电光装置及电子设备的制作方法

文档序号:2772059阅读:144来源:国知局
专利名称:电光装置及电子设备的制作方法
技术领域
本发明属于有源矩阵驱动方式的电光装置的技术领域,特别是涉及在基板上的层压构造中设有像素开关用的薄膜晶体管(Thin Film Transistor,以下称为“TFT”)的形式的电光装置及其制造方法以及作为光阀具有该电光装置电子设备的技术领域。而且,本发明属于电子纸等电泳装置、使用EL(场致发光)和电子发射元件的装置(场致发光显示器以及表面导电电子发射显示器)的技术领域。
现有技术在TFT有源矩阵驱动形式的电光装置中,当入射光照射到设在各像素上的像素开关用的TFT的沟道区域上时,通过由光产生的激发,而发生光泄漏电流,TFT的特性变化。特别是,在投影仪的光阀用的电光装置的情况下,由于入射光的强度较高,进行对TFT的沟道区域及其周边区域的入射光的遮光是重要的。
因此,在现有技术中,通过规定设在对向基板上的各像素的开口区域的遮光膜,或者,通过在TFT阵列基板上经过TFT之上并且由Al(铝)等金属膜构成的数据线,来构成为所说的沟道区域及其周边区域进行遮光。而且,在与TFT阵列基板上的TFT的下侧相对的位置上,也设置例如由高熔点金属构成的遮光膜。
如果这样在TFT的下侧也设置遮光膜,能够事先防止来自TFT阵列基板的内面反射光和在经过棱镜等来组合多个电光装置而构成一个光学系统的情况下从其他电光装置穿过棱镜等的投射光等的返回光入射到该电光装置的TFT上。
但是,根据上述各种遮光技术,存在以下问题即,首先,根据在对向基板和TFT阵列基板上形成遮光膜的技术,在遮光膜与沟道区域之间,从三维上来看,其间介入液晶层、电极、层间绝缘膜等而隔开很大,对于斜着入射到两者间的光的遮光是不充分的。特别是,在作为投影仪的光阀使用的小型电光装置中,入射光是由透镜会聚来自光源的光的光束,不能忽略斜着入射的成分,例如,包含10%的从与基板垂直的方向的10度至15度倾斜的成分,因此,对这样的斜的入射光的遮光是不充分的,在实践上存在问题。
而且,从没有遮光膜的区域进入到电光装置内的光,在被基板的上表面或者形成在基板的上表面上的遮光膜的上表面和数据线的下表面,即面对沟道区域侧的内表面所反射之后,相应的反射光或者被基板的上表面或遮光膜和数据线的内表面将其反射的多重反射光最终会到达TFT的沟道区域。
特别是,随着为了满足近年来的显示图像的高品质化的一般要求,而谋求电光装置的高精细化或者像素间距的细微化,而且,为了显示更亮的图像而提高入射光的光强度的趋势,根据上述现有的各种遮光技术来进行充分的遮光变得更加困难,存在由于TFT的晶体管特性的变化,而产生闪烁等,显示图像的品质降低的问题。
另外,为了提高这样的耐光性,被认为遮光膜的形成区域越宽越好,但是,由于扩大了遮光膜的形成区域,为了提高显示图像的亮度,从根本上就要求提高各像素的开口率,而实现该开口率的提高是困难的。而且,如上述那样,由于遮光膜即TFT的下侧的遮光膜和由数据线等构成的TFT的上侧的遮光膜等的存在,鉴于因斜光引起的内表面反射光和多重反射光的发生,而过度扩大遮光膜的形成区域,就会引起这样的内表面反射光和多重反射光的增大,由此产生难以解决的问题。

发明内容
鉴于上述问题,本发明的目的在于提供一种电光装置,该装置能够通过提高对薄膜晶体管的半导体层的遮光性能,来抑制光泄漏电流的发生,由此能够显示没有闪烁等的高品质的图像。另外,本发明的目的还在于提供一种具有这样的电光装置的电子设备。
为了解决上述课题,本发明的电光装置,包括在基板上沿第一方向延伸的数据线;沿与上述数据线相交叉的第二方向延伸的扫描线;配置成与上述数据线和上述扫描线的交叉区域相对应的像素电极和薄膜晶体管;和与上述薄膜晶体管和上述像素电极电连接的蓄积电容器。
并且,上述薄膜晶体管具有包含沿纵向延伸的沟道区域和从该沟道区域进一步沿纵向延伸的沟道相邻区域的半导体层,上述扫描线在上述沟道区域的侧边具有遮光部。
根据本发明的电光装置,通过遮光部,能够至少部分地阻止斜着进入基板面的入射光及回光以及基于它们的内表面反射光及多重反射光等斜光入射到沟道区域中。
在本发明的电光装置的一个形态中,上述扫描线可以具有包含沿与上述纵向相交的方向延伸的同时,在平面上看与上述沟道区域重叠的上述薄膜晶体管的栅极电极的本体部;和在平面上看,在上述沟道区域的侧边从上述本体部沿上述纵向突出,而成为上述遮光部的水平突出部。
根据该电光装置,扫描线具有从在平面上看从包含薄膜晶体管的栅极电极的本体部,在上述沟道区域的侧边,沿沟道区域突出的水平突出部。因此,能够通过不仅由扫描线中包含栅极电极的本体部,而且特别是由水平突出部的光吸收或者光反射,来至少部分地阻止斜着进入基板面的入射光和返回光以及因它们而产生的内表面反射光和多重反射光等斜光入射到沟道区域和沟道邻接区域中。此时,特别是通过配置在距沟道邻接区域的层间距离非常小的位置即配置在一般仅离开栅极绝缘膜的厚度的层间位置上的水平突出部,来进行遮光,可以非常有效地进行该遮光。
例如,在基板上,当在薄膜晶体管的下侧设置下侧遮光膜时,由于可以得到在层间距离比较小的下侧遮光膜与作为遮光膜起作用的扫描线的水平突出部和本体部之间,夹持沟道邻接区域和沟道区域的构成,因此,能够得到对斜光非常高的遮光性能。
其结果,根据本形态,能够提高耐光性,即使在强的入射光和返回光入射这样的严酷条件下,也可以通过光泄漏电流降低的薄膜晶体管来对像素电极进行良好的开关控制,最终能够显示明亮的高对比度的图像。
在本发明的电光装置的一个形态中,上述本体部和上述水平突出部可由同一膜一体构成。
根据该形态,在制造该电光装置时,遮光用的突出部由于可以在与本体部一同在形成扫描线的工序中形成,所以,不需要为了形成该突出部而追加工序。因此,能够简化基板上的层压构造及制造过程。
另外,在具有水平突出部的形态中,上述水平突出部,在平面上看,在每个上述沟道区域中,在其源极侧及漏极侧的侧边突出。
根据该形态,通过这些突出部,能够提高对从各种方向三维地入射的斜光的遮光性能。进一步,可以制成在源极侧和漏极侧的侧边设置,在每个薄膜晶体管中,在其源极侧和漏极侧以及它们的两侧设置合计4个突出部。
在本发明的电光装置的另一个形态中,上述薄膜晶体管具有包含沿纵向延伸的沟道区域的半导体层,设有至少从上侧覆盖上述薄膜晶体管的上述沟道区域的上侧遮光膜,上述上侧遮光膜,在与上述沟道区域的纵向直交的断面上,从上述沟道区域侧看,至少部分地形成凹状。
根据该形态,设有从上侧至少覆盖沟道区域的上侧遮光膜,上述上侧遮光膜,在与上述沟道区域的纵向直交的断面上,从上述沟道区域侧看,至少部分地形成凹状。即,下侧形成为凹状。由此,与上侧遮光膜是平坦的情况相比,能够通过该上侧遮光膜,更有效地阻止斜着进入基板面的入射光以及根据入射光和返回光的内表面反射光及多重反射光等斜光最终从斜上侧入射到沟道区域中。
例如,当在基板上,在薄膜晶体管的下侧设置下侧遮光膜时,由于可得到在下侧遮光膜与上侧遮光膜之间夹持沟道区域的构成,所以,可得到对斜光非常高的遮光性能。此时,下侧遮光膜也可以与上述上侧遮光膜的凹凸上下相反地,在与沟道区域的纵向直交的断面上,从沟道区域侧看,至少部分地形成为凹状。
其结果,根据本形态,能够提高耐光性,即使在强的入射光和返回光入射这样的严酷条件下,也可以通过光泄漏电流降低的薄膜晶体管来对像素电极进行良好的开关控制,最终能够显示明亮的高对比度的图像。
在本发明的电光装置的另一个形态中,上述薄膜晶体管具有包含沿上述第一方向延伸的沟道区域的半导体层,上述扫描线具有主线部,该主线部包含在上述沟道区域中期间介入栅极绝缘膜对向配置的上述薄膜晶体管的栅极电极的同时,在平面上看沿与上述第一方向相交叉的第二方向延伸;还具有包围部,该包围部被延伸设置成在平面上看从上述沟道区域在上述第二方向上离开规定距离处的上述主线部来包围上述半导体层。
根据该形态,扫描线具有包围部,该包围部被其延伸设置,以在平面上看从上述沟道区域在上述第二方向上离开规定距离处的上述主线部来包围上述半导体层。因此,能够通过不仅由扫描线中包含栅极电极的本体部,而且特别是由包围部的光吸收或者光反射,来至少部分地阻止斜着进入基板面的入射光和返回光以及因它们而产生的内表面反射光和多重反射光等斜光入射到沟道区域和沟道邻接区域中。此时,特别是通过配置在距沟道区域和沟道邻接区域的层间距离非常小的位置,即配置在一般仅离开栅极绝缘膜的厚度的层间位置上的包围部来进行遮光,可以非常有效地进行该遮光。
其结果,根据本形态,能够提高耐光性,即使在强的入射光和返回光入射这样的严酷条件下,也可以通过光泄漏电流降低的薄膜晶体管对像素电极进行良好的开关控制,最终能够显示明亮的高对比度的图像。
另外,鉴于这样的技术效果,在本发明中,所谓“在平面上看包围半导体层”是包含以下情况的广义概念,即除在平面上看,在半导体层的周围不中断地延伸地形成包围部的含义以外,还包括在平面上看,在半导体层的周围,在沟道区域的下侧周围存在若干中断而形成包围部,或者断续地形成包围部以及形成岛状地占据的包围部等情况。
在该形态中,特别是上述扫描线可以制成进一步具有垂直突出部,该垂直突出部从由上述沟道区域沿上述第二方向离开规定距离处的上述主线部向上述基板的垂直方向突出。
根据该形态,由于主线部包含向基板的垂直方向突出的垂直突出部,所以,能够通过包含垂直突出部的主线部来立体地覆盖沟道区域,进一步提高遮光性能。特别是在扫描线位于沟道区域的上侧的所谓顶栅型的情况下,可以得到通过包含垂直突出部的主线部,从上侧立体地覆盖沟道区域的构成。另外,与包围部相关的规定距离和垂直突出部的规定距离可以是相同的,也可以是不同的。
在具有上述包围部的形态中,特别是上述扫描线可以制成进一步具有从上述包围部向上述基板的垂直方向突出的垂直突出部。
根据该形态,通过主线部的垂直突出部和包围部的垂直突出部,能够立体地覆盖沟道区域,进一步提高遮光性能。特别是,在扫描线位于沟道区域的上侧的所谓顶栅型的情况下,可以得到通过分别包含垂直突出部的主线部和包围部,从上侧立体地覆盖沟道区域的构成。另外,这些垂直突出部可以是连续地突出,也可以是分别地突出。
在本发明的电光装置的另一个形态中,上述薄膜晶体管具有包含沿上述第一方向延伸的沟道区域的半导体层,上述扫描线具有主线部,该主线部包含在上述沟道区域中其间介入栅极绝缘膜对向配置的上述薄膜晶体管的栅极电极的同时,在平面上看沿与上述第一方向相交叉的第二方向延伸;还具有垂直突出部,该垂直突出部从在平面上看由上述沟道区域在上述第二方向上离开规定距离处的上述主线部向下方突出。
根据该形态,扫描线具有垂直突出部,该垂直突出部在平面上看从上述沟道区域在上述第二方向上离开规定距离处的上述主线部向下方突出。因此,能够通过不仅由扫描线中包含栅极电极的本体部,特别是由突出部,在接近该沟道区域和沟道邻接区域的位置上,通过主线部和突出部,来立体地对该沟道区域和沟道邻接区域进行遮光,遮挡斜着进入基板面的入射光和返回光以及因它们而产生的内表面反射光和多重反射光等斜光入射到沟道区域和沟道邻接区域中,由此可非常有效地进行该遮光。
其结果,根据本形态,能够提高耐光性,即使在强的入射光和返回光入射这样的严酷条件下,通过光泄漏电流降低的薄膜晶体管像素电极进行良好的开关控制,最终能够显示明亮的高对比度的图像。
在包含上述垂直突出部的形态中,特别是可以制成在上述基板上进一步设有至少从下侧覆盖上述沟道区域的下侧遮光膜,上述垂直突出部在其顶端侧与上述下侧遮光膜相接触。
根据这样的构成,可以得到在层间距离比较小的下侧遮光膜与作为遮光膜起作用的扫描线的包围部和本体部之间夹持沟道邻接区域和沟道区域的构成。而且,存在沟道邻接区域和沟道区域的下侧遮光膜与扫描线的包围部和本体部之间的空间成为通过突出部至少部分封闭的空间。为此,可以得到对以任意方向倾斜的斜光,非常高的遮光性能。
而且,根据本形态,例如,不仅将薄膜晶体管的栅极电极与扫描线形成在同一层中,而且将栅极电极和扫描线作为不同的层而形成的同时,作为其中的扫描线,可以利用本形态的下侧遮光膜。即,在此情况下,下侧遮光膜兼备作为扫描线的功能。进一步,可以是这样的形态栅极电极与扫描线形成为同一层中的同时,使下侧遮光膜具有作为扫描线的功能。在此情况下,对于某一个薄膜晶体管,并列设置两条扫描线,对于该扫描线,采用冗余构造。由此,即使在一方的扫描线中发生了断线等故障,也能使用另一方的扫描线,因此,能够得到提高可靠性的优点。
另外,在如上述那样下侧遮光膜兼备扫描线的功能的情况下,该下侧遮光膜必须形成为条纹状,以便于与矩阵状排列的薄膜晶体管的各行相对应。
或者,在上述基板上,进一步包括至少从下侧覆盖上述沟道区域的下侧遮光膜,上述垂直突出部不与上述下侧遮光膜相接触。
根据这样的构成,可以得到在层间距离比较小的下侧遮光膜与作为遮光膜起作用的扫描线的包围部和本体部之间夹持沟道邻接区域和沟道区域的构成。而且,存在沟道邻接区域和沟道区域的下侧遮光膜与扫描线的包围部和本体部之间的空间成为通过突出部至少部分封闭的空间。因此,对于在以任意方向倾斜的斜光,均能够得到非常高的遮光性能。
而且,在采用这样的不使下侧遮光膜与扫描线接触的构成的情况下,能够与下侧遮光膜的导电性无关,来事先防止有下侧遮光膜的电位变动产生的不良影响,例如,对薄膜晶体管的不良影响。
在本发明的电光装置的另一个形态中,上述薄膜晶体管具有包含沿上述第一方向延伸的沟道区域的半导体层,上述扫描线具有主线部,该主线部包含在上述沟道区域中其间介入栅极绝缘膜对向配置的上述薄膜晶体管的栅极电极的同时,在平面上看沿与上述第一方向相交叉的第二方向延伸,该主线部包含配置在上述基板上掘出的沟内的同时,从侧方至少部分地覆盖上述沟道区域的沟内部分。
根据该形态,扫描线从平面看具有沿第二方向延伸的主线部。在此特别是,该主线部中配置在沟内的沟内部分至少从侧方部分地覆盖沟道区域。因此,通过由该沟内部分的光吸收或者光反射,至少可以部分地阻止斜着进入基板面的入射光,特别是斜着进入内面的返回光以及基于它们的内表面反射光和多重反射光等斜光入射到沟道区域和沟道邻接区域中。通过这样提高耐光性,即使在强的入射光和返回光入射这样的严酷条件下,也可通过光泄漏电流降低的薄膜晶体管对像素电极进行良好的开关控制,能够显示明亮的高对比度的图像。
而且,由于该扫描线的主线部包含沟内部分,通过使与第二方向垂直的断面上的沟内部分的断面面积以及位于沟外的沟外部分的断面面积增加,也可以降低扫描线的布线电阻。如果这样来降低扫描线的布线电阻,也可以降低由扫描信号的信号延迟所引起的串扰、闪烁等的发生,最终在实现电光装置的高精细化或像素间距的细微化的同时,使高品质的图像的显示成为可能。以上结果,通过本发明能够实现明亮的高品质的图像显示。
另外,在本发明中,至少部分地配置扫描线的主线部的沟可以直接在基板上挖掘,也可以在层压在基板上的基底绝缘膜上挖掘。
在本发明的电光装置的另一个形态中,上述薄膜晶体管具有包含沿上述第一方向延伸的沟道区域的半导体层,上述扫描线具有主线部,该主线部包含在上述沟道区域中其间介入栅极绝缘膜对向配置的上述薄膜晶体管的栅极电极的同时,在平面上看沿与上述第一方向相交叉的第二方向延伸,该主线部包含沿上述第二方向延伸并且配置在上述基板上掘出的沟内的沟内部分和沿上述第二方向延伸并配置在上述沟外的沟外部分。
根据该形态,扫描线从平面看具有沿第二方向延伸的主线部。在此特别是,由于该主线部包含分别沿第二方向延伸的沟内部分和沟外部分,所以根据与第二方向垂直的断面中的沟内部分和沟外部分的合计断面面积,可以降低扫描线的布线电阻。例如,由于液晶的取向不良等的电气光学物质的工作不良的关系,鉴于在规定液晶等的电气光学物质的层厚的基板表面上,允许的高度差有一定的界限,与在平坦表面上成膜的传统的扫描线和完全埋入沟内的扫描线相比较,相对于基板上的层压构造中的合计膜厚,能够使扫描线的断面面积增加的本发明的上述构造在实用上是非常有利的。
通过这样来降低扫描线的布线电阻,能够降低由扫描信号的信号延迟所产生的串扰、闪烁等的发生,最终可以不断地实现电光装置的高精细化或像素间距的细微化,使显示高品质的图像成为可能。
而且,在本发明中,至少部分地配置扫描线的主线部的沟可以直接在基板上挖掘,也可以在层压在基板上的基底绝缘膜上挖掘。
如上所述,通过在扫描线上设置特别的要素例如水平突出部、包围部等,在可以进行对半导体层的遮光的形态中,上述扫描线可以由包含金属或合金的遮光膜所构成。
根据该形态,扫描线由含有金属或合金的遮光膜所构成,更具体地说,例如,由含有Ti(钛)、Cr(铬)、W(钨)、Ta(钽)、Mo(钼)、Pb(铅)等高熔点金属中至少一种的,金属单体、合金、金属硅化物、多硅化物(polysilicide)、它们的层压体等所构成。因此,通过由这样的遮光膜所构成的扫描线的本体部和突出部,能够进一步提高对斜光的沟道区域和沟道邻接区域中的遮光性能。
但是,扫描线除了由这样的遮光膜构成之外,也可以由多晶硅膜等来形成,也能得到对应其光吸收特性的遮光性能。
在本发明的电光装置的另一个形态中,构成上述蓄积电容器的一对电极的一方构成沿上述第二方向所形成的电容线的一部分的同时,该电容线由包含低电阻膜的多层膜所构成。
根据该形态,首先,构成蓄积电容器的一对电极的一方(以下为了简化有时称为“一方电极”)构成沿第二方向即扫描线的形成方向所形成的电容线的一部分。由此,例如,为了使上述一方电极成为固定电位,不需要对于可按每个像素设置的蓄积电容器的一方电极,分别单独设置用于使它们成为固定电位的导电材料等,采用将每个电容线连接到固定电位源上的形态即可。因此,根据本形态,能够谋求制造工序的简化或者制造成本的降低等。
另外,在本形态中,电容线由包含低电阻膜的多层膜所构成。根据这样的构成,可以实现电容线的高性能化例如作为该电容线具有的固定电位侧电容电极的功能以外,使其兼备其他功能等。特别是,在本发明中的该多层膜中,包含低电阻膜,即例如,铝、铜、铬等金属单体或者含有它们的材料等,与现有的多晶硅和WSi相比,包含其电阻低的材料,因此,能够实现高的导电率。而且,通过该高导电率的实现,在本形态中,可无特别限制地实现电容线的狭小化即蓄积电容器的狭小化。因此,本形态在谋求开口率的提高方面也是非常有利的。换句话说,能够防止在现有技术中当使电容线狭小化时产生的高电阻化引起的串扰的发生和烧附等的发生。
而且,由于本形态中的电容线由上述含有低电阻膜的多层膜所构成,因此,除该低电阻膜之外,能够使由用于实现防止对薄膜晶体管的光入射的遮光功能的其他材料所构成的膜兼用做该电容线的构成要素。
进一步,当如本发明这样由多层膜构成电容线时,能够使作为蓄积电容器的功能稳定。即,例如,如果仅为实现上述的低电阻化的目的,只用这样的材料的一层构成电容线即可,但是,有时不能充分地发挥作为蓄积电容器本来应有的电容器的功能。在本发明中,如上述那样,通过由两层以上的膜来构成电容线,即使在其一层中,使用具有某一特别的功能的材料,可以在另一层中补偿性地使用发挥作为蓄积电容器的功能的材料,因此不会发生上述那样的问题。
另外,在本发明中,在电容线中,由于实现了上述这样的多功能化,而提高了电光装置的设计自由度。
在本发明的电光装置的另一个形态中,上述电容线在其上层具有上述低电阻膜的同时,在其下层具有由光吸收性的材料所构成的膜。
根据该形态,在电容线中,可实现以下所述的多功能化。首先,因为电容线的上层具有上述低电阻膜,所以,例如,当设想光从该上层侧而入射时,通过该光被该低电阻膜的表面所反射,可以预先防止其直接到达薄膜晶体管。这是因为该材料一般具有高的光反射率。
另一方面,电容线的下层由例如多晶硅等光吸收性的材料所构成,因此,能够预先防止以下情况在入射到电光装置内部之后,由上述低电阻膜的表面或者上述数据线的下表面等反射而引起的所谓迷光到达薄膜晶体管。即,这样的迷光的全部或一部分被电容线的下层所吸收,因此,降低了该迷光到达薄膜晶体管的可能性。
而且,在本发明中,以电容线“由多层膜所构成”为前提,因此,例如在本形态中,在电容线的上层存在铝,在其下层存在多晶硅,但是,也可以在该铝的更上层存在由其他材料所构成的膜,或者在该多晶硅的更下层存在由其他材料所构成的膜,或者在该铝和该多晶硅之间存在由其他材料所构成的膜。而且,根据情况,当然也可以是从上向下依次为铝、多晶硅及铝等的构造。
在本发明的电光装置的另一个形态中,上述低电阻膜由铝构成。
根据该形态,由于铝是非常低的电阻的材料,上述那样的作用效果能够更确实地实现。铝的电阻值与上述多晶硅和WSi相比,约为1/100。
而且,根据在电容线中含有铝的该构成,能够得到以下这样的作用效果。在现有技术中,电容线如上所述由多晶硅单体、WSi等所构成,因此,由于由这些材料所引起的弯曲,在形成于该电容线上的层间绝缘膜等中产生较大的应力,但是,在本形态中,这样的问题不会发生。即,在现有技术中,由于上述应力的存在,对层间绝缘膜的厚度产生一定的限制,当使其过薄时,存在因该应力而发生破损的情况。在本形态中,可以不需要考虑这样的应力的存在,结果能够将层间绝缘膜的厚度减小到比现有技术更小,因此,能够谋求电光装置整体的小型化。
在本发明的电光装置的另一个形态中,上述像素电极介入钛单体、钨单体、钛或钨的化合物或者它们的层压体而与上述层压构造的其他层电连接。
根据该形态,能够良好地进行与像素电极及与其连接的层压构造中的其他层(例如,能够设想出的有构成蓄积电容器的一对电极的至少一方和后述的中继层等)的电连接。该像素电极由于通常由ITO(氧化铟锡)、IZO(氧化铟锌)等透明导电性材料所构成,当把其与铝等相接触时,产生所谓电腐蚀,由于因铝的断线或者氧化铝的形成所产生的绝缘等,而不会实现良好的电连接。但是,在本形态中,上述像素电极介入钛单体、钨单体、钛或钨的化合物或者它们的层压体而与上述层压构造的其他层电连接,而不会发生上述那样的缺陷。
在该形态中,作为上述像素电极的基底而配置的层间绝缘膜进一步成为上述层压构造的一部分,在该层间绝缘膜中形成有用于实现与上述像素电极的电连接的接触孔,在该接触孔的至少内表面上形成包含上述钛单体、钨单体、钛或钨的化合物或者它们的层压体的膜。
根据这样的构成,首先,不存在对于上述那样的电腐蚀的担心,可实现像素电极和其他层间的电连接。而且,与此同时,在本构成中,由于在像素电极与其他层间存在有接触孔,可以实现层压构造中的两者之间的更恰当的配置或者提高布局的自由度。而且,与此同时,能够更好地实现层压构造中的各种构成的适当配置,更具体地说,进行在遮光区域中关闭各种构成的配置,扩宽透光区域的目的,从这种意义上来说,对于本发明的目的的高孔径率的实现·维持等具有很大的贡献。
而且,在本构成中,因为在至少接触孔的内表面上形成有包含上述钛单体、钨单体、钛或钨的化合物或者它们的层压体的膜,所以,能够预先防止由于该接触孔引起的漏光等。即,该膜通过吸收或反射光,能够遮挡漏出接触孔的空洞部分的光的前进。由此,在图像上几乎不会发生漏光等。根据同样原因,能够提高薄膜晶体管及其半导体层的耐光性。由此,能够抑制光入射到该半导体层时的光泄漏电流的发生,预先防止由其引起的图像上的闪烁等的发生。由此,根据本构成,能够显示更高品质的图像。
在本发明的电光装置的另一个形态中,上述数据线与构成上述蓄积电容器的一对电极的一方形成为同一膜。
根据该形态,上述数据线与构成上述蓄积电容器的一对电极的一方为同一膜,换句话说,在同一层中或在制造工序阶段中同时地形成。由此,例如,就不需要采用将两者形成为不同的层,并且用层间绝缘膜来隔开两者之间的结构的手段,能够防止层压构造的层数过多。在本发明中,由于在层压构造中,在数据线及像素电极间形成上述屏蔽层,相应的高层化是预定的,这是非常有益的。因为层数过多的层压构造对制造容易性和制造成品率是不利的。而且,如本形态那样,即使同时形成数据线及上述一对电极中的一方,只要对该膜实施适当的构图处理,即可实现两者间的绝缘,对于这点,不存在什么问题。
而且,从本形态的记载相反地理解到,在本发明中,也不一定必须将数据线与构成蓄积电容器的一对电极的至少一方作为同一膜来形成。即,也可以将两者作为不同的层来形成。
在本发明的电光装置的另一个形态中,作为上述层压构造的一部分进一步具有中继层该中继层把上述像素电极与构成上述蓄积电容器的一对电极的至少一方电连接。
根据该形态,分别构成上述层压构造的一部分的像素电极与蓄积电容器的一对电极的一方通过同样构成层压构造的一部分的中继层进行电连接。具体地说,可以形成接触孔等。由此,例如,将本形态所涉及的中继层作为两层构造的同时,能够采用下列灵活的构成,即其上层由与通常作为像素电极的材料使用透明导电性材料的ITO(氧化铟锡)相容性好的材料所构成,其下层由与构成蓄积电容器的一对电极的一方相容性好的材料来构成,能够更好地实现对像素电极的电压施加或者该像素电极中的电位保持。
而且,设置这样的“中继层”在谋求像素电极及蓄积电容器的配置的优化方面是优选的。即,通过本形态,也可以为了尽可能地扩宽透光区域,来进行中继层和蓄积电容器的配置,因此能够实现更高的开口率。
在本形态中,特别是上述中继层可由铝膜及氮化膜构成。
根据这样的构成,例如,在像素电极由ITO所构成的情况下,当将其与铝直接接触时,由于在两者间产生电腐蚀,发生因铝的断线或者氧化铝的形成所产生的绝缘,不令人满意,鉴于此,在本形态中,不使ITO与铝直接接触,通过使ITO与氮化膜例如氮化钛膜相接触,能够实现与像素电极和中继层进一步与蓄积电容器的电连接。这样,本构成提供了上述的“相容性好的材料”的一例。
而且,氮化硅膜、氮氧化硅膜等的氮化膜在阻止水分的侵入以及扩散的作用上优良,因此,能够预先防止对薄膜晶体管的半导体层的水分侵入。在本形态中,通过中继层包含氮化膜,能够得到上述作用,由此,能够有效防止薄膜晶体管的阈电压上升这样的缺陷发生。
这样,在设有中继层的形态中,特别是优选上述屏蔽层与上述中继层形成为同一膜的构成。
根据这样的构成,通过使中继层与上述屏蔽层形成为同一膜,能够同时形成两种结构,能够相应地实现制造工序的简化或者制造成本的降低。
在兼备本形态的构成和上述的把数据线及构成蓄积电容器的一对电极的一方形成为同一膜的形态的情况下,数据线、蓄积电容器、中继层及像素电极的配置形态,尤其是层压顺序等适宜,能够更有效地发挥上述作用效果。
特别是,根据兼备本形态的构成和上述的中继层包含氮化膜的构成的形态,屏蔽层也包含氮化膜。因此,对于基板的表面能够更广泛地发挥上述那样的对薄膜晶体管的半导体层的防止水分侵入作用。因此,能够更有效地发挥薄膜晶体管的长期工作的作用效果。
而且,与本形态的记载相反也可以清楚地理解到,在本发明中,不一定必须将屏蔽层和中继层形成为同一膜。即,也可以将两者形成为不同的层。
在本发明的电光装置的另一个形态中,上述扫描线、上述数据线、构成上述蓄积电容器的一对电极以及上述屏蔽层的至少一部分由遮光性材料构成,上述至少一部分在上述层压构造中,构成内置遮光膜。
根据该形态,构成基板上的层压构造的各种要素由遮光性材料所构成,形成限定透光区域的遮光膜。由此,在基板上设有所谓“内置遮光膜”,就能预先避免因对薄膜晶体管的半导体层的光入射而发生光泄漏电流,导致在图像上发生闪烁等不良情况。即,能够提高对薄膜晶体管及其半导体层的耐光性。如果将薄膜晶体管形成在基板上的最下层或者接近最下层的层中的话,上述扫描线、数据线、蓄积电容器及屏蔽层都形成在该薄膜晶体管的上侧,因此,可以将由它们构成的遮光膜称为“上侧遮光膜”。
而且,本形态中所称的“遮光性材料”由含有Ti(钛)、Cr(铬)、W(钨)、Ta(钽)、Mo(钼)等高熔点金属中至少一种的,金属单体、合金、金属硅化物、多硅化物、它们的层压体等所构成。而且,在该“遮光性材料”中也可以包含铝(Al)。
而且,在本形态中,上述各种要素当然都可以构成“内置遮光膜”,优选沿相互交叉的方向延伸的两个要素的至少一组构成该“内置遮光膜”。例如,沿着上述扫描线延伸的第二方向形成有电容线,上述电容线的一部分为构成上述蓄积电容器的一对电极的一方,在此情况下,优选上述电容线和上述数据线由遮光性材料构成,它们构成“内置遮光膜”。根据该构成,“内置遮光膜”的形状为栅格状,能够良好地对应于作为上述像素电极的排列形态通常采用的矩阵状排列。
在本发明的电光装置的另一个形态中,进一步包括配置在上述遮光区域中的遮光膜,上述遮光膜包括作为高熔点的金属单体或金属化合物的金属层;作为层压在上述金属层的至少一方的表面上的无氧系的高熔点金属或者金属化合物的阻挡层。
根据该形态,能够得到以下这样的作用效果即,遮光膜可以由上述那样的含有Ti、Cr、W等的遮光性材料所构成,而在现有技术中,使用其中具有比较优良的遮光性的Ti来形成遮光膜。但是,在使用Ti来形成遮光膜之后,当进行该遮光膜上的绝缘膜形成处理和形成薄膜晶体管时的退火处理这样的超过500℃的高温处理工序时,有时在该遮光膜与包含氧元素的SiO2等的绝缘膜之间产生化学反应,而形成氧化膜。而且,当形成了这样的氧化膜时,就会发生Ti的遮光性降低的缺陷。因此,即使使用具有比较优良的遮光性的Ti,也不能得到足够的遮光性能。
但是,在本形态中,即使在形成遮光膜后进行高温处理,通过与包含氧元素的SiO2等的绝缘膜面对的,作为遮光膜的无氧系的高熔点的金属或金属氧化物的阻挡层,能够抑制遮光膜的钛层的氧化现象的发生,其结果能够确保遮光膜的遮光性能。
因此,根据本形态,即使将遮光膜形成得较为狭窄,也可期待其发挥足够的遮光性能。换句话说,在本形态中,由于不需要为了防止对薄膜晶体管或其半导体层的光入射,所以没有必要采用使遮光膜过度地宽幅化的措施。这样,本形态对实现作为本发明的目的的高开口率化可以起到重要作用。
而且,遮光膜的膜厚与现有的使用单独的WSi的遮光膜相比,能够减薄膜厚。由此,降低了在形成遮光膜的区域和不形成遮光膜的区域中使台阶变大的情况。例如,作为金属层的厚度为30~50nm,作为阻挡层的厚度为10~100nm。
作为本形态所称的“遮光膜”,可以相当于如上述那样,数据线、构成蓄积电容器的一对电极的至少一方或者屏蔽层等所形成的层压构造中的“内置遮光膜”;或者,形成在基板上并薄膜晶体管下的“下侧遮光膜”;以及,根据情况,在与构筑层压构造的基板对向配置的对向基板上所形成的“遮光膜”。
而且,作为构成本形态所称的“作为无氧系的高熔点的金属或金属化合物的阻挡层”的材料,具体地说,例如优选氮化合物、硅化合物、钨化合物、钨、硅中的一种,最好为WSi(硅化钨)。另一方面,作为构成本形态所称的“作为高熔点的金属单体或金属化合物的金属层”的材料,优选钛。
在该形态中,上述遮光膜的金属层由遮光性的金属层和光吸收性的金属层所构成,上述光吸收性的金属层面对上述薄膜晶体管侧。
根据这样的构成,通过遮光性的金属层能够防止光照射到薄膜晶体管上的同时,由薄膜晶体管侧的光吸收性的金属层吸收光,可以抑制内部反射。
在该遮光膜设有金属层和阻挡层的形态中,上述金属层进一步被上述阻挡层夹着。
根据这样的构成,在制造电光装置时,即使实施高温的热处理,由于阻挡层可以防止钛层氧化,所以能够维持金属层本来的遮光性。
在该遮光膜设有金属层和阻挡层的形态中,进一步上述遮光膜成为固定电位。
根据这样的构成,遮光膜为固定电位,因此,能够防止薄膜晶体管传播噪声。
在本发明中,可以按上述那样采用各种形态,但是,在上述的本发明的各种形态中,与权利要求书所记载的各个权利要求的引用形式无关,将一个形态与其他形态自由进行组合的方案基本上也可以。但是,存在性质上不相容的情况。例如,对于在为了进行与像素电极的电连接的接触孔的内表面上形成由钛等构成的膜的形态,只能组合遮光膜由钛层和阻挡层构成的形态等。当然,构成同时具有三个以上的形态的电光装置也是可能的。
为了解决上述课题,本发明的电子设备具有上述本发明的电光装置。并且,包含其各种形态。
本发明的电光装置的另一个形态,包括在基板上沿第一方向延伸的数据线;沿与上述数据线相交叉的第二方向延伸的扫描线;配置成与上述数据线和上述扫描线的交叉区域相对应的像素电极和薄膜晶体管;与上述薄膜晶体管和上述像素电极电连接蓄积电容器;配置在上述数据线与上述像素电极之间的遮光膜。而且,上述薄膜晶体管具有包含沿纵向延伸的沟道区域和从该沟道区域进一步沿纵向延伸的沟道相邻区域的半导体层,上述扫描线在上述沟道区域的侧边具有遮光部。
根据本发明的另一个电光装置,通过在数据线与像素电极之间设置遮光膜,能够进一步提高遮光性能。
根据本发明的电子设备,由于具有上述本发明的电光装置,因此,对薄膜晶体管的半导体层的光入射受到抑制,由光泄漏电流引起的图像上的闪烁等几乎不会发生,因此,能够实现可以显示这样的高品质的图像的投射型显示装置、液晶电视机、携带电话、电子记事簿、文字处理器、寻像器型或监视器直视型的录像机、工作站、电视电话、POS终端、触摸屏等各种电子设备。
本发明的作用和其他优点能够从以下说明的实施形态中得到理解。
附图的简要说明

图1是表示构成本发明的第一实施形态的电光装置中的图像显示区域的矩阵状的多个像素中设置的各种元件、布线等的等效电路的电路图;图2是本发明的第一实施形态的电光装置中的数据线、扫描线、像素电极所形成的TFT阵列基板的相邻接的多个像素群的平面图;图3是仅抽出图2中的主要部分的平面图;图4是图2的A-A’断面图;图5是与半导体层一起选择表示图2中的扫描线3a的水平突出部以及在基底绝缘膜上挖掘的沟的平面图;
图6是图5的B-B’断面图;图7是图5的C-C’断面图;图8是图5的D-D’断面图;图9是与图5相同意思的图,表示该图中的水平突出部被置换为包围部时的情况;图10是图9的E-E’断面图;图11是图9的F-F’断面图;图12是变形的图9的E-E’断面图;图13是与图2相同意思的图,表示在沿着扫描线的沟设在基底绝缘膜上的这点与该图不同的形态;图14是图13的G-G’断面图;图15是与图14相对应的变形形态相关的图13的G-G’断面图;图16是与图14相对应的变形形态相关的图13的G-G’断面图;图17是与TFT阵列基板一起表示本发明的第一实施形态所涉及的下侧遮光膜的构造的断面图;图18是表示图17的变形形态(下侧遮光膜的金属层为两层构造)的断面图;图19是表示图17的变形形态(下侧遮光膜的金属层被阻挡层夹持的构造)的断面图;图20是表示图17的变形形态(下侧遮光膜的阻挡层覆盖金属层的侧面的构造)的断面图;图21是本发明的第二实施形态的电光装置中的数据线、扫描线、像素电极所形成的TFT阵列基板的相邻接的多个像素群的平面图;图22是图21的A-A’断面图;图23是表示氮化膜的形成形态(数据线上及图像显示区域外)的平面图;图24是涉及本发明的第三实施形态的,与图4相同意思的图,表示在为了实现与像素电极的电连接的接触孔的内表面上形成Ti膜的形态;图25是从对向基板侧看本发明的实施形态的电光装置中的TFT阵列基板以及形成在其上的各构成要素的平面图;图26是图25的H-H’断面图;图27是表示本发明的电子设备的实施形态的投射型彩色显示装置的一例的彩色液晶投影仪的断面图。
符号说明1a 半导体层1a’ 沟道区域2绝缘膜3a 扫描线3b 水平突出部(含有垂直突出部)3c 包围部(含有垂直突出部)6a 数据线9a 像素电极10 TFT阵列基板11a、11b、11c、11d 下侧遮光膜M1、M21、M22、M3、M4 金属层B1、B2、B31、B32、B41、B42 阻挡层12 基底绝缘膜12cv、12cva 沟16 取向膜30 TFT43 第3层间绝缘膜50 液晶层70 蓄积电容75 介电体膜75a 氧化硅膜75b 氮化硅膜81、82、83、85、87、89、891 接触孔891a Ti膜
300 电容电极400 屏蔽层401 第2中继层发明的具体实施方式
以下参照附图来对本发明的实施形态进行说明。以下的实施形态是将本发明的电光装置用于液晶装置的方案。
第一实施形态第一,参照图1至图4来对本发明的第一实施形态所涉及的电光装置的像素部中的构成进行说明。其中,图1是表示构成本发明的第一实施形态的电光装置中的图像显示区域的矩阵状的多个像素中设置的各种元件、布线等的等效电路的电路图。图2是本发明的第一实施形态的电光装置中的数据线、扫描线、像素电极所形成的TFT阵列基板的相邻接的多个像素群的平面图。图3是用于具体地表示数据线、屏蔽层及像素电极间的配置关系而仅抽出它们的平面图。图4是图2的A-A’断面图。而且,在图4中,为了能够在图面上识别各层·各部件的尺寸,因此,每层·每个部件的比例尺是不同的。
在图1中,在构成本实施形态中的电光装置的图像显示区域的形成为矩阵状的多个像素中,分别形成有像素电极9a和用于开关控制像素电极9a的TFT 30,提供图像信号的数据线6a与该TFT 30的源极电连接。写入数据线6a的图像信号S1、S2、...、Sn按该顺序依次提供,也可以对相邻的多个数据线6a按每组来提供。
而且,在TFT 30的栅极上电连接扫描线3a,以预定的定时,向扫描线3a依次施加扫描信号G1、G2、...、Gm的脉冲。像素电极9a与TFT 30的漏极电连接,每隔一定期间来使作为开关元件的TFT 30关断其开关,由此,以预定的定时写入从数据线6a所提供的图像信号S1、S2、...、Sn。
经过像素电极9a而写入作为电气光学物质一例的液晶的预定电平的图像信号S1、S2、...、Sn,在与形成在对向基板上的对向电极之间保持一定期间。液晶的分子集合的取向和秩序随着所施加的电压电平而变化,由此,能够调制光,进行灰度显示。如果是正常白模式,根据在各像素单位上所施加的电压,对入射光的透过率减少,如果是正常黑模式,根据在各像素单位上所施加的电压,使对入射光的透过率增加,作为整体,能够从电光装置射出具有与图像信号相对应的对比度的光。
在此,为了防止保持的图像信号泄漏,与在像素电极9a和对向电极之间所形成的液晶电容器并联地附加蓄积电容器70。该蓄积电容器70并设在扫描线3a上,包含固定电位侧电容电极,同时包含被固定在恒电位上的电容电极300。
以下,参照图2至图4来对上述数据线6a、扫描线3a、TFT 30等所产生的实现上述那样的电路动作的电光装置的实际构成进行说明。
首先,在图2中,在TFT阵列基板10上矩阵状地设置多个像素电极9a(用虚线部9a’来表示轮廓),分别沿着像素电极9a的纵横的边界设置数据线6a和扫描线3a。数据线6a按后述那样的由包含铝膜等的层压构造所构成,扫描线3a由例如导电性的多晶硅膜所构成。而且,扫描线3a配置成与半导体层1a中的图右上斜线区域表示的沟道区域1a’相对,该扫描线3a具有作为栅极电极的作用。即,在扫描线3a与数据线6a相交的位置上分别设置像素开关用的TFT 30,该TFT 30与在沟道区域1a’中作为栅极电极的扫描线3a的主线部相对配置。
下面,如成为图2的A-A’断面图的图4所示的那样,电光装置包括由石英基板、玻璃基板、硅基板所构成的TFT阵列基板10和与其相对配置的由例如玻璃基板及石英基板所构成的对向基板20。
在TFT阵列基板10侧,如图4所示的那样,设置上述像素电极9a,在其上侧,设置进行摩擦处理等规定的取向处理的取向膜16。像素电极9a例如由ITO膜等透明导电性膜所构成。另一方面,在对向基板20侧,遍及其整个表面设置对向电极21,在其下侧设置进行摩擦处理等规定的取向处理的取向膜22。其中,对向电极21与上述像素电极9a同样,例如由ITO膜等透明导电性膜所构成。上述取向膜16和22例如由聚酰亚胺等透明的有机膜所构成。在这样相对配置的TFT阵列基板10与对向基板20之间,在由后述的密封材料(参照图25及图26)围住的空间中封入液晶等电气光学物质,形成液晶层50。液晶层50在未施加来自像素电极9a的电场的状态下,通过取向膜16和22来成为预定的取向状态。液晶层50例如由混合一种或多种向列液晶的电气光学物质所构成。密封材料是用于在它们的周边贴合TFT阵列基板10和对向基板20的由例如光固性树脂和热固性树脂所构成的粘接剂,混入了用于使两基板间的距离成为预定值的玻璃纤维或玻璃小球等分隔物。
另一方面,在TFT阵列基板10上,除了上述的像素电极9a和取向膜16之外,形成包含它们的各种构成成为层压构造。该层压构造,如图4所示的那样,从下向上依次为包含下侧遮光膜11a的第一层、包含TFT 30和扫描线3a等的第二层、包含蓄积电容器70和数据线6a等的第三层、包含屏蔽层400等的第四层、包含上述像素电极9a和取向膜16等的第五层(最上层)。而且,在第一层与第二层之间设置基底绝缘膜12,在第二层与第三层之间设置第一层间绝缘膜41,在第三层与第四层之间设置第二层间绝缘膜42,在第四层与第五层之间设置第三层间绝缘膜43,来防止上述各要素之间发生短路。而且,在这些各种绝缘膜12、41、42、43中还设置有将例如TFT 30的半导体层1a中的高浓度源极区域1d与数据线6a电连接的接触孔等。以下从下向上依次对这些要素进行说明。
首先,在第一层中,设置有下侧遮光膜11a。该下侧遮光膜11a从平面上看被构图成栅格状,由此,限定各像素的开口区域(参照图2)。在下侧遮光膜11a的扫描线3a与数据线6a交叉的区域中,形成突出的切掉像素电极9a的角的区域。
而且,在本实施形态中,该下侧遮光膜11a由两层构造所构成,该两层构造为其下层中设有金属层M1,在其上层中设有防止金属层M1的氧化的阻挡层B1。由此,在层压构造中,在形成比该下侧遮光膜11a更上层的构成要素时,即使进行高温处理工序(例如,后述的形成TFT 30时的退火处理等),由于在其上层中设有阻挡层B1,则能够预先防止金属层M1的氧化。而且,对于由该下侧遮光膜11a中的由金属层M1和阻挡层B1所构成的两层构造等,下面将参照图17和其后附图进行详细说明。而且,对于该下侧遮光膜11a,为了避免其电位变动对TFT 30产生的不良影响,从图像显示区域延伸到其周围,而连接到恒电位源上。
接着,作为第二层,设置TFT 30和扫描线3a。TFT 30,如图4所示,具有LDD(轻掺杂漏极)构造,作为该构成要素,包括上述那样作为栅极电极起作用的扫描线3a、例如由多晶硅膜所构成并通过来自扫描线3a的电场而形成沟道的半导体层1a的沟道区域1a’、包含将扫描线3a与半导体层1a进行绝缘的栅极绝缘膜的绝缘膜2、半导体层1a中的低浓度源极区域1b和低浓度漏极区域1c以及高浓度源极区域1d和高浓度漏极区域1e。
另外,TFT 30最好具有图4所示的LDD构造,但是,也可以彩在低浓度源极区域1b和低浓度漏极区域1c中不进行掺杂的偏置构造,也可以是把由扫描线3a的一部分所构成的栅极电极作为掩模进行高浓度掺杂,自整合地形成高浓度源极区域和高浓度漏极区域的自对准型的TFT。而且,在本实施形态中,将像素开关用TFT 30的栅极电极作为在高浓度源极区域1d与高浓度漏极区域1e之间仅配置一个的单栅极构造,但是,也可以在它们之间配置两个以上的栅极电极。这样,如果用双栅极或者三栅极以上来构成TFT,可以防止沟道与源极及漏极的接合部的泄漏电流,能够降低关断时的电流。而且,构成TFT 30的半导体层1a可以是非单结晶层也可以是单结晶层。在单结晶层的形成中,可以使用贴合法等公知的方法。通过将半导体层1a作为单结晶层,特别是可以谋求周边电路的高性能化。
在上述的下侧遮光膜11a之上并且TFT 30之下设置有,例如由氧化硅膜等所构成的基底绝缘膜12。基底绝缘膜12除了具有将下侧遮光膜11a与TFT 30进行层间绝缘的功能之外,还具有这样的功能通过形成在TFT阵列基板10的整个表面上,能够防止TFT因阵列基板10的表面研磨时的皲裂和洗净后残留的污垢等引起的像素开关用的TFT 30的特性变化。
而且,在本实施形态中,在该基底绝缘膜12上,从平面上看在半导体层1a的侧边,挖掘出与后述的沿数据线6a延伸的半导体层1a的沟道长度相同的宽度或者比沟道长度更长的沟(形成为接触孔状的沟)12cv,与该沟12cv相对应,在其上方层压的扫描线3a包含在下侧形成为凹状的部分(在图2中,为了避免复杂化而未图示,参照图5)。而且,为了埋住该沟12cv全体,通过形成扫描线3a,在该扫描线3a中延伸设置与其一体形成的水平突出部3b。由此,TFT 30的半导体层1a,如图2所示,从平面上看从侧方覆盖,至少能够抑制来自该部分的光的入射。而且,水平突出部3b可以仅在半导体层1a的一侧。而且,对于与该沟12cv以及层压在其上的扫描线3a以及水平突出部3b,在后面参照图5以后进行详细说明。
接着上述第二层,在第三层中,设置有蓄积电容器70和数据线6a。蓄积电容器70通过其间介入电体膜75对向配置与TFT 30的高浓度漏极区域1e及像素电极9a电连接的作为像素电位侧电容电极的第一中继层71和作为固定电位侧电容电极的电容电极来形成。根据该蓄积电容器70,能够显著提高像素电极9a上的电位保持特性。而且,本实施形态所涉及的蓄积电容器70,如从图2的平面图所看到的那样,形成为不到达与像素电极9a的形成区域大致对应的透光区域,换句话说,形成为限制在遮光区域内。即,蓄积电容器70形成在与相邻的数据线6a间的扫描线3a重合的区域和在扫描线3a与数据线6a相交的角部中下侧遮光膜11切掉像素电极9a的角的区域中。由此,电光装置全体的像素开口率被维持得较大,由此,能够显示更亮的图像。
更详细地,第一中继层71例如由导电性的多晶硅膜所构成,作为像素电位侧电容电极起作用。但是,第一中继层71也可以由包含金属或合金的单层膜或多层膜所构成。在多层膜的情况下,可将下层制成光吸收性的导电性的多晶硅膜,将上层制成光反射性的金属或合金。而且,该第一中继层71除了作为像素电位侧电容电极的功能之外,借助接触孔83,85及89,还具有中继连接像素电极9a和TFT 30的高浓度漏极区域1e的功能。该第一中继层71,如图2所示,形成为具有与后述的电容电极300的平面形状大致相同的形状。
电容电极300作为蓄积电容器70的固定电位侧电容电极起作用。在第一实施形态中,为了使电容电极300成为固定电位,借助接触孔87来实现与成为固定电位的屏蔽层400的电连接。
但是,如后述那样,在将电容电极300和数据线6a作为不同的层来形成的形态中,最好,例如通过采用使该电容电极300从像素电极9a所配置的图像显示区域10a延伸到其周围,与恒电位源电连接的手段,来将该电容电极300维持在固定电位上。作为上述的“恒电位源”,可以是向数据线驱动电路101供电的正电源和负电源,也可以是向对向基板20的对向电极21供电的恒电位源。
而且,在本实施形态中,与该电容电极300作为同一膜,形成有数据线6a。在此,所谓“同一膜”是指作为同一层或者在制造工序阶段中同时形成。但是,电容电极300及数据线6a间不是以平面形状连续形成,两者之间在构图上被分断。
具体地说,如图2所示,电容电极300与扫描线3a的形成区域重合地沿着图中X方向被分断来形成,数据线6a形成为与半导体层1a的纵向重合,即,在图中Y方向上延伸。更详细地说,电容电极300包括沿扫描线3a延伸的主线部、图2中在与半导体层1a相邻的区域中沿该半导体层1a向图中上方突出的突出部(图中看到的大致梯形的部分)、与后述的接触孔85相对应的位置稍稍捆扎的捆扎部。其中,突出部有助于蓄积电容器70的形成区域的增大。
另一方面,数据线6a具有沿图2中Y方向直线延伸的主线部。而且,半导体层1a的位于图2中上端的高浓度漏极区域1e具有向右方弯折90度直角的形状,以便于与蓄积电容器70的突出部的区域重合,而这是为了避开数据线6a,实现该半导体层1a与蓄积电容器70的电连接(参照图4)。
而且,这些电容电极300和数据线6a,如图4所示,被形成为在下层形成为由导电性多晶硅所构成的层,在上层形成为具有由铝构成的层的两层构造的膜。其中,对于数据线6a,借助贯通后述的介电体膜75的开口部的接触孔81,与TFT 30的半导体层1a电连接,但是,该数据线6a采用上述那样的两层构造,并且,上述第一中继层71由导电性多晶硅膜所构成,由此,该数据线6a与半导体层1a间的电连接直接通过导电性多晶硅膜来实现。即,从下向上依次为第一中继层的多晶硅膜、数据线6a的下层的多晶硅膜、其上层的铝膜。因此,能够良好地保持两者间的电连接。
而且,电容电极300和数据线6a包含光反射性能比较优良的铝,并且,包含光吸收性能上比较优良的多晶硅,因此,能够作为遮光膜。即,由此,能够在其上侧遮挡住对TFT 30的半导体层1a的入射光(参照图4)的前进。
介电体膜75,如图4所示,例如由膜厚5~200nm程度的比较薄的HTO(高温氧化物)膜、LTO(低温氧化物)膜等氧化硅膜或氮化硅膜等构成。从使蓄积电容器70增大的观点出发,在能够充分得到膜的可靠性的限度内,介电体膜75越薄越好。而且,在本实施形态中,该介电体膜75,如图4所示,具有下层为氧化硅膜75a,上层为氮化硅膜75b的两层构造,形成在TFT阵列基板10的整个表面上。而且,作为介电体膜75的另一个例子,下层的氧化硅膜75a形成在TFT阵列基板10的整个表面上,上层的氮化硅膜75b进行构图,限制在遮光区域(非开口区域)内,防止因具有着色性的氮化硅膜的存在而使透过率降低。由此,通过介电常数较大的氮化硅膜75b存在,能够使蓄积电容器70的电容值增大,此外,尽管如此,通过氧化硅膜75a存在,不会使蓄积电容器70的耐压性降低。这样,通过使介电体膜75作为两层构造,能够发挥相反的两个作用效果。而且,通过氮化硅膜75b存在,能够预先防止水侵入TFT 30。由此,在本实施形态中,不会引起TFT 30中的阈值电压上升的发生,能够长期运行装置。而且,在本实施形态中,介电体膜75具有两层构造,但是,根据情况,也可以具有例如氧化硅膜、氮化硅膜以及氧化硅膜等这样的三层构造或者其以上的层压构造。
而且,在本实施形态中,数据线6a及电容电极300为两层构造,但是,也可以为从下层依次为多晶硅膜、铝膜、氮化钛膜的三层构造,将氮化钛膜作为接触孔87的开口时的阻挡金属也可以。
在上述的TFT 30至扫描线3a之上并且蓄积电容器70至数据线6a之下,形成例如NSG(非掺杂硅酸盐玻璃)、PSG(磷硅酸盐玻璃)、BSG(硼硅酸盐玻璃)、BPSG(硼磷硅酸盐玻璃)等硅酸盐玻璃膜、氮化硅膜和氧化硅膜等,或者优选由NSG所构成的第一层间绝缘膜41。而且,在该第一层间绝缘膜41上开出将TFT 30的高浓度源极区域1d与数据线6a进行电连接的接触孔81。而且,在第一层间绝缘膜41上,开出把TFT 30的高浓度漏极区域1e与构成蓄积电容器70的第一中继层71进行电连接的接触孔83。
而且,这两个接触孔中,在接触孔81的形成部分中,不形成上述介电体膜75,换句话说,在该介电体膜75上形成开口部。这是因为在该接触孔81中,有必要借助第一中继层71来实现低浓度源极区域1b与数据线6a之间的电导通。如果在介电体膜75上设置这样的开口部,在对TFT 30的半导体层1a进行氢化处理的情况下,能够得到这样的作用效果,即,用于该处理的氢通过该开口部而容易地到达半导体层1a。
而且,在本实施形态中,对于第一层间绝缘膜41进行约1000℃的烧成,由此,可以实现注入到构成半导体层1a和扫描线3a的多晶硅膜的离子的活性化。
接着上述第三层,在第四层中,形成有遮光性的屏蔽层400。该屏蔽层400从平面上看,如图2及图3所示,分别在图2中的X方向和Y方向上延伸,而形成栅格状。该屏蔽层400中,对于在图2中的Y方向延伸的部分,覆盖数据线6a,并且,形成得比该数据线6a宽。而且,对于在图2中的X方向延伸的部分,为了确保形成后述的第二中继层402的区域,在各像素电极9a的一边的中央附近具有缺口部。
而且,在分别沿图2中的XY方向延伸的屏蔽层400的交叉部分的角部,设置大致三角形的部分,以便于与上述电容电极300的大致梯形的突出部相对应。屏蔽层400可以具有与下侧遮光膜11a相同的宽度,也可以比下侧遮光膜11a宽,也可以比其窄。
该屏蔽层400从配置像素电极9a的图像显示区域10a延伸到其周围,通过与恒电位源电连接,而成为固定电位。而且,作为在此所述的“恒电位源”,可以是给数据线驱动电路101供电的正电源和负电源的恒电位源,也可以是给对向基板20的对向电极21供电的恒电位源。
这样,形成为覆盖数据线6a的全体(参照图3)的同时,通过存在成为固定电位的屏蔽层400,可以排除在该数据线6a与像素电极9a之间产生的电容耦合的影响。即,根据向数据线6a的通电,能够预先避免像素电极9a的电位变动的情况,能够降低在图像上发生沿该数据线6a的显示色斑等的可能性。在本实施形态中,由于屏蔽层400形成为栅格状,因此,对于扫描线3a延伸的部分,能够抑制其以不会产生无用的电容耦合。而且,屏蔽层400中的上述三角形的部分能够排除在电容电极300与像素电极9a之间产生的电容耦合的影响,由此,能够得到与上述大致相同的作用效果。
而且,在第四层中,作为与这样的屏蔽层400的同一膜,形成有本发明中的“中继层”的一例的第二中继层402。该第二中继层402具有借助后述的接触孔89来中继构成蓄积电容器70的第一中继层71及像素电极9a间的电连接的功能。而且,这些屏蔽层400与第二中继层402之间,与上述电容电极300和数据线6a相同,不是连续形成为平面形状,两者之间形成为构图分断。
另一方面,上述屏蔽层400和第二中继层402具有下层为由铝所构成的层,上层为由氮化钛所构成的层的两层构造。由此,在第二中继层402中,下层的由铝所构成的层与构成蓄积电容器70的第一中继层71相连接,上层的由氮化钛所构成的层与由ITO等所构成的像素电极9a相连接。在此情况下,尤其对于后者能够得到良好的接触。这点是与下述情况进行对照当采用直接连接铝和ITO的形态时,在两者间会发生电腐蚀,而因铝的断线或者氧化铝的形成而引起绝缘等,因此,不能实现良好的电连接。而且,氮化钛具有作为用于防止接触孔89开口时的穿通的阻挡金属的功能。这样,在本实施形态中,能够实现良好的第二中继层402与像素电极9a的电连接,由此,能够良好地维持对该像素电极9a的电压施加或者该像素电极9a中的电位保持特性。
而且,屏蔽层400及第二中继层402包含光反射性能较好的铝,并且,包含光吸收性能较好的氮化钛,因此,能够作为遮光层。即,由此,由其上侧遮断对TFT 30的半导体层1a的入射光(参照图2)的前进。而且,对此,如上述那样,对于上述电容电极300和数据线6a也是相同的。在本实施形态中,这些屏蔽层400、第二中继层402、电容电极300及数据线6a成为构筑在TFT阵列基板10上的层压构造的一部分,并且,作为遮挡对TFT 30的来自上侧的光入射的上侧遮光膜(或者,如果着眼于构成“层压构造的一部分”这点,为“内置遮光膜”)。而且,根据该“上侧遮光膜”及“内置遮光膜”的概念,除了上述构成之外,扫描线3a和第一中继层71等也可以被认为包含其中。总之,在最广义的解释的前提下,如果是由构筑在TFT阵列基板10上的半透明材料所构成的构成,都可称为“上侧遮光膜”及“内置遮光膜”。
在上述的数据线6a之上并且屏蔽层400之下,形成有由NSG、PSG、BSG、BPSG等硅酸盐玻璃膜、氮化硅膜和氧化硅膜等或者优选由NSG所构成的第二层间绝缘膜42。在该第二层间绝缘膜42上分别开出用于将上述屏蔽层400与电容电极300进行电连接的接触孔87、用于电连接第二中继层402和第一中继层71的接触孔85。而且,在第一实施形态中,通过形成上述第二中继层402,像素电极9a和TFT 30间的电连接经过三个接触孔83、85和89,即经过三个层间绝缘膜41、42和43来进行。这样,连接比较短的接触孔,来实现像素电极9a和TFT 30之间的电连接,与通过比较长的接触孔来实现其的结构相比,通过该短小的接触孔的制造容易性,具有能够以低成本和高可靠性来进行电光装置的制造的优点。
而且,对于第二层间绝缘膜42,不进行与第一层间绝缘膜41相关的上述烧成,由此,能够实现电容电极300的界面附近产生的应力的缓和。
最后,在第五层中,如上所述,像素电极9a形成为矩阵状,在该像素电极9a上形成有取向膜16。该像素电极9a可以是角部被切去的形状。因此,在该像素电极9a下,形成有由NSG、PSG、BSG、BPSG等硅酸盐玻璃膜、氮化硅膜和氧化硅膜等或者优选由BPSG所构成的第三层间绝缘膜43。在该第三层间绝缘膜43中,开出用于电连接像素电极9a及上述第二中继层402之间的接触孔89。而且,在本实施形态中,第三层间绝缘膜43的表面通过CMP(化学机械抛光)处理等被平坦化,降低了由在其下方存在的各种布线和元件等产生的台阶引起的液晶层50的取向不良。不仅这样第三层间绝缘膜43进行平坦化处理,而且也可以通过在TFT阵列基板10、基底绝缘膜12、第一层间绝缘膜41及第二层间绝缘膜42中至少一个中挖沟,埋入数据线6a等的布线和TFT 30等,进行平坦化处理。而且,可以不进行第三层间绝缘膜43的平坦化处理,而仅在上述沟上进行平坦化处理。
有关对TFT的光遮蔽的构成以下,对上述的对TFT 30的光遮蔽相关的构成,更详细地说,对包含该TFT 30的栅极电极的扫描线3a及基底绝缘膜12的沟12cv或者下侧遮光膜11a等相关的构造进行说明。
其一由设置了形成于基底绝缘膜12中的沟12cv和从扫描线3a所延伸的水平突出部3b的例子所进行的光遮蔽首先第一,参照图5至图8来详细说明扫描线3a和水平突出部3b的构成及作用效果以及与在基底绝缘膜12中挖掘的沟12cv相关的构成和作用效果。图5是与半导体层1a一起选择表示图2中的扫描线3a的水平突出部3b以及在基底绝缘膜12上挖掘的沟12cv的平面图,图6是图5的B-B’断面图,图7是图5的C-C’断面图,图8是图5的D-D’断面图。
如图5至图8所示,在基底绝缘膜12中在半导体层1a的侧边,沿数据线6a挖掘沟12cv。在沟12cv内,部分地埋入扫描线3a的水平突出部3b,进一步,借助第一层间绝缘膜41,第一中继层71和电容电极300对应于沟12cv而部分凹陷。由此,在图5至图8所示的各个断面图中,扫描线3a的水平突出部3b、电容电极300等包含对应于沟12cv在下侧形成为凹状的部分。另外,在该形态中,通过将水平突出部3b埋入沟12cv内,该水平突出部3b兼有作为沟12cv的深度方向的垂直突出部的性格。
根据这样的形态,第一,在由多晶硅形成的扫描线3a中设置水平突出部3b,因此,通过由不仅扫描线3a中作为栅极电极起作用的本体部,特别是水平突出部3b主要吸收光并反射一部分光,能够至少部分地阻止对TFT阵列基板10的基板表面斜着进入的入射光和返回光以及基于它们的内表面反射光和多重反射光等的斜光入射到半导体层1a及其邻接区域即低浓度源极区域1b和低浓度漏极区域1c中。此时,由于通过接近于半导体层1a的水平突出部3b和扫描线3a的本体部进行遮光,能够非常有效地进行该遮光。
第二,作为从上侧覆盖半导体层1a的上侧遮光膜起作用的扫描线3a(包含水平突出部3b)、第一中继层71和电容电极300分别包含与沟12cv相对应在下侧形成为凹状的部分,因此,与上侧遮光膜是平坦的情况相比,通过该上侧遮光膜能够更有效地阻止斜着进入基板表面的入射光以及由入射光和返回光所产生的内表面反射光和多重反射光等斜光最终从斜上方入射到半导体层1a及其邻接区域中。即,通过在下侧为凹状(或者在上侧为凸状)的上侧遮光膜的上表面部分,使来自上侧的斜光被扩散的倾向随沟12cv而变强,因此,能够减少最终从斜上方入射到半导体层1a及其邻接区域中的光量。而且,根据同样的理由,可以至少部分地与上述上侧遮光膜的凹凸上下相对地,即上侧为凹状而下侧为凸状地来形成下侧遮光膜11a。
在本实施形态中,如图2和图4所示,通过各种遮光膜从上下进行对TFT 30的遮光。即,对从电光装置的上侧,即入射光的入射侧入射的入射光,电容电极300和屏蔽层400作为上侧遮光膜。另一方面,对从该电光装置的下侧,即入射光的射出侧而入射的返回光,下侧遮光膜11a作为下侧遮光膜。因此,被认为没有在扫描线3a上设置水平突出部3b的必要性和通过沟12cv来给处于上侧遮光膜的电容电极300等提供特别的形状的必要性。但是,入射光包含从斜方向入射到基板10中的斜光。因此,斜光被基板10的上表面和下侧遮光膜11a的上表面等所反射,或者,被上侧遮光膜的下表面所反射,而且,它们被该电光装置内的其他界面所反射,生成内表面反射光·多重反射光。因此,即使在TFT30的上下设置各种遮光膜,经过两者之间的间隙进入的斜光仍然可能存在,因此,如本实施形态那样,由在半导体层1a的侧边进行遮光的水平突出部3b和与沟12cv相对应的凹状部分所产生的遮光的效果较大。
如上述那样,根据本实施形态的电光装置,通过设置水平突出部3b和沟12cv,使耐光性提高,即使处于强力的入射光和返回光入射这样严酷条件下,通过使光泄漏电流的降低的TFT 30,能够良好开关控制像素电极9a,最终能够显示明亮的高对比度的图像。
而且,在本实施形态中,上侧遮光膜由包含水平突出部3b的扫描线3a、电容电极300、屏蔽层400等一部分所构成,因此,作为整体,能够实现TFT阵列基板10中的层压构造及制造工序的简化。而且,在本实施形态中,由于水平突出部3b与扫描线3a为同一膜而成为一体,所以不需要为了形成水平突出部3b而追加工序。
而且,在本形态中,沟12cv不会到达下侧遮光膜11a,因此,包含形成为覆盖沟12cv的底面的水平突出部3b和深度方向的垂直突出部的扫描线3a不会接触到下侧遮光膜11a。因此,即使下侧遮光膜11a是导电膜,也能事先防止其电位变动对扫描线3a产生不良影响。
在上述形态中,使扫描线3a与下侧遮光膜11a的情况相同,由包含金属或者合金的遮光膜(包含Ti、Cr、W、Ta、Mo等高熔点金属中的至少一种的金属单体、合金、金属硅化物、多硅化物、它们的层压体等)所构成。根据这样的构成,通过扫描线3a和水平突出部3b,提高了反射性能,能够进一步提高对斜光的沟道区域1a’和沟道邻接区域中的遮光性能。
而且,水平突出部3b对于每个沟道区域1a’而形成4个,但是,即使仅在沟道区域1a’的一侧形成,或者,在图2中仅在沟道区域1a’的上侧或下侧形成,也能得到某种程度的类似效果。例如,鉴于半导体层1a的周围的布线和元件等的配置,在难于在沟道区域1a’的侧边或上下两方形成总共4个水平突出部3b的情况下,不必对布局进行勉强,可以仅在单侧或者仅在上侧或下侧在每个沟道区域中设置3个以下的水平突出部3b。
其二由上述水平突出部3b被置换为包围部3c的例子所进行的光遮蔽第二,对于扫描线3a形成包围半导体层1a的包围部3c,参照图9至图11来说明该形态。其中,图9是与图5相同意义的图,表示该图中的水平突出部被置换为包围部时的情况,图10是图9的E-E’断面图,图11图9的F-F’断面图。而且,图12是变形的图9的E-E’断面图。
如图9至图11所示,在本形态中,取代上述水平突出部3b,而延伸设置包围部3c,以便于从在平面上看由沟道区域1a’沿扫描线3a离开预定距离的位置上的扫描线3a的主线部来包围半导体层1a和接触孔开孔区域,即包含接触孔83和81分别开孔的区域等的半导体层1a全体。其他的构成,例如,该包围部3c通过埋入沟12cv内,而兼有作为沟12cv的深度方向的垂直突出部的性格,对此,与上述其一所述的构成大致相同。
而且,通过这样的形态,也可得到在层间距比较小的下侧遮光膜11a与上侧遮光膜之间夹持半导体层1a的构成,因此,对于垂直于基板表面的光,基本上能够得到非常高的遮光性能。而且,如图10及图11所示,即使在斜着进入基板表面的入射光和返回光以及由它们所产生的内表面反射光和多重反射光等斜光L1和L3发生的情况下,其一部分在到达半导体层1a的前阶段,不仅通过由扫描线3a的主线部,特别是通过包围部3c所进行的光吸收或光反射,而能够衰减到低光强度的光L2和L4。此时,通过配置在距半导体层1a的层间距离非常小的位置上的包围部3c,来进行遮光,并且,通过包围部3c对在任意方向上倾斜的光L1和L3进行遮光,由此,可以非常有效地进行该遮光。
在该形态中,包含开有接触孔81和83的接触孔开孔区域包围半导体层1a,因此,可提高一般容易漏光的接触孔81和83附近的遮光性能。
而且,在本形态中,代替上述图10的构成,如图12所示的那样,可以设计成垂直突出部与下侧遮光膜11a相接触的形态。根据这样的形态,半导体层1a成为配置在闭合的空间内的形式,能够更好地实现对半导体层1a的遮光。这样,使下侧遮光膜11a与扫描线3a相接触的形态也能够在上述图5至图8中同样地实现。
但是,在这些情况下,有时受到下侧遮光膜11a的电位变动所引起的不良影响的情况如已经描述的那样。鉴于这样的情况,使扫描线3a与下侧遮光膜11a相接触还是不接触,通过比较并考虑对半导体层1a的遮光的必要性和受到下侧遮光膜11a的电位变动的不良影响,来根据具体情况来适当决定。
而且,在本形态中,也可以沿着扫描线3a的包围部3c的全部来挖掘出沟12cv,形成在包围部3c的整体上向下方突出的突出部即垂直突出部。而且,在象本形态那样设置包围部3c的情况下,如果使半导体层1a的接触孔开孔区域中的宽度和其半导体层1a的宽度形成为相同的,在从平面上看比较接近半导体层1a的位置上,能够通过平面形状为矩形的包围部3c来覆盖半导体层1a的周围。因此,能够得到更高的遮光效果。
而且,在上述中,包围部3c形成为埋入沟12cv内,由此,兼有作为垂直突出部的性格,但是,在本形态中,即使是单纯地环绕半导体层1a的周围,设置仅有水平部分的包围部,也能期待发挥与其相应的作用效果。本发明将这样的形态也包括在其范围内。
其三由设置沿扫描线3a延伸的沟12cva的例子所进行的光遮蔽第三,设置沿扫描线3a延伸的沟12cva,并且,在该沟12cva内埋入一部分扫描线3a的主线部,参照图12至图16来对该形态进行说明。其中,图13是与图2相同意义的图,表示在沿着扫描线的沟设在基底绝缘膜上的这点与该图不同的形态,图14是图13的G-G’断面图,图15和图16是与图14相对应的变形形态相关的图13的G-G’断面图。
扫描线3a配置在沿扫描线3a延伸的沟12cva内的同时,包含从侧方部分地覆盖沟道区域1a’及其邻接区域的沟内部分。这样,通过这样的形态,通过由该沟内部分所进行的光吸收或光反射,能够部分地阻止斜着进入基板表面的入射光及斜着进入内表面的返回光以及由它们所产生的内表面反射光和多重反射光等的斜光入射到沟道区域1a’及其邻接区域中。通过这样提高耐光性,即使在强力的入射光和返回光入射这样的严酷条件下,通过光泄漏电流被降低的TFT 30,能够对像素电极9a进行良好的开关控制。
另外,在该形态中,如图15所示,代替在上述图14中,扫描线3a为一层构造,也可以形成由包含由遮光性材料所构成的第一层311和由光吸收材料所构成的第二层312的层压体所构成的扫描线3a’。在此情况下,第一层311例如由WSi、TiSi等所构成。第二层312例如由SiGe或与半导体层1a同一层的多晶硅膜所构成。这样形成扫描线3a’,也可相应扫描线3a’中配置在沟401内的沟内部分,提高对沟道区域1a’及其邻接部分的遮光性能的同时,降低扫描线的布线电阻。而且,由SiGe等所构成的第二层312也可作为TFT 30中与栅极氧化膜相对配置的栅极电极良好地工作。而且,第一层311与第二层312的层压顺序可以上下相反。
或者,如图16所示的那样,也可以不完全埋住沟12cva地形成扫描线3a”。即使这样形成扫描线3a”,在扫描线3a”中,相应配置在沟12cva内的沟内部分,也可以在提高对沟道区域1a’及其邻接区域的遮光性能的同时,降低扫描线的布线电阻。
其四由下侧遮光膜11a所进行的光遮蔽第四,参照图4以及图17至图20来对与下侧遮光膜11a相关的构成进行说明。其中,图17至图20是表示仅抽出TFT阵列基板10和下侧遮光膜来表示其构造的断面图,其中,图17表示上述第一实施形态所涉及的下侧遮光膜11a,图18以后表示该变形形态所涉及的各种下侧遮光膜(11b、11c及11d)。
首先,在第一实施形态中,下侧遮光膜11a,如上所述那样,具有其下层为金属层M1,其上层为阻挡层B1的两层构造(参照图17及图4)。
其中,阻挡层B1是没有氧元素的无氧系的高熔点金属或者金属化合物。该阻挡层B1选自氮化合物、硅化合物、钨化合物、钨、硅中的一种。作为氮化合物,优选使用SiN(氮化硅)、TiN(氮化钛)、WN(氮化钨)、MoN(氮化钼)、CrN(氮化铬)等。而且,作为上述硅化合物,优选使用TiSi(硅化钛)、WSi(硅化钨)、MoSi(硅化钼)、CoSi(硅化钴)、CrSi(硅化铬)等。而且,作为钨化合物,优选使用TiW(钨化钛)、MoW(钨化钼)等。而且,作为上述硅,优选使用非掺杂的硅。
阻挡层B1的膜厚优选为1~200nm,如果是30~50nm,可以以薄的膜厚起到阻挡的作用同时,抑制漫反射。在阻挡层B1的膜厚不足3nm的情况下,存在不能充分地防止因高温处理引起的金属层的氧化导致的遮光性能的降低的倾向。另一方面,在使阻挡层B1的膜厚超过150nm的情况下,存在TFT阵列基板10的翘曲量变大的倾向。只要不对液晶装置的显示品质造成影响,200nm也可以。该阻挡层B1是防止金属层M1的氧化的保护层。
而且,金属层M1是具有遮光性的金属单体或者金属化合物,是由通过与SiO2的绝缘层的化学反应成为氧化物时出现遮光性变差的金属单体或者金属化合物之一所构成。作为上述金属单体,优选使用Ti(钛)、W(钨)、Mo(钼)、Co(钴)、Cr(铬)、Hf(铪)、Ru(钌)等。而且,作为上述金属化合物,优选使用TiN(氮化钛)、TiW(钨化钛)、MoW(钨化钼)等。金属层M1的膜厚优选为10~200nm。
在金属层M1的膜厚不足10nm的情况下,因存在遮光性能不充分的可能而不优选。另一方面,在金属层M1的膜厚超过200nm的情况下,固TFT阵列基板10的翘曲量变大,存在使液晶装置的品质降低的可能而不优选。
根据这样的构成,在层压构造中,在形成比该下侧遮光膜11a更上层的构成要素时,即使进行高温处理工序,例如,进行后述的形成TFT 30时的退火处理等,由于在其上层具有阻挡层B1,因此,能够预先防止金属层M1的氧化。因此,根据第一实施形态,金属层M1,如上述那样,例如,在由钛所构成的情况下,不会在上述高温处理工序中形成氧化钛等,由此,能够降低使遮光性能降低的可能性。而且,在第一实施形态中,采取这样的两层构造的遮光膜是位于TFT 30的下侧的下侧遮光膜,由此,能够事先防止从下侧对该TFT 30的半导体层1a的光反射即返回光的入射,能够进一步降低该半导体层1a中的光泄漏电流的发生的可能性。
而且,本发明并不仅限于下侧遮光膜11a采用上述那样的两层构造的形态。下面对该下侧遮光膜的各种变形形态进行说明。首先,第一,如上述那样,不是采用从TFT阵列基板10侧依次为金属层M1、阻挡层B1这样的两层构造,可以使用其相反顺序的构造,即,从TFT阵列基板10侧依次为阻挡层、金属层这样的两层构造。在此情况下,由于阻挡层的存在,也能够相应地防止金属层的氧化。
第二,如图18所示的那样,下侧遮光膜11b具有这样的形态,即图4的金属层M1被分成遮光性的金属层M21和光吸收性的金属层M22这样的两层构造。在此情况下,优选使后者的光吸收性的金属层M22面对TFT 30侧,即,配置在更上侧。由此,该下侧遮光膜11b具有这样的三层构造,即从TFT阵列基板10侧依次为遮光性的金属层M21、光吸收性的金属层M22、阻挡层B2。根据这样的构成,通过遮光性的金属层M21,能够防止光照射到TFT 30上的同时,通过面对TFT 30侧的光吸收性的金属层M22,能够使光被吸收,来抑制内部反射。
第三,如图19所示的那样,下侧遮光膜11c具有在图4的金属层M1的下侧,进一步设置阻挡层B31的构造。即,该下侧遮光膜11c具有从TFT阵列基板10侧依次为阻挡层B3、金属层M3、阻挡层B4的三层构造。根据这样的构成,金属层M3通过阻挡层B31和B32来对其两面进行保护,因此,能够进一步抑制由该金属层M3的氧化所引起的遮光性能的降低的发生。
而且,对于这样的下侧遮光膜11c,也可以使被阻挡层B31和B32所夹住的金属层M3作为图17这样的两层构造或者更一般的具有多个构造的金属层来构成。例如,也可以采用这样的构成,即从TFT阵列基板10侧依次为阻挡层B31、第一光吸收性金属层、遮光性金属层、第二光吸收性金属层、阻挡层B32。
第四,如图20所示的那样,下侧遮光膜11d具有这样的构造,即图19的阻挡层B32形成为覆盖位于其下层的金属层M3及阻挡层B31的侧面。即,该下侧遮光膜11d具有这样的三层构造从TFT阵列基板10侧依次为阻挡层B41、金属层M4以及形成为覆盖它们全体的阻挡层B42。根据这样的构成,除了能够发挥与上述图19相同的作用效果之外,由于阻挡层B42的存在,对于金属层M4的侧面能够防止其氧化,因此,通过该金属层M4的加入,就成为光遮蔽能力降低的事态难于发生的状况。
而且,与这样的下侧遮光膜11d类似的构造,当然可以在上述图17和图18中完全相同地采用。即,可以容易地使图17中的阻挡层B1形成为覆盖金属层M1的侧面,使图18中的阻挡层B2形成为覆盖金属层M22及M21的侧面,由此,能够进一步避免光遮蔽能力降低的发生。
在上述这样的各种光遮蔽相关的构成和作用效果中,主要的是,能够有效地防止从上侧或下侧向TFT 30的光入射或者来自侧方的光入射以及来自斜的光入射,由此,能够极力地防止TFT 30中的光泄漏电流的发生。上述上侧遮光膜以及内置遮光膜的存在对这样的作用效果具有很大的贡献。
即,扫描线3a、数据线6a、电容电极300、屏蔽层400等,层压构造中,由形成在TFT 30的上侧的不透明材料所构成的各种要素通过预先防止从上侧向该TFT 30的半导体层1a的光入射,由此,抑制该半导体层1a中的光泄漏电流的发生。
其结果,根据本实施形态,以TFT 30的开关动作可以正确进行为首,在该半导体层1a中,通过能够避免由于光泄漏电流流过,而发生偏置的状态,因此,能够实现高频驱动。而且,只要能有效地进行对TFT 30的光遮蔽,在欲实现电光装置的小型化时,也不会发生特别的障碍。即,在必须显示一定的明亮图像的情况下,即使把电光装置小型化,也需要与其对应的一定的像素开口率,这样,在“小型化”的过程中,存在使对TFT 30的光入射的危险性提高的侧面。
由此,结果,根据本实施形态的电光装置,可将施加在像素电极上的电压尽可能维持为恒定的同时,实现小型化·高精细化,并且,以高频驱动来显示高品质的图像。
第二实施形态把屏蔽层和数据线形成在不同的层中的情况以下,参照图21至图23来对本发明的第二实施形态所涉及的电光装置进行说明。其中,图21是与图2相同意义的图,是数据线、扫描线、像素电极所形成的TFT阵列基板的相邻接的多个像素群的平面图。而且,图22是与图3相同意义的图,是图21的A-A’断面图。图23是表示第二实施形态中特征性的氮化膜的形成形态的平面图。而且,第二实施形态的电光装置具有与上述第一实施形态的电光装置的像素部中的构成大致相同的构成。
因此,下面仅对第二实施形态中的特征部分主要加以说明,对于其余的部分,适当地省略以及简化其说明。
在第二实施形态中,如图22所示,与图4相比,构成蓄积电容器70的上部电极的电容电极300与数据线6a不是作为同一膜而构成,另外,随之增加了层间绝缘膜。即,新设置了“第四层间绝缘膜44”,作为与栅极电极3aa同一膜而形成有中继电极719,在这些点上大不相同。由此,从TFT阵列基板10上依次由包含兼用做扫描线的下侧遮光膜11a的第一层、包含具有栅极电极3aa的TFT 30的第二层、包含蓄积电容器70的第三层、包含数据线6a的第四层、形成屏蔽层404的第五层、包含上述像素电极9a和取向膜16等的第六层(最上层)构成。另外,分别在第一层与第二层之间设置基底绝缘膜12;在第二层与第三层之间设置第一层间绝缘膜41;在第三层与第四层之间设置第二层间绝缘膜42;在第四层与第五层之间设置第三层间绝缘膜43;在第五层与第六层之间设置第四层间绝缘膜44,来防止上述各部件之间短路。
在第二实施形态中,形成代替扫描线3a的栅极电极3aa的同时,与此作为同一膜新形成有中继电极719。以下对各层中的构成详细进行说明。
首先,在第二层中,与半导体层1a的沟道区域1a’对向地形成有栅极电极3aa。该栅极电极3aa不象第一实施形态的扫描线3a那样形成为线状,而是对应于半导体层1a及沟道区域1a’在TFT阵列基板10上形成为岛状,而形成为岛状。另外,在第二实施形态中,与此相对,构成接触孔的沟12cv的底具有与第一层的下侧遮光膜11a的表面相接触的深度的同时,该下侧遮光膜11a形成为在图21中的X方向上延伸的条状。由此,形成在沟12cv上的栅极电极3aa借助于该沟12cv与下侧遮光膜11a电连接。即,在第二实施形态中,通过下侧遮光膜11a来给栅极电极3aa提供扫描信号。换句话说,第二实施形态的下侧遮光膜11a承担作为扫描线的功能。
另外,对于第二实施形态中的下侧遮光膜11a,如图21所示,沿着数据线6a延伸的方向上,具有突出部。由此,第二实施形态的下侧遮光膜11a也发挥不次于第一实施形态中的栅格状的下侧遮光膜11a的遮光功能。但是,从相邻的下侧遮光膜11a延伸的突出部不相互接触,相互电绝缘。如不这样,就不能使下侧遮光膜11a承担扫描线的功能。而且,下侧遮光膜11a在与数据线6a交叉的区域中,形成有切掉像素电极9a的角而突出的区域。
而且,在第二实施形态中,特别是与上述栅极电极3aa作为同一膜形成有中继电极719。中继电极719从平面上看,如图21所示,使其位于各像素电极9a的一边的大致中央地形成为岛状。由于中继电极719与栅极电极3aa形成为同一膜,因此,在后者由例如导电性多晶硅膜等所构成的情况下,前者也由导电性多晶硅膜等所构成。
其次,在第三层中形成有构成蓄积电容器70的第一中继层71、介电体膜75以及电容电极300。其中,第一中继层71由多晶硅所构成。而且,电容电极300不是与数据线6a同时形成,因此,象第一实施形态那样,考虑与该数据线6a和TFT 30之间的电连接,并不一定必须采用铝膜及导电性的多晶硅膜这样的两层构造。因此,该电容电极300,例如,与下侧遮光膜11a同样,由包含Ti、Cr、W、Ta、Mo等高熔点金属中的至少一个的金属单体、合金、金属硅化物、多硅化物、它们的层压体等的遮光性材料所构成。由此,电容电极300能够更好地发挥作为上述“上侧遮光膜”及“内置遮光膜”的功能(其中,对于构成第二实施形态所涉及的电容电极300的材料,参照后述内容)。
而且,介电体膜75,如图22所示,具有这样的两层构造下层为氧化硅膜75a,上层为氮化硅膜75b,形成在TFT阵列基板10的整个表面上。
另外,作为介电体膜75的另一个例子,也可以构成为下层的氧化硅膜75a形成在TFT阵列基板10的整个表面上,上层的氮化硅膜75b进行构图,以便于限制在遮光区域(非开口区域)内,来防止因具有着色性的氮化硅膜的存在而降低透过率。
而且,通过使电容电极300和数据线6a形成在不同的层中,在本形态中,就不需要谋求同一平面内的两者间的电绝缘。因此,电容电极300能够形成为沿扫描线3a方向而延伸的电容线的一部分。
如上述那样,在栅极电极3aa及中继电极719之上、并且蓄积电容器70之下形成有第一层间绝缘膜41,但是,该第一层间绝缘膜41与上述大致相同,也可以由NSG、PSG、BSG、BPSG等硅酸盐玻璃膜、氮化硅膜和氧化硅膜等所构成。而且,在该第一层间绝缘膜41上开出接触孔881,该接触孔881配置成在第一中继层71的图22中的下表面上具有电连接点。由此,实现了第一中继层71与中继电极719之间的电连接。而且,在第一层间绝缘膜41上开出接触孔882,以便于贯通后述的第二层间绝缘膜42,来实现与后述的第二中继层6a2的电连接。
另一方面,在第四层中形成数据线6a,但该数据线6a也是与上述电容电极300同样,不一定采用两层构造。例如,该数据线6a可以由铝单体或者铝合金以及其他金属或者合金等导电性材料所构成。但是,该数据线6a必须与TFT 30的半导体层1a电接触,与上述第一实施形态没有变化,对于与该半导体层1a直接接触的部分,优选设置导电性多晶硅膜。
而且,作为三层构造的例子,数据线6a、屏蔽层用中继层6a1、第二中继层6a2可以形成为具有这样的三层构造的膜从下层依次为由铝所构成的层、由氮化钛所构成的层、由氮化硅膜所构成的层。氮化硅膜可以被构图成稍大的尺寸,以便于覆盖住其下层的铝层和氮化钛层。其中,数据线6a包含作为较低电阻材料的铝,由此,可以实现不延迟地向TFT 30、像素电极9a的图像信号的提供。
而且,在第二实施形态中,特别如上述那样,在由铝等所构成的数据线6a上,并且,沿该数据线6a具有氮化膜401。但是,本实施形态所涉及的氮化膜401除了在数据线6a上之外,还在作为形成排列成矩阵状的像素电极9a、配置成穿过它们的间隙的数据线6a及扫描线3a的区域所规定的图像显示区域10a的周围,形成为“口”字状。而且,该氮化膜401的厚度例如为10~500nm左右,优选为10~30nm左右。该氮化膜401能够构成为这样的层压构造例如,具有50~300nm左右的TiN膜作为其下层,具有SiN膜或SiON膜作为其上层。
由此,本实施形态所涉及的氮化膜401,在TFT阵列基板10上,以整体按图23表示的形状来形成。
而且,图23中,在图像显示区域10a的周围存在的氮化膜401、特别是构成该氮化膜401的SiN膜和SiON膜非常有助于防止水分侵入构成后述的数据线驱动电路101和扫描线驱动电路104的CMOS(互补金属氧化物半导体)型TFT(参照图25)。但是,氮化物,与其他一般的材料相比,干法刻蚀等中的腐蚀速率变小,因此,当在上述图像显示区域10a的周围区域形成氮化膜401时,在该区域内有必要形成接触孔等的情况下,在该氮化膜401内可以预先形成与该接触孔的位置相对应的孔。如果在实施图23所示的构图时同时进行,将有助于简化制造工序。
而且,在新的第四层中,作为与数据线6a同一膜,形成有屏蔽层用中继层6a1和第二中继层6a2(但是,与第一实施形态中的“第二中继层”相比,意思稍稍不同)。其中,前者是用于将遮光性的屏蔽层404和电容电极300进行电连接的中继层,后者是用于将像素电极9a和第一中继层71进行电连接的中继层。而且,它们当然可以由与数据线6a相同的材料所构成。
如上述那样,在蓄积电容器70之上并且在数据线6a、屏蔽层用中继层6a1及第二中继层6a2之下,形成有第二层间绝缘膜42,而该第二层间绝缘膜42也可以与上述相同,由NSG、PSG、BSG、BPSG等硅酸盐玻璃膜、氮化硅膜和氧化硅膜等所构成。
而且,在该第二层间绝缘膜42上与上述屏蔽层用中继层6a1和第二中继层6a2相对应地开出接触孔801和上述接触孔882,接着,在新的第五层中,形成有遮光性的屏蔽层404。它例如可以与上述屏蔽层400相同,由这样的两层构造所构成上层为由氮化钛所构成的层,下层为由铝所构成的层,而且,根据情况,也可以由ITO等其他导电性材料所构成。该屏蔽层404借助上述屏蔽层用中继层6a1来与电容电极300电连接。由此,屏蔽层404成为固定电位,与上述第一实施形态同样,排除了在像素电极9a与数据线6a之间产生的电容耦合的影响。而且,在该新的第五层中,作为与屏蔽层404同一膜,形成有第三中继层406。
如上述那样,在数据线6a之上,屏蔽层404之下,形成有第三层间绝缘膜43。对于构成该第三层间绝缘膜43的材料等,也可以与上述第二层间绝缘膜42相同。但是,数据线6a等在上述那样包含铝的情况下,为了避免其暴露在高温环境下,该第三层间绝缘膜43优选使用等离子CVD法等低温成膜法来形成。
而且,在该第三层间绝缘膜43中形成有用于将屏蔽层404与上述屏蔽层用中继层6a1进行电连接的接触孔803,与上述第二中继层6a2相通,形成有与第三中继层406相对应的接触孔804。
其余的构成为在新的第六层中,形成像素电极9a及取向膜16的同时,在该新的第六层与新的第五层之间形成第四层间绝缘膜44,在该第四层间绝缘膜44上开出用于将像素电极9a与第三中继层406进行电连接的接触孔89。
而且,在上述构成中,对于第三中继层406,由于与由ITO等所构成的像素电极9a直接接触,应当对上述电腐蚀进行注意。因此,考虑该情况,屏蔽层404和第三中继层406,优选与第一实施形态相同,采用由铝和氮化钛所构成的两层构造。而且,如果是由ITO来构成屏蔽层404和第三中继层406,就不需要担心该第三中继层406与像素电极9a的电腐蚀发生,但是,需要考虑屏蔽层404与屏蔽层用中继层6a1之间以及第三中继层406与第二中继层6a2之间的电腐蚀发生。因此,在此情况下,为了避免ITO及铝的直接接触,对于屏蔽层用中继层6a1、第二中继层6a2以及数据线6a最好采用适当的两层构造。
或者,在第二实施形态中,如上述那样,电容电极300能够构成为电容线的一部分,因此,为了使该电容电极300成为固定电位,可以采用使该电容线延伸到图像显示区域10a外与恒电位源相连接的形态。在此情况下,包含电容电极300的电容线可以单独地连接到恒电位源上,屏蔽层404也可以单独地连接到恒电位源上,因此,在采用这样的构成的情况下,就不需要设置将两者之间进行电连接的接触孔801和803。这样,在此情况下,当进行构成屏蔽层404和电容电极300的材料选择和屏蔽层用中继层6a1的材料选择时(最初屏蔽层用中继层6a1就已经不需要),不需要担心“电腐蚀”的发生。
在上述那样构成的第二实施形态的电光装置中,首先,实现了与上述第一实施形态大致相同的作用效果是显而易见的。即,与第一实施形态相同,具有沟12cv和水平突出部3b的同时,下侧遮光膜11a由阻挡层B1和金属层M1所构成,由此,可以有效地进行对TFT 30的半导体层1a的光遮蔽,显示没有闪烁的高品质的图像。
而且,在第二实施形态中,特别是通过在数据线6a上,并且在图像显示区域10a的周围上,形成氮化膜401,可以进一步提高TFT 30的耐湿性。即,由于氮化膜及氮化物,如上述那样,在防止水分的侵入及扩散的作用上优良,因此,能够预先防止水分对TFT 30的半导体层1a的侵入。在第二实施形态中,此外,在屏蔽层404、第三中继层406和构成蓄积电容器70的介电体膜75中,可以使用氮化膜,但是,对于这些构成,如果设置这样的氮化膜,能够更有效地发挥防止水分侵入作用。当然也可以是不设置“氮化膜”的形态。
而且,在第二实施形态中,氮化膜401在新的第四层中,除了图像显示区域10a外的区域,仅存在于数据线6a上,因此,不会发生大的内部应力集中,氮化膜401自身不会因其内部应力而破坏,而且,不会因该应力作用于外部而使存在于氮化膜401周围的例如第三层间绝缘膜43等发生破裂。假定氮化膜设在TFT阵列基板10的整个表面上的情况,这就更明显了。
而且,第二实施形态中的氮化膜401,其厚度较小到10~100nm左右,优选为10~30nm左右,因此,上述那样的作用效果能够更有效地发挥。
而且,在第二实施形态中,特别是通过设置中继电极719,可以得到以下的作用效果。即,在图4中,为了实现TFT 30与像素电极9a之间的电连接,如该图中的接触孔85那样,必须在构成蓄积电容器70的位于更下层的电极的第一中继层71中的图中“上表面”中,进行接触。
但是,在这样的形态中,在电容电极300和介电体膜75的形成工序中,在对这些前体膜进行腐蚀时,必须实施这样的非常困难的制造工序,即,使位于其下方的第一中继层71被完整地残留,进行该前体膜的腐蚀。特别是,如本发明那样,在使用高介电常数材料作为介电体膜75的情况下,该腐蚀一般来说是困难的,而且,电容电极300中的腐蚀速率和该高介电常数材料中的腐蚀速率变得不一致等条件也存在,因此,该制造工序的困难性更高。因此,在这样的情况下,在第一中继层71中,发生所谓的“穿通”等的可能性变大。这样,在恶劣的情况下,会在构成蓄积电容器70的电容电极300与第一中继层71之间发生短路。
如本实施形态那样,通过设置中继电极719,在第一中继层71的图中的“下面”上具有电连接点,由此,来实现TFT 30与像素电极9a间的电连接,这样就不会发生上述那样的缺陷。如从图22所看到的那样,在本形态中,不需要必须一边对电容电极300和介电体膜75的前体膜进行腐蚀,一边使第一中继层71残留。
由此,根据本形态,由于不需要经过上述那样的困难的腐蚀工序,所以可以良好地实现第一中继层71与像素电极9a间的电连接。这就是由于借助中继电极719实现了两者间的电连接。而且,根据相同理由,根据本形态,在电容电极300与第一中继层71之间发生短路的可能性非常。即,能够良好地形成无缺陷的蓄积电容器70。
而且,在第二实施形态中,如上述那样,由于能够将电容电极300作为电容线的一部分来形成,因此,不需要对与每个像素相对应地设置的电容电极逐一地分别设置用于使其成为固定电位的导电部件,将每个电容线连接到固定电位源上即可。因此,根据本实施形态,能够实现,制造工序的简化或者制造成本的降低。
而且,对于这样包含电容电极的电容线,可以与上述第一实施形态相同,也可以形成具有包含铝膜和多晶硅膜的两层构造。如果电容线包含铝膜,该电容线能够具有高的电传导率。由此,在这样的形态中,可以在没有特别限制的情况下实现该电容线的窄小化即蓄积电容器70的窄小化。因此,在第二实施形态中,能够谋求开口率的进一步提高。而且,从另一个观点来看,在现有技术中,电容线由多晶硅和WSi等的材料单体所构成,因此,当为了提高开口率而使其窄小化时,由于上述材料是高电阻的,因此,会发生串扰和烧附等,但是,在第二实施形态中,就没有这样的缺陷。
另外,在这样的形态中,铝膜具有反射性,多晶硅膜具有光吸收性,因此,如上述第一实施形态所述的那样,能够期待电容线起到遮光层的作用。而且,在这样的电容线中,与现有技术相比,能够减小其内部应力(铝的内部应力小于WSi等)。这样,在该形态中,能够尽可能地减薄与电容线相接的第三层间绝缘膜43,能够更好地实现电光装置的小型化。
第三实施形态用于谋求与像素电极的电连接的接触孔的变形形态以下,参照图24来对上述第一实施形态所涉及的电光装置中,与对实现与像素电极9a的电连接的接触孔的变形形态相关联的事项进行说明。其中,图24是与图4相同意义的图,是表示在为了实现与像素电极9a的电连接的接触孔的内表面上形成由钛单体、钨单体、钛或钨的化合物或者它们的层压体构成的膜(以下称为Ti膜等)的特征点的断面图。而且,第三实施形态的电光装置具有与上述第一实施形态的电光装置的像素部中的构成大致相同的构成。因此,以下,仅对第三实施形态中的特征部分进行主要说明,对于其余的部分适当地省略及简化其说明。
在第三实施形态中,如图24所示的那样,与图4相比,在以下方面存在较大的不同,即,不形成第二中继层402;以及,在用于实现像素电极9a和第一中继层71之间的电连接的接触孔891的内表面上形成Ti膜等891a。
更详细地说,在第四层中,与第一实施形态不同,由于不形成第二中继层402,第一中继层71与像素电极9a间的电连接是通过贯通第二层间绝缘膜42和第三层间绝缘膜43形成的接触孔891来实现的。并且,在该接触孔891的内表面上形成有Ti膜等891a。该Ti膜等891a至少包含钛,也可以包含其化合物。例如,可以是氮化钛、氮化硅等。构成像素电极9a的ITO在接触孔891的内部形成为覆盖该Ti膜等891a的表面。
在这样构成的第三实施形态的电光装置中,与在第一实施形态中,通过设置由铝膜及氮化钛膜所构成的第二中继层402,来避免所谓的电腐蚀的危险相同,由ITO所构成的像素电极9a直接与Ti膜等891a相接触,也能够避免电腐蚀的发生。因此,在第三实施形态中,也能够良好地维持对像素电极9a的电压施加或者该像素电极9a中的电位保持特性。
而且,根据上述Ti膜等891a,该钛具有比较优良的遮光性能,由此,能够防止由接触孔891引起的光泄露。即,该Ti膜等891a吸收光,由此,能够遮挡住穿过接触孔的驱动部分的光的前进。由此,在图像上几乎不会发生漏光等。而且,根据相同理由,能够提高TFT 30以及其半导体层1a的耐光性。由此,能够抑制光入射半导体层1a时的光泄漏电流的发生,能够预先防止由其引起的图像上的闪烁等的发生。由此,在第三实施形态的电光装置中,能够显示更高品质的图像。
而且,该第三实施形态所涉及的图24所示的电光装置的构成可以说是在作为上述第一实施形态说明的图4和作为第二实施形态说明的图22的关系中,使TFT阵列基板10上的层压构造的具体实施形态更加丰富的构成。
即,第三实施形态所涉及的图24,与图4及图22相比,通过省略第二中继层402以及随之接触孔个数的减少等,构造上变得更简单,当为了实现开口率的提高,使构成层压构造的各种要素封闭在遮光区域内地配置的情况下,具有更有利的方面。在图4中,如上述那样,具有能够谋求由接触孔83、85和89的短小化所引起的成本降低的优点,在图22中,通过将电容电极300作为电容线的一部分来构成,具有能够减小成本的优点。即,在本实施形态公开的电光装置的各种形态中,谋求提高开口率当然也要照顾其他附带作用效果是否能够发挥,则哪种构造是最佳的就不能一概而论。这样,第三实施形态与上述第一实施形态等并用,来提供使本发明具体化时所考虑的最佳形态之一,同时,丰富了本发明所涉及的层压构造的具体实施形态。
电光装置的整体构成参照图25和图26来说明上述那样构成的各个实施形态中的电光装置的整体构成。另外,图25是从对向基板20侧看TFT阵列基板以及形成在其上的各构成要素的平面图,图26是图25的H-H’断面图。
在图25和图26中,在本实施形态所涉及的电光装置中,TFT阵列基板10与对向基板20相对配置。在TFT阵列基板10与对向基板20之间封入液晶50,TFT阵列基板10和对向基板20通过设置在位于图像显示区域10a的周围的密封区域的密封材料52而相互粘接。
为了将两基板贴合,密封材料52由例如紫外线固化树脂、热固性树脂等所构成,通过紫外线、加热等来固化。而且,在该密封材料52中,如果本实施形态中的液晶装置是象投影仪这样的小型的进行放大显示的液晶装置,用于使两基板间的距离(基板间的间隙)成为预定值的玻璃纤维或者玻璃小球等间隔材料(分隔物)被分散分布。或者,如果该液晶装置是液晶显示器和液晶电视机这样的大型的进行等倍显示的液晶装置,这样的间隔材料可以包含在液晶层50中。
在密封材料52的外侧的区域中,通过以预定定时向数据线6a提供图像信号,驱动该数据线6a的数据线驱动电路101和外部电路连接端子102沿着TFT阵列基板10的一边设置,通过以预定定时给扫描线3a提供扫描信号,驱动扫描线3a的扫描线驱动电路104沿与其一边相邻接的两边来设置。
而且,如果提供给扫描线3a的扫描信号延迟不成问题的话,扫描线驱动电路104当然可以仅在一侧。而且,可以沿着图像显示区域10a的边将数据线驱动电路101排列在侧边。
在TFT阵列基板10的剩余一边上,设置有用于连接设在图像显示区域10a的侧边的扫描线驱动电路104间的多个布线105。
而且,在对向基板20的拐角部的至少一处,设置有用于在TFT阵列基板10与对向基板20之间实现电导通的导通材料106。
在图26中,在TFT阵列基板10上,形成像素开关用的TFT和扫描线,在数据线的布线形成后的像素电极9a上形成有取向膜。另一方面,在对向基板20上,除了对向电极21之外,在最上层部分形成有取向膜。而且,液晶层50由例如混合了一种或多种的向列液晶的液晶所构成。在这些一对取向膜间成为预定的取向状态。
而且,在TFT阵列基板10上,除了这些数据线驱动电路101、扫描线驱动电路104等,也可以形成以预定定时向多个数据线6a施加图像信号的取样电路、在图像信号之前分别给多个数据线6a提供预定电压电平的预充电信号的预充电电路、用于检查制造过程中和出厂时的该电光装置的品质、缺陷等的检查电路等。
电子设备下面对使用以上详细说明的电光装置作为光阀的电子设备的一例的投射型彩色显示装置的实施形态以及其整体构成、特别是光学构成进行说明。图27是投射型彩色显示装置的图式的断面图。
在图27中,本实施形态中的投射型彩色显示装置的一例的液晶投影仪1100这样构成准备3个包含驱动电路搭载在TFT阵列基板上的液晶装置的液晶模块,分别作为RGB用的光阀100R、100G和100B来使用。在液晶投影仪1100中,使从金属卤化物灯等白色光源的灯单元1102发出投射光时,通过三块镜片1106和两个分色镜1108,将其分成与RGB的三原色相对应的光成分R、G、B,分别传导给与各色相对应的光阀100R、100G和100B。此时,B光为了防止由长的光路所产生的光损失,借助于入射透镜1122、中继透镜1123以及出射透镜1124所构成的中继透镜系统1121来传导。而且,与由光阀100R、100G和100B分别调制的三原色相对应的光成分被十字棱镜1112再次合成,然后,经过投射透镜1114作为彩色图像投射到屏幕1120上。
本发明并不仅限于上述实施形态,可以在不违背从权利要求以及说明书全体所理解的发明的精神或者思想的范围内,进行适当变更,伴随着这样的变更的电光装置的电子设备也包含在本发明的保护范围内。作为电光装置,能够用于使用电泳装置和EL(电致发光)装置和使用电子释放元件的装置(场致发光显示器以及表面导电电子发射显示器)等。
权利要求
1.一种电光装置,其特征在于,包括在基板上沿第一方向延伸的数据线;沿与上述数据线相交叉的第二方向延伸的扫描线;配置成与上述数据线和上述扫描线的交叉区域相对应的像素电极和薄膜晶体管;与上述薄膜晶体管和上述像素电极电连接的蓄积电容器,上述薄膜晶体管具有包含沿纵向延伸的沟道区域和从该沟道区域进一步沿纵向延伸的沟道相邻区域的半导体层,上述扫描线在上述沟道区域的侧边具有遮光部。
2.根据权利要求1所述的电光装置,其特征在于,在上述数据线与上述像素电极之间配置有屏蔽层。
3.根据权利要求1所述的电光装置,其特征在于,上述扫描线具有包含沿与上述纵向相交的方向延伸的同时,在平面上看与上述沟道区域重叠的上述薄膜晶体管的栅极电极的本体部;和在平面上看,在上述沟道区域的侧边从上述本体部沿上述纵向突出,而成为上述遮光部的水平突出部。
4.根据权利要求3所述的电光装置,其特征在于,上述本体部和上述水平突出部由同一膜成为一体。
5.根据权利要求3所述的电光装置,其特征在于,上述水平突出部,在平面上看,在每个上述沟道区域中,在其源极侧及漏极侧的侧边突出。
6.根据权利要求1所述的电光装置,其特征在于,上述薄膜晶体管具有包含沿纵向延伸的沟道区域的半导体层,设有至少从上侧覆盖上述薄膜晶体管的上述沟道区域的上侧遮光膜,上述上侧遮光膜,在与上述沟道区域的纵向正交的断面上,从上述沟道区域侧看,至少部分地形成凹状。
7.根据权利要求1所述的电光装置,其特征在于,上述薄膜晶体管具有包含沿上述第一方向延伸的沟道区域的半导体层,上述扫描线具有本线部,该本线部包含在上述沟道区域中其间介入栅极绝缘膜对向配置的上述薄膜晶体管的栅极电极的同时,在平面上看沿与上述第一方向相交的第二方向延伸;还具有包围部,该包围部被延伸设置成从在平面上看从上述沟道区域在上述第二方向上离开规定距离处的上述本线部来包围上述半导体层。
8.根据权利要求7所述的电光装置,其特征在于,上述扫描线进一步具有从上述包围部向上述基板的垂直方向突出的垂直突出部。
9.根据权利要求1所述的电光装置,其特征在于,上述薄膜晶体管具有包含沿上述第一方向延伸的沟道区域的半导体层,上述扫描线具有本线部,该本线部包含在上述沟道区域中其间介入栅极绝缘膜对向配置的上述薄膜晶体管的栅极电极的同时,在平面上看沿与上述第一方向相交的第二方向延伸;还具有垂直突出部,该垂直突出部从在平面上看从上述沟道区域在上述第二方向上离开规定距离处的上述本线部向下方突出。
10.根据权利要求9所述的电光装置,其特征在于,在上述基板上进一步包括至少从上述下侧覆盖上述沟道区域的下侧遮光膜,上述垂直突出部在其顶端侧与上述下侧遮光膜相接触。
11.根据权利要求9所述的电光装置,其特征在于,在上述基板上进一步包括至少从上述下侧覆盖上述沟道区域的下侧遮光膜,上述垂直突出部在其顶端侧与上述下侧遮光膜不相接触。
12.根据权利要求1所述的电光装置,其特征在于,上述薄膜晶体管具有包含沿上述第一方向延伸的沟道区域的半导体层,上述扫描线具有本线部,该本线部包含在上述沟道区域中其间介入栅极绝缘膜对向配置的上述薄膜晶体管的栅极电极的同时,在平面上看沿与上述第一方向相交的第二方向延伸,该本线部包含配置在上述基板上掘出的沟内并同时从侧方至少部分地覆盖上述沟道区域的沟内部分。
13.根据权利要求1所述的电光装置,其特征在于,上述扫描线由含有金属或合金的遮光膜所构成。
14.根据权利要求1所述的电光装置,其特征在于,构成上述蓄积电容器的一对电极的一方构成形成为沿上述第二方向的电容线的一部分的同时,该电容线由含有低电阻膜的多层膜所构成。
15.根据权利要求1所述的电光装置,其特征在于,上述像素电极通过钛单体、钨单体、钛或钨的化合物或者它们的层压体与上述层叠构造的其他层电连接。
16.根据权利要求15所述的电光装置,其特征在于,作为上述像素电极的基底而配置的层间绝缘膜进一步成为上述层压构造的一部分,在该层间绝缘膜中形成有为实现与上述像素电极的电连接的接触孔,作为该接触孔的至少内表面及上述像素电极的下层,形成有包有上述钛单体、钨单体、钛或钨的化合物或者它们的层压体的膜。
17.根据权利要求1所述的电光装置,其特征在于,上述数据线被形成为与构成上述蓄积电容器的一对电极的一方的同一膜。
18.根据权利要求2所述的电光装置,其特征在于,进一步包括作为上述层叠构造的一部分的中继层,该中继层将上述像素电极与构成上述蓄积电容器的一对电极的至少一方电连接。
19.根据权利要求18所述的电光装置,其特征在于,上述屏蔽层作为与上述中继层的同一膜而形成。
20.根据权利要求2所述的电光装置,其特征在于,上述扫描线、上述数据线、构成上述蓄积电容器的一对电极以及上述屏蔽层的至少一部分由遮光性材料构成,上述至少一部分位于上述层叠构造中,构成内置遮光膜。
21.根据权利要求1所述的电光装置,其特征在于,进一步包括配置在上述遮光区域中的遮光膜,上述遮光膜包括高熔点的金属单体或金属化合物的金属层;层压在上述金属层的至少一方的表面上的无氧系的高熔点金属或者金属化合物的阻挡层。
22.根据权利要求21所述的电光装置,其特征在于,上述遮光膜的金属层由遮光性的金属层和光吸收性的金属层所构成,上述光吸收性的金属层对上述薄膜晶体管相对面。
23.根据权利要求21所述的电光装置,其特征在于,上述金属层被上述阻挡层夹着。
24.根据权利要求21所述的电光装置,其特征在于,上述遮光膜成为固定电位。
25.一种电光装置,其特征在于,包括在基板上沿第一方向延伸的数据线;沿与上述数据线相交叉的第二方向延伸的扫描线;配置成与上述数据线和上述扫描线的交叉区域相对应的像素电极和薄膜晶体管;与上述薄膜晶体管和上述像素电极电连接的蓄积电容器;配置在上述数据线和上述像素电极之间的遮光膜,上述薄膜晶体管具有包含沿纵向延伸的沟道区域和从该沟道区域进一步沿纵向延伸的沟道相邻区域的半导体层,上述扫描线在上述沟道区域的侧边具有遮光部。
26.一种电子设备,其特征在于,设有电光装置,该电光装置包括在基板上沿第一方向延伸的数据线;沿与上述数据线相交叉的第二方向延伸的扫描线;配置成与上述数据线和上述扫描线的交叉区域相对应的像素电极和薄膜晶体管;与上述薄膜晶体管和上述像素电极电连接的蓄积电容器,上述薄膜晶体管具有包含沿纵向延伸的沟道区域和从该沟道区域进一步沿纵向延伸的沟道相邻区域的半导体层,上述扫描线在上述沟道区域的侧边具有遮光部。
全文摘要
一种电光装置,包括在基板上沿第一方向延伸的数据线;沿与上述数据线相交叉的第二方向延伸的扫描线;像素电极和薄膜晶体管,配置成与上述数据线和上述扫描线的交叉区域相对应;与上述薄膜晶体管和上述像素电极电连接的蓄积电容器。而且,上述薄膜晶体管具有包含沿纵向延伸的沟道区域和从该沟道区域进一步沿纵向延伸的沟道相邻区域的半导体层,上述扫描线在上述沟道区域的侧边具有遮光部。
文档编号G02F1/1362GK1499459SQ200310103360
公开日2004年5月26日 申请日期2003年10月29日 优先权日2002年10月31日
发明者河田英德, 恒川吉文, 林朋彦, 文 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1