922侧的定时控制器电路903之间的接口(i/f),发送包括rgb中每一者的10位的信号的接口(i/f)变为标准。

就此而言,作为薄型平板显示装置(例如,薄型电视接收器)的接口(i/f),v-by-one(注册商标)已广为人知。此外,例如,可以使从信号处理电路902输出的视频信号成为对应于4k视频图像或2k视频图像的视频信号。

(rgb像素的颜色表示)

图2示出了要布置在图1中的显示面板904中的rgb像素的颜色表示范围的实例。

在图2中,rgb像素的颜色表示范围用hsv颜色空间表示。hsv模型是包括色调(hue)、饱和度(saturation)和明度(value)这三个分量的颜色空间。这里,相应地,色调意指颜色的种类,饱和度意指颜色的鲜艳度,明度意指颜色的明度。

在图2中,hsv颜色空间由圆柱41表示。在hsv颜色空间的该圆柱41中,方位方向表示色调h(hue),径向方向表示饱和度s(saturation),轴向方向表示明度v(value)。就此而言,在图2中,通过在hsv颜色空间中切出色调h的横截面的一部分来进行说明。

以此方式,hsv颜色空间的圆柱41对应于能够由红色(r)、绿色(g)和蓝色(b)的三个子像素表示的颜色范围。

在上文中,已经提到了液晶显示装置。近年来,已经开发出诸如有机el显示装置的自发光型显示装置。与需要背光的液晶显示装置不同,这种自发光型显示装置不需要背光,因为元件本身发光。因此,与液晶显示装置相比,它们被认为在能够构造得更薄的方式以及在图像质量、视角等方面是有利的。在下文中,具体地,将描述作为自发光型显示装置的有机el显示装置。

(显示装置的构造例)

图3是示出应用了本技术的显示装置的一个实施方式的构造的实例的框图。

图3中所示的显示装置10例如被构造为自发光型显示装置,诸如,薄型电视接收器和商用显示装置。

例如,显示装置10被构造为包括有机el显示面板的有机el显示装置,该有机el显示面板使用应用有机电致发光(有机el)现象的有机发光二极管(oled)作为发光元件,其中元件本身在施加电压时发光。

在图3中,显示装置10包括视频生成器101、信号处理电路102、定时控制器电路103和显示面板104。

例如,基于从外部装置输入的信号(诸如,通过调谐器、解调器等中的处理获取的信号),视频生成器101生成视频信号,并将它们提供给信号处理电路102。该视频信号是包括红色(r)、绿色(g)和蓝色(b)的亮度信息的rgb信号。

例如,信号处理电路102被构造为用于tv的信号处理lsi等。信号处理电路102对从视频生成器101提供的视频信号施加预定的信号处理,以实现例如高清晰度、宽色域、高亮度、高对比度等,并将由此获取的视频信号提供至定时控制器电路103。

定时控制器电路103被构造为用于面板等的tcon(定时控制器)lsi,并且对显示面板104中的显示动作执行定时控制。此外,定时控制器电路103处理从信号处理电路102提供的视频信号,并将其输出至显示面板104。

例如,显示面板104被构造为自发光显示部,诸如,有机el显示面板。该自发光显示部包括作为显示像素的像素,该像素包括根据电流的量执行自发光的发光元件。显示面板104根据来自定时控制器电路103的控制来显示对应于视频信号的视频图像。

显示装置10如上所述构造。

(有机el显示装置的构造)

图4示出了作为设置在作为有机el显示装置的显示装置10中的lsi的信号处理电路102与定时控制器电路103之间的接口(i/f)的实例。就此而言,在图4中,信号处理电路102设置在tv主基板21中,并且定时控制器电路103设置在tcon基板22中。

在图4中,显示面板104被构造为有机el显示面板。在该有机el显示面板中,多个像素(显示像素)以二维形式(矩阵形式)布置,并且每个像素包括红色(r)、绿色(g)、蓝色(b)和白色(w)的四个子像素。也就是说,在作为有机el显示面板的显示面板104中,以二维形式布置的每个像素被制成为wrgb像素。

就此而言,除了红色(r)、绿色(g)和蓝色(b)的子像素之外,提供白色(w)的子像素作为每个像素的子像素的原因是由于有机el显示面板的可制造性的独特情况。在此情况下,批量生产的大尺寸有机el显示面板的每个像素包括wrgb像素。

这里,布置在显示面板104中的每个像素被构造为wrgb像素。然而,作为用于接通布置在显示面板104中的每个像素的rgb信号,例如,信号处理电路102可以经由预定接口(i/f)将其中rgb中每一者分配12位的信号发送到定时控制器电路103。

此时,尽管布置在显示面板104中的每个像素变为wrgb像素,但是从信号处理电路102输出的视频信号已变为rgb信号。因此,在定时控制器电路103中,通过基于来自信号处理电路102的rgb信号生成wrgb信号,可以接通作为布置在显示面板104中的wrgb像素的每个像素。

就此而言,在作为有机el显示装置的显示装置10中,也可以采用v-by-one(注册商标)作为tv主基板21侧的信号处理电路102与tcon基板22侧的定时控制器电路103之间的接口(i/f)。此外,例如,可以使从信号处理电路102输出的视频信号成为对应于4k视频图像或2k视频图像的视频信号。

(wrgb像素的颜色表示)

图5示出了要布置在图4中的显示面板104中的wrgb像素的颜色表示范围的实例。

在图5中,类似于图2中所示的rgb像素的颜色表示范围,wrgb像素的颜色表示范围用hsv颜色空间表示。

在图5中,hsv颜色空间中的圆柱41对应于能够由红色(r)、绿色(g)和蓝色(b)的三个子像素表示的颜色范围。而且,在图5中,在hsv颜色空间中的圆柱41上形成的圆锥42对应于能够由白色(w)的子像素表示的颜色范围。

即,在显示面板104中的每个像素中,在能够由发射红色(r)、绿色(g)和蓝色(b)的三基色光(红光、绿光和蓝光)的子像素和发射一个白色(w)的非基色光的子像素表示的颜色范围内,除了图中的圆柱形部分的区域51之外,在圆柱上形成的圆锥形部分的区域52也包括在内。

以此方式,通过使白色(w)的子像素发光,可以使hsv颜色空间的圆柱41中的轴向方向上表示的明度v更高。因此,与rgb像素相比,wrgb像素可以扩展能够表示的色域。

接下来,描述作为设置在图3中所示的显示装置10中的lsi的信号处理电路102和定时控制器电路103的详细构造。这里,参考图6至图9描述当前状态下的lsi的结构,然后,参考图10至图12,将描述应用本技术的lsi的构造。

(当前状态下的lsi的构造)

首先,描述当前状态下的lsi的构造。图6是示出构造当前状态下的lsi的信号处理电路102a和定时控制器电路103a的构造的实例的框图。

在图6中,信号处理电路102a对输入其的视频信号执行预定的信号处理,并且将由此获取的包括rgb中每一者的10位的信号作为视频信号来提供给定时控制器电路103a。定时控制器电路103a执行控制以用于在显示面板104上显示从信号处理电路102a提供的视频信号。

定时控制器电路103a包括线性伽马转换部201、apl计算部202、abl增益计算部203、abl控制部204、hdr增益计算部205、dr扩展部206和wrgb转换部207。

线性伽马转换部201执行信号处理以用于转换视频信号(包括rgb中每一者的10位的信号),其中输出具有相对于输入的伽马特征,以便具有来自伽马特征的线性特征。线性伽马转换部201将转换后的视频信号提供给apl计算部202和abl控制部204。

就此而言,在线性伽马转换部201中,通过执行信号处理使得输出具有相对于输入的线性特征,视频信号在线性空间中进行处理。因此,对要显示在构造为有机el显示面板的显示面板104上的视频图像的各种处理变得容易。

基于从线性伽马转换部201提供的视频信号,apl计算部202计算平均亮度水平(apl:平均图像水平),并将其提供给abl增益计算部203和hdr增益计算部205。

这里,平均亮度水平(apl)是表示从视频信号获取的帧图像的平均亮度水平的平均亮度水平。例如,由帧图像中的红色(r)、绿色(g)和蓝色(b)的亮度的平均值等来获取平均亮度水平(apl)。

基于从apl计算部202提供的平均亮度水平(apl),abl增益计算部203计算用于控制(abl:自动亮度限制器)视频信号的亮度水平的增益(下文中也称为abl增益),并将其提供给abl控制部204。

基于从abl增益计算部203提供的abl增益,abl控制部204控制(限制)从线性伽马转换部201提供的视频信号的亮度水平,并将其提供给dr扩展部206。

这里,abl增益变为用于控制(限制)视频信号的亮度水平的信息。即,在构造为有机el显示面板的显示面板104中,例如,由于用于电源的电力负荷取决于要在有机el显示面板上显示的视频图像(画面图案)的明度,对整个面板执行基于abl增益的亮度水平的控制(abl)。也就是说,在这里,将检测最佳亮度水平,并且将执行相对于视频信号的对亮度的限制处理。

基于从apl计算部202提供的平均亮度水平(apl),hdr增益计算部205计算用于扩展视频信号的动态范围并获取扩展视频信号的增益(下文中也称为hdr增益),并将其提供给dr扩展部206。

基于从hdr增益计算部205提供的hdr增益,dr扩展部206扩展从abl控制部204提供的视频信号(已经经过abl控制的视频信号)的动态范围(dr:动态范围),并将由此获取的扩展视频信号提供给wrgb转换部207。

wrgb转换部207将从dr扩展部206提供的扩展视频信号(rgb信号)转换为wrgb信号,并将其输出。

这里的转换处理是将包括红色(r)、绿色(g)和蓝色(b)的三基色的rgb信号转换为包括红色(r)、绿色(g)和蓝色(b)的三基色以及白色(w)的一种非基色的wrgb信号的转换过程。

图7示意性地示出了从rgb信号到wrgb信号的转换的实例。就此而言,在图7中,图中的左侧示出了转换之前的rgb信号,并且图中的右侧示出了转换之后的wrgb信号。

在wrgb转换部207中,首先,使输入rgb信号的三种颜色的亮度信息中的最小者成为白色(w)的亮度信息。在该实例中,由于蓝色(b)的亮度信息变为最小,因此使其成为白色(w)的亮度信息。

然后,在wrgb转换部207中,通过从转换前的红色(r)的亮度信息中减去白色(w)的亮度信息,来获取转换后的红色(r)的亮度信息。类似地,通过从转换前的绿色(g)的亮度信息中减去白色(w)的亮度信息,来获取转换后的绿色(g)的亮度信息,并通过从转换前的蓝色(b)的亮度信息中减去白色的亮度信息(w),来获取转换后的蓝色(b)的亮度信息(在该实例中为零)。

wrgb转换部207输出通过这种方式获得的红色(r)、绿色(g)、蓝色(b)和白色(w)的亮度信息作为wrgb信号。

当前状态下的lsi如上所述构造。

这里,图8示出了平均亮度水平(apl)与显示面板104的亮度之间的关系(特征信息)。在图8中,横轴表示平均亮度水平(apl),并且其范围为0至100(%)。此外,纵轴表示显示面板104的亮度(luminance),并且其单位设置为cd/m2

在图8中,如曲线61所示,平均亮度水平(apl)与亮度之间的关系成为反比关系,其中,当平均亮度水平(apl)的值较小时,亮度的值变大,而平均亮度水平(apl)的值较大时,亮度的值变小。

通过利用这种关系,在abl控制部204中,基于来自abl增益计算部203的abl增益的值,当平均亮度水平(apl)的值较大时,可以执行控制以使视频信号的亮度水平降低。例如,在已经计算出平均亮度水平(apl)为100%的情况下,亮度为500cd/m2将下降到150cd/m2。就此而言,通常,平均亮度水平(apl)约为25%。

即,当显示在构造为有机el显示面板的显示面板104上的视频图像(画面图案)变得更亮(更明亮)时,向面板或电源施加了更多的负荷。因此,在这里,当平均亮度水平(apl)变得更高时,使得视频信号的亮度水平逐渐降低。

例如,在对应于能够由显示面板104中的红色(r)、绿色(g)和蓝色(b)的子像素表示的颜色范围的亮度变为500cd/m2的情况下,如图中的水平方向上示出的第一线71所示,当已经计算出100%为平均亮度水平(apl)时,如下获取abl增益。

即,此时,由于平均亮度水平(apl)变为100%,因此需要将亮度水平限制到150cd/m2的亮度。因此,abl增益计算部203将0.3(150/500)的增益作为abl增益提供给abl控制部204。由此,基于abl增益为0.3,abl控制部204控制(限制)视频信号的亮度水平。

这里,在图9中,在hsv颜色空间中表示能够由显示面板104表示的色域。如上所述,在该hsv颜色空间中,方位方向表示色调h,径向方向表示饱和度s,轴向方向表示明度v。图9中的第一线71对应于上述图8中所示的第一线71,并且能够由布置在显示面板104中的每个像素中的红色(r)、绿色(g)和蓝色(b)的子像素表示的颜色范围对应于图中的圆柱41的一部分(其中明度v为v1或更小的范围)。

另一方面,如上所述,在能够由显示面板104中的每个像素中的红色(r)、绿色(g)和蓝色(b)的子像素以及白色(w)的子像素表示的颜色范围中,除了图中的圆柱41的部分之外,在圆柱上形成的锥体42的一部分也包括在内。

以此方式,通过使白色(w)的子像素发光,可以将明度v提高到高于v1的v2。也就是说,除了红色(r)、绿色(g)和蓝色(b)的子像素之外,通过提供白色(w)的子像素,可以扩展能够由显示面板104表示的色域。

hdr增益计算部205生成hdr增益,以使得可以利用由白色(w)的子像素扩展的色域,并将其提供给dr扩展部206。

这里,如图8中所示,对由白色(w)的像素扩展的色域(下文中也称为上推区域)的利用限于例如平均亮度水平(apl)的值变为0到25%的范围内(在图中的区域62的范围内)的情况。其原因是确保仅在平均亮度水平(apl)的值低并且电力具有一些额外功率的情况下利用上推区域(在视频图像某种程度暗的情况下),因为当视频图像(画面图案)更亮时,向面板和电源施加了更多的负荷。

例如,在图8中,在平均亮度水平(apl)的值变得小于25%的情况下,hdr增益计算部205使hdr增益逐渐变大,使得亮度水平逐渐变高,直到平均亮度水平(apl)的值变为10%。例如,在平均亮度水平(apl)的值变为25%的情况下,hdr增益为1.0(500/500)。然而,在平均亮度水平(apl)的值变为10%的情况下,hdr增益为1.6(800/500)。

此外,例如,在平均亮度水平(apl)的值变为10%或更小的情况下,hdr增益计算部205将1.6(800/500)的hdr增益计算作为固定值。

以此方式,在平均亮度水平(apl)的值变得小于预定阈值(在该实例中,25%)的情况下,计算hdr增益使得上推区域变得可利用,并且扩展视频信号的动态范围,从而可以利用由白色(w)的子像素扩展的色域。

这里,如图9中所示,在当前状态下的lsi的构造中,从信号处理电路102a输入到定时控制器电路103a的包括rgb中每一者的10位的信号对应于能够由布置在对应于第一线71的圆柱41的部分(其中明度v是v1或更小的范围)中的显示面板104中的每个像素中的红色(r)、绿色(g)和蓝色(b)的子像素表示的颜色范围。

此外,在定时控制器电路103a中,在平均亮度水平(apl)的值变得小于25%的情况下,例如,通过视频信号的动态范围(包括rgb中每一者的10位的信号)基于1.6的hdr增益来扩展的情况,可以扩展能够被表示的色域,以便在对应于第二线72的圆锥42的部分(其中明度v从v1到v2的范围)中包括能够由白色(w)的子像素表示的颜色范围。

以此方式,在当前状态下的lsi的构造中,通过设置为跟随信号处理电路102a的定时控制器电路103a,实现了利用通过提供白色(w)的子像素而可利用的上推区域的功能。

就此而言,在当前状态下的lsi的构造中,在平均亮度水平(apl)的值变得小于预定阈值(在该实例中,25%)的情况下,实现了利用通过提供白色(w)的子像素而变得可利用的上推区域的功能。另一方面,在平均亮度水平(apl)的值超过预定阈值(在该实例中,25%)的情况下,实现了对视频信号的亮度的限制功能(abl)。

(本技术中的lsi的构造)

接下来,描述已经应用了本技术的lsi的构造。图10是示出构造已经应用了本技术的lsi的信号处理电路102b和定时控制器电路103b的构造的实例的框图。

在图10中,信号处理电路102b对从视频生成器101提供的视频信号执行预定的信号处理。信号处理电路102b包括信号处理部300。该信号处理部300包括线性伽马转换部301a、apl计算部302、hdr增益计算部305和dr扩展部306。

视频信号(包括用于rgb的每一者的10位的信号)被输入到信号处理部300中,并被提供给线性伽马转换部301a和dr扩展部306。

线性伽马转换部301a执行信号处理以用于转换视频信号,其中输出具有相对于输入的伽马特征,以便具有来自伽马特征的线性特征。线性伽马转换部301a将转换后的视频信号提供给apl计算部302。

基于从线性伽马转换部301a提供的视频信号,apl计算部302计算平均亮度水平(apl),并将其提供给hdr增益计算部305和定时控制器电路103b(其abl增益计算部303)。

基于从apl计算部302提供的平均亮度水平(apl),hdr增益计算部305计算用于扩展视频信号的动态范围并获取扩展视频信号的hdr增益,并将其提供给dr扩展部306。这里,视频信号被制成包括rgb中每一者的10位的信号,并且扩展视频信号被制成包括rgb中每一者的12位的信号。

基于从hdr增益计算部305提供的hdr增益,dr扩展部306扩展已经输入其的视频信号(包括rgb中每一者的10位的信号)的动态范围(dr),并且将由此获取的扩展视频信号(包括rgb中每一者的12位的信号)提供给定时控制器电路103b(其线性伽马转换部301b)。

而且,在图10中,定时控制器电路103b包括线性伽马转换部301b、abl增益计算部303、abl控制部304和wrgb转换部307。从信号处理电路102b提供的扩展视频信号(包括rgb中每一者的12位的信号)和平均亮度水平(apl)被输入到定时控制器电路103b中,并被提供给线性伽马转换部301b和abl增益计算部303。

线性伽马转换部301b执行信号处理以用于转换扩展视频信号,其中输出具有相对于输入的伽马特征,以便具有来自伽马特征的线性特征。线性伽马转换部301a将转换后的扩展视频信号提供给apl控制部304。

基于从信号处理电路102b(其apl计算部302)提供的平均亮度水平(apl),abl增益计算部303计算用于控制扩展视频信号的亮度水平(abl)的增益(abl增益),并将其提供给abl控制部304。

基于从abl增益计算部303提供的abl增益,abl控制部304控制(限制)从线性伽马转换部301b提供的扩展视频信号的亮度水平,并将其提供给wrgb转换部307。

wrgb转换部307将从abl控制部304提供的扩展视频信号(已经经过abl控制的rgb信号)转换为wrgb信号,并将其输出。

这里的转换处理是将包括红色(r)、绿色(g)和蓝色(b)的三基色的rgb信号转换为包括红色(r)、绿色(g)和蓝色(b)的三基色以及白色(w)的一种非基色的wrgb信号的转换过程。

图11示意性地示出了从rgb信号到wrgb信号的转换的实例。就此而言,在图11中,图中的左侧表示转换前的rgb信号,图中的右侧表示转换后的wrgb信号。

在wrgb转换部307中,首先,使输入rgb信号的三种颜色的亮度信息中的最小者成为白色(w)的亮度信息。在该实例中,由于蓝色(b)的亮度信息变为最小,因此使其成为白色(w)的亮度信息。

然后,在wrgb转换部307中,通过从转换前的红色(r)的亮度信息中减去白色(w)的亮度信息,来获取转换后的红色(r)的亮度信息。类似地,通过从转换前的绿色(g)的亮度信息中减去白色(w)的亮度信息,来获取转换后的绿色(g)的亮度信息,并通过从转换前的蓝色(b)的亮度信息中减去白色的亮度信息(w),来获取转换后的蓝色(b)的亮度信息。

wrgb转换部307输出通过这种方式获得的红色(r)、绿色(g)、蓝色(b)和白色(w)的亮度信息作为wrgb信号。

就此而言,在将图11中的转换实例与上面提及的图7中的转换实例进行比较的情况下,增加了红色(r)、绿色(g)和蓝色(b)中的每一者的亮度信息,并且还增加了白色(w)的亮度信息。然而,通过从转换前的红色(r)、绿色(g)和蓝色(b)中的每一者的亮度信息中减去白色(w)的亮度信息来获取了转换后的红色(r)、绿色(g)和蓝色(b)中的每一者的情况没有变化。而且,在图7和图11中,线81表示上限值。

应用本技术的lsi如上所述构造。

这里,同样在各自已经在图10中示出的信号处理电路102b和定时控制器电路103b中,在利用上面提及的图8中的平均亮度水平(apl)与显示面板104的亮度之间的关系(特征信息)的情况下,例如,将执行以下控制。

即,hdr增益计算部305生成hdr增益,以使得可以利用由白色(w)的子像素扩展的色域,并将其提供给dr扩展部306。

这里,如图8中所示,对由白色(w)的像素扩展的色域的上推区域的利用限于例如平均亮度水平(apl)的值变为0到25%的范围内的情况。其原因是确保仅在平均亮度水平(apl)的值低并且电力具有一些额外功率的情况下利用上推区域,因为当视频图像(画面图案)更亮时,向面板和电源施加了更多的负荷。

例如,在图8中,在平均亮度水平(apl)的值变得小于25%的情况下,hdr增益计算部305使hdr增益逐渐变大,使得亮度水平逐渐变高,直到平均亮度水平(apl)的值变为10%。例如,在平均亮度水平(apl)的值变为25%的情况下,hdr增益为1.0(500/500)。然而,在平均亮度水平(apl)的值变为10%的情况下,hdr增益为1.6(800/500)。

此外,例如,在平均亮度水平(apl)的值变为10%或更小的情况下,hdr增益计算部305将1.6(800/500)的hdr增益计算作为固定值。

就此而言,在这里,已经举例说明了基于平均亮度水平(apl)的值计算hdr增益的情况。然而,在计算hdr增益时,除了平均亮度水平(apl)的测量之外,例如,可以执行诸如直方图测量的视频图像分析处理,然后,其分析结果可以反映在hdr增益的值上。即,在这里,通过分析从视频信号获取的帧图像是什么类型的图像(例如,夜空中的星星的图像),可以计算对应于分析结果的hdr增益。

以此方式,在平均亮度水平(apl)的值变得小于预定阈值(在该实例中,25%)的情况下,计算hdr增益使得上推区域变得可利用,并且扩展视频信号的动态范围,从而可以利用由白色(w)的子像素扩展的色域。

这里,在图12中,使用hsv颜色空间来表示能够由显示面板104表示的色域。如上所述,在该hsv颜色空间中,方位方向表示色调h(hue),径向方向表示饱和度s(saturation),轴向方向表示明度v(value)。图12中的第一线71对应于上面提及的图8中的第一线71。能够由布置在显示面板104中的每个像素中的红色(r)、绿色(g)和蓝色(b)的子像素表示的颜色范围对应于图中的圆柱41的一部分(其中亮度v是v1或更小的范围)。

另一方面,如上所述,在能够由显示面板104中的每个像素中的红色(r)、绿色(g)和蓝色(b)的子像素以及白色(w)的子像素表示的颜色范围中,除了图中的圆柱41的部分之外,在圆柱上形成的锥体42的一部分也包括在内。

以此方式,通过使白色(w)的子像素发光,可以将明度v提高到高于v1的v2。也就是说,除了红色(r)、绿色(g)和蓝色(b)的子像素之外,通过提供白色(w)的子像素,可以扩展能够表示的色域。

这里,如图12中所示,在应用了本技术的lsi的构造中,要输入到信号处理电路102b的dr扩展部306中的包括rgb中每一者的10位的信号对应于在显示面板104中对应于第一线71的圆柱41的一部分(其中明度v为v1或更小的范围)中的能够由红色(r)、绿色(g)和蓝色(b)的子像素表示的颜色范围。

此外,在dr扩展部306中,在平均亮度水平(apl)的值变得小于25%的情况下,例如,通过基于1.6的hdr增益扩展视频信号的动态范围(包括rgb中每一者的10位的信号)并且生成扩展视频信号(包括rgb中每一者的12位的信号),可以扩展能够被表示的色域,以包括能够在对应于第二线72的圆锥42的一部分(其中明度v从v1到v2的范围)中的白色(w)的子像素表示的颜色范围。

以此方式,在已经应用了本技术的lsi的构造中,通过信号处理电路102b(hdr增益计算部305、dr扩展部306等),实现了利用通过提供白色(w)的子像素而变得可利用的上推区域的功能。在这里,包括rgb中每一者的12位的信号从信号处理电路102b输入到定时控制器电路103b中。

就此而言,在图10中示出的定时控制器电路103b中,通过利用上面提及的图8中的平均亮度水平(apl)与显示面板104的亮度之间的关系,在abl控制部304中,基于来自abl增益计算部303的abl增益的值,可以执行控制,使得当平均亮度水平的值(apl)越大时,扩展视频信号的亮度水平越低。例如,在计算出平均亮度水平(apl)为100%的情况下,500cd/m2的亮度下降至150cd/m2

也就是说,当显示在构造为有机el显示面板的显示面板104上的视频图像(画面图案)变得更亮(更明亮)时,向面板和电源施加了更多的负荷。因此,在这里,当平均亮度水平(apl)变得更高时,使得扩展视频信号的亮度水平逐渐降低。

例如,在对应于能够由显示面板104中的红色(r)、绿色(g)和蓝色(b)的子像素表示的颜色范围的亮度变为500cd/m2的情况下,当已经计算出100%为平均亮度水平(apl)时,如下获取abl增益。

即,此时,由于平均亮度水平(apl)变为100%,因此需要将亮度水平限制到150cd/m2的亮度。因此,abl增益计算部303将0.3(150/500)的增益作为abl增益提供给abl控制部304。由此,基于0.3的abl增益,abl控制部304控制(限制)扩展视频信号的亮度水平。

就此而言,在已经应用了本技术的lsi的构造中,在平均亮度水平(apl)的值变得小于预定阈值(在该实例中,25%)的情况下,实现了利用通过提供白色(w)的子像素而变得可利用的上推区域的功能。另一方面,在平均亮度水平(apl)的值超过预定阈值(在该实例中,25%)的情况下,实现了对视频信号的亮度的限制功能(abl)。

如上所述,根据本技术,通过由设置在定时控制器电路103b的前一级的信号处理电路102b将包括rgb中每一者的10位的信号扩展为包括rgb中每一者的12位的信号,可以最大程度地有效地利用能够由显示面板104(例如,有机el显示面板)表示的色域,其中wrgb像素均包括以二维方式布置为多个像素(显示像素)的红色(r)、绿色(g)、蓝色(b)和白色(w)的四个子像素。

即,除了红色(r)、绿色(g)和蓝色(b)的子像素之外,通过提供(w)的子像素,可以扩展能够由显示面板104表示的色域。然而,在本技术中,通过在信号处理电路102b侧预先扩展rgb的位(例如,rgb中每一者的10位扩展到rgb中每一者的12位),对应于能够由白色(w)的子像素表示的颜色范围的信号被输入到定时控制器电路103b中。

更具体地说,在上面提及的图12中的hsv颜色空间中,通过使白色(w)的子像素发光,可以将明度v提高到高于v1的v2。然而,关于该上推区域,例如,它变为由两位表示,对应于将rgb中每一者的10位扩展为rgb中每一者的12位时增加的位。

这里,例如,在面板制造商提供诸如有机el显示面板的显示面板104的情况下,对于制造诸如有机在el显示装置的显示装置10(薄型电视接收器)的tv(电视)制造商,假设由tv制造商执行用于tv的诸如信号lsi的信号处理电路102b的设计、制造等,另一方面,由面板制造商执行用于面板的诸如tcon·lsi的定时控制器电路103b的设计、制造等。

在这种情况下,在执行信号处理电路102b的设计、制造等的tv制造商侧,存在要求实现有关的tv制造商所期望的图像质量的请求。在本技术中,可以响应这样的请求,因为通过在信号处理电路102b侧扩展rgb的位,使得能够最大程度地积极利用能够由显示面板104(例如,有机el显示面板)(其中wrgb像素以二维方式布置)表示的色域。

此外,在本技术中,作为平均亮度水平(apl)的值与阈值之间的比较的结果,在帧图像在某种程度上变暗的情况下(例如,平均亮度水平(apl)的值变为0到25%的范围内),也就是说,仅电力具有一些额外功率的情况下,使得由白色(w)的子像素扩展的色域被利用(使得其被推高)。因此,可以抑制功耗。就此而言,由于白色(w)的子像素与其他颜色的子像素相比具有高发光效率,所以即使白色(w)的子像素发光,与其他颜色的子像素相比也不会消耗许多电力。

<2.变形例>

在上面提及的描述中,已经基于信号处理电路102和定时控制器电路103是构成显示装置10的元件的假设给出了描述。然而,信号处理电路102和定时控制器电路103可以被视为作为独立装置的信号处理装置、定时控制器装置等。

此外,在上面提及的描述中,作为显示装置10,已经给出了作为一个实例的诸如包括具有可制造性特有的环境的大型有机el显示面板等的自发光型显示装置的描述。然而,本技术不仅可以应用于有机el显示装置,还可以应用于各种显示装置。此外,在上面提及的描述中,作为显示装置10,已经给出了作为一个实例的薄型电视接收器、商用显示装置等的描述。然而,它可以应用于各种电子装置,例如信息装置和便携式装置。

在上面提到的描述中,作为信号处理电路102b侧的位的扩展,已经示出了将rgb中每一者的10位扩展为rgb中每一者的12位的实例。然而,扩展后的位不限于rgb中每一者的12位。例如,诸如rgb中每一者的11位和rgb中每一者的13位,如果它们是可以表示能够由白色(w)的子像素表示的颜色范围的位,则是允许的。

此外,在上面提到的描述中,已经假设在显示面板104中以二维方式布置的每个像素包括红色(r)、绿色(g)、蓝色(b)和白色(w)的四个子像素而给出了描述。然而,子像素的颜色不限于这些。例如,代替白色(w)的子像素,可以使用具有与白色(w)相当的高可见度的其他颜色的子像素。

就此而言,在本说明书中,“2k视频图像”是对应于大约1920×1080像素的屏幕分辨率的视频图像,“4k视频图像”是对应于大约3840×2160像素的屏幕分辨率的视频图像。此外,在上面提到的描述中,作为内容的视频图像,已经描述了2k视频图像和4k视频图像。可以允许诸如8k视频图像等的更高质量的内容。顺便提及,“8k视频图像”是对应于大约7680×4320像素的屏幕分辨率的视频图像。

应注意,本技术的实施方式不应限于上述实施方式。在不背离本技术的概述的范围内,可以做出各种修改。

另外,本技术还可以如下配置。

(1)

一种显示装置,包括:

显示部,其中显示像素以二维方式布置,显示像素均包括发射三基色光的第一子像素、第二子像素和第三子像素以及发射非基色光的第四子像素;

第一信号处理部,扩展正被输入且对应于基色光的视频信号,并且使视频信号适于显示部可以表示的色域;以及

第二信号处理部,将作为已经扩展的视频信号的扩展视频信号转换成对应于基色光的第一信号、第二信号和第三信号以及对应于非基色光的第四信号,并且将这些信号输出至显示部。

(2)

根据(1)所述的显示装置,其中,所述第一信号处理部包括

第一增益计算部,计算用于扩展视频信号的动态范围并获取扩展视频信号的第一增益,以及

dr扩展部,基于计算出的第一增益来扩展视频信号的动态范围。

(3)

根据(2)所述的显示装置,

其中,第一信号处理部还包括

平均亮度水平计算部,计算从视频信号获取的帧图像的平均亮度水平,并且

第一增益计算部基于计算出的平均亮度水平来计算第一增益。

(4)

根据(3)所述的显示装置,其中,所述第二信号处理部包括

颜色信号转换部,将扩展视频信号转换为第一信号、第二信号、第三信号和第四信号。

(5)

根据(4)所述的显示装置,

其中,第二信号处理部还包括

第二增益计算部,基于计算出的平均亮度水平来计算用于控制扩展视频信号的亮度水平的第二增益,以及

亮度控制部,基于计算出的第二增益来控制扩展视频信号的亮度水平,并且

颜色信号转换部将亮度水平已经被控制的扩展视频信号转换为第一信号、第二信号、第三信号和第四信号。

(6)

根据(5)所述的显示装置,其中,第一增益和第二增益各自是根据特征信息获取的值,平均亮度水平和显示部的亮度水平在特征信息中相关联。

(7)

根据(6)所述的显示装置,其中,在平均亮度水平变得小于预定阈值的情况下,第一增益计算部基于特征信息来计算用于扩展视频信号的动态范围的第一增益。

(8)

根据(6)或(7)所述的显示装置,其中,在平均亮度水平超过预定阈值的情况下,第二增益计算部基于特征信息来计算用于降低扩展视频信号的亮度水平的第二增益。

(9)

根据(1)到(8)中任一项所述的显示装置,

其中,基色光包括红光、绿光和蓝光,并且

非基色光是白光。

(10)

根据(1)到(9)中任一项所述的显示装置,

其中,显示像素是包括发光元件的像素,发光元件根据电流的量而自身发射光,并且

显示部是自发光显示部。

(11)

一种信号处理装置,包括:

信号处理部,扩展作为输入的视频信号,并且输出适于显示部可以表示的色域的扩展视频信号,

其中,在显示部中,显示像素以二维方式布置,显示像素均包括发射三基色光的第一子像素、第二子像素和第三子像素以及发射非基色光的第四子像素,并且

视频信号是对应于基色光的信号。

(12)

根据(11)所述的信号处理装置,其中,信号处理部包括

增益计算部,计算用于扩展视频信号的动态范围并获取扩展视频信号的增益,以及

dr扩展部,基于计算出的增益来扩展视频信号的动态范围。

(13)

根据(12)所述的信号处理装置,

其中,信号处理部进一步包括

平均亮度水平计算部,计算从视频信号获取的帧图像的平均亮度水平,并且

增益计算部基于计算出的平均亮度水平来计算增益。

(14)

根据(13)所述的信号处理装置,其中,增益是根据特征信息获取的值,平均亮度水平和显示部的亮度水平在特征信息中相关联。

(15)

根据(14)所述的信号处理装置,其中,在平均亮度水平变得小于预定阈值的情况下,增益计算部基于特征信息来计算用于扩展视频信号的动态范围的增益。

(16)

根据(11)至(15)中任一项所述的信息处理装置,

其中,基色光包括红光、绿光和蓝光,并且

非基色光是白光。

(17)

根据(11)至(16)中任一项所述的信息处理装置,

其中,显示像素是包括发光元件的像素,发光元件根据电流的量而自身发射光,并且

显示部是自发光显示部。

(18)

根据(11)至(17)中任一项所述的信息处理装置,

其中,信号处理部将扩展视频信号输出至随后的信号处理装置,并且

随后的信号处理装置将扩展视频信号转换成对应于基色光的第一信号、第二信号和第三信号以及对应于非基色光的第四信号,并且将这些信号输出至显示部。

参照符号列表

10显示装置

101视频生成器

102和102b信号处理单元

103和103b定时控制器电路

104显示面板

300信号处理部

301a和301b线性伽马转换部

302apl计算部

303abl增益计算部

304abl控制部

305hdr增益计算部

306dr扩展部

307wrgb转换部。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1