透反射型液晶显示设备的制作方法

文档序号:2773481阅读:108来源:国知局
专利名称:透反射型液晶显示设备的制作方法
技术领域
本发明涉及透反射型液晶显示设备,尤其是用于防止反射模式中由反射光引起的干涉并且提高透射模式中对比度的透反射型液晶显示设备。
背景技术
所谓的透反射型液晶显示设备,其将从前侧入射的外部光反射并导向该前侧,同时允许来自背部的背光系统的入射光通过并将其导向所述同一前侧,这种设备正在进入成熟商业阶段。这种类型的液晶显示设备当其在明亮的环境中(反射模式)使用时主要利用外部光(环境光)、而当环境较暗(透射模式)时主要利用背光系统的自发射光来提供有效的图象显示。
现有技术文献“Development of Advanced TFT with GoodLegibility under Any Intensity of Ambient Light”(M.Kubo,etal.,IDW’99,Proceedings of The Sixth International DisplayWorkshops,AMD3-4,page 183-186,Dec.l,1999,sponsored by ITE andSID)公开了这种液晶显示设备。
反射型液晶显示设备使用漫反射片将入射光有效地转换为反射光。漫反射片通常具有不平坦表面,能够有规则地反射入射光并且在该不平坦表面上将漫射/反射分量加到反射光中。由于透反射型液晶显示设备在像素内包括反射区域,因此它也使用漫反射片。
在具有漫反射片的透反射型液晶显示设备中,当入射光在该漫反射片的不平坦表面上反射的时候,在该不平坦表面的一个凸起部分就产生了光路方向相同的不同光线;在该凸起部分顶点附近的光线和该凸起部分谷点附近的光线,它们互相干涉,引起虹彩(iridescence)现象。
由于这个原因,为了使处于相同光路方向上的光线具有不同的光路方向,具有漫反射片的透反射型液晶显示设备采用经过防闪光处理的偏振片或者具有漫射特性的粘合胶(漫射粘合胶)。
然而,上述透反射型液晶显示设备有一个问题,即由于存在经过防闪光处理的偏振片或者具有漫射特性的粘合胶特别是漫射粘合剂,使得在透射模式中透射光发生漫射,因而降低了透射模式中的对比度。
本发明是从上述问题出发来实施的,本发明一个目的是提供透反射型液晶显示设备,它能够防止反射模式中由反射光引起的干涉并且提高透射模式中的对比度。

发明内容
本发明中的透反射型液晶显示设备是具有利用外部光的反射模式和使用光源的透射模式的透反射型液晶显示设备,它包括透射模式中使用的光源,设在该光源之上用于作为显示元件工作的液晶面板,设在液晶面板之上用于在反射模式中具有散射态且在透射模式中具有非散射态的漫射光学元件。
根据这个设置,该漫射光学元件在反射模式中以散射态工作,因而能够将在相同光路方向上的光线漫射,由此改变它们的光路方向而避免因光线干涉引起的虹彩现象,所述相同光路方向上的光线在反射模式中产生于漫反射片的不平坦表面上,它们可能引起干涉。此外,该漫射光学元件在透射模式中以非散射态工作,因而能够防止光的漫射并且防止透射模式中对比度的降低。
本发明中的透反射型液晶显示设备优选包括开关控制装置,用来控制给漫射光学元件提供功率,使得该漫射光学元件在反射模式中具有散射态,并且在透射模式中具有非散射态。
在本发明的透反射型液晶显示设备中,液晶面板优选具有一对夹有液晶层的玻璃基板和设在每个玻璃基板上的偏振片,其中该漫射光学元件设在一个玻璃基板和在该玻璃基板上所设的偏振片之间。
根据这个设置,该玻璃基板不设在顶层上,这消除了实施抗反射处理或者在该玻璃基板的表面上形成抗反射膜的需要。
在本发明的透反射型液晶显示设备中,该漫射光学元件优选具有聚合物分散型液晶或者聚合物网状液晶。


图1是显示根据本发明实施例1所述的透反射型液晶显示设备的设置的视图;图2是显示根据本发明实施例1所述的透反射型液晶显示设备的液晶面板的设置的截面图;图3是显示根据本发明实施例1所述的透反射型液晶显示设备的漫射光学元件的设置的截面图;图4是显示根据本发明实施例1所述的透反射型液晶显示设备的设置的结构图;图5是显示根据本发明的实施例1和实施例2所述的透反射型液晶显示设备的开关表的视图;图6是显示根据本发明实施例2所述的透反射型液晶显示设备的液晶面板的设置的截面图;以及图7是显示根据本发明实施例1和实施例2所述的透反射型液晶显示设备的另一开关表的视图。
具体实施例方式
现在参照附图具体解释本发明的实施例。
(实施例1)这个实施例将描述设在液晶面板上的漫射光学元件的设置情况,能够将该元件改变,使得它在反射模式中具有散射态,在透射模式中具有非散射态。图1是显示根据本发明实施例1所述的透反射型液晶显示设备的设置的视图。
图1所示的透反射型液晶显示设备主要由背光11,液晶面板12和漫射光学元件13构成,背光11是在透射模式中使用的光源,液晶面板12设在该背光11上起到显示元件的作用,漫射光学元件13能够改变,从而在反射模式中具有散射态,在透射模式中具有非散射态。
作为背光11,可以使用普通液晶显示设备中所使用的背光。
作为液晶面板12,可以使用单色透射液晶显示设备所使用的液晶面板,例如TN(扭曲向列)液晶面板或者STN(超扭曲向列)液晶面板。此外,也可以使用有源矩阵液晶面板或者各种类型的液晶面板,而无需考虑液晶类型,驱动方式,对齐模式(例如,VA(垂直对齐),IPS(面内切换)等等)。作为液晶面板12,例如可以使用具有如图2所示的设置的那种液晶面板。
图2是显示根据本发明实施例1所述的透反射型液晶显示设备的液晶面板的设置的截面图。在一个玻璃基板21的一个主表面上形成有透明电极23。作为透明电极23的材料,例如可以使用ITO(氧化铟锡),氧化锌类材料,氧化钛类材料,氧化铟-氧化锌类材料,掺有镓的氧化锌类材料或者p型氧化材料,等等。
在透明电极23上形成树脂层24,其上对位于像素内的透射区域构图。作为树脂层24的材料,可以使用普通抗蚀剂材料例如聚酰亚胺。在该树脂层24上形成漫反射片25。作为该漫反射片25的材料,可以使用铝或者银等。该漫反射片25形成为具有不平坦表面,并且可以例如通过由蚀刻等方法使底面粗糙的方式,或者通过对光敏树脂构图以产生不平坦性的方式来形成。
对树脂层24和漫反射片25进行例如可以如下构图。首先,在透明电极23上形成该树脂层,再在该树脂层上形成漫反射片。然后,在该漫反射片上形成抗蚀剂层,使用光刻法对其构图,使用该已构图的抗蚀剂层作为掩模来蚀刻该漫反射片。然后,使用该已构图的漫反射片作为掩模来蚀刻该树脂层。以这种方式形成树脂层24和漫反射片25。这里解释了这种情况,即其中层叠该树脂层和漫反射片,按照该漫反射片和该树脂层的顺序对其蚀刻和然后构图,但是根据本发明,首先层叠并构图该树脂层,然后层叠并构图该漫反射片也是可行的。
在该漫反射片25上和在所述透射区域内的透明电极23上形成有对准膜26。作为对准膜26,可以使用树脂材料例如聚酰亚胺。
在另一玻璃基板22的一个主表面上形成滤色片27。在该滤色片27上形成透明电极28,在该透明电极28上形成对准膜29。作为透明电极28和对准膜29的材料,可以使用与玻璃基板21相同的材料。
玻璃基板21和22的透明电极23和28形成由扫描电极和信号电极构成的矩阵,以进行显示。这使得可以在液晶面板12内形成像素,如普通液晶面板一样。作为形成透明电极23和28的方法,可以使用在制造普通液晶显示设备中所采用的方法例如溅射法。作为形成对准膜26和29的方法,可以使用在制造普通液晶显示设备中所采用的方法,例如包括涂敷步骤,干燥步骤和研磨步骤等的方法。
在玻璃基板21和22之间形成液晶层32。该液晶层32是这样形成的,即以取向膜26和29互相面对的方式设置已经形成有那些薄膜的玻璃基板21和22,并且在玻璃基板21和22之间注入液晶材料(这里是TN液晶)。在玻璃基板21的另一主表面上设有偏振片30,而在玻璃基板22的另一主表面上设有偏振片31。
对于偏振片,可以使用多个光学薄膜的组合例如相位差膜或者用来补偿视角的光学薄膜,或者可以使用由单个光学薄膜构成的偏振片。
作为该漫射光学元件13,可以使用聚合物网状液晶显示元件或者聚合物分散型液晶显示元件。例如,可以使用具有如图3所示的设置的聚合物网状液晶显示元件。
图3是显示根据本发明实施例1所述的透反射型液晶显示设备的漫射光学元件的设置的截面图。在一个玻璃基板41的一个主表面上形成有透明电极43。此外,在另一玻璃基板42的一个主表面上形成有透明电极44。作为形成该透明电极43和44的方法,可以使用在制造普通液晶显示设备中所采用的方法。此外,作为透明电极43和44的材料,可以使用与上述液晶面板12中所采用的相同材料。作为形成它们的方法,可以使用在制造普通液晶显示设备中所采用的方法。
在玻璃基板41和42之间形成有聚合物液晶层45。该聚合物液晶层45夹在玻璃基板41和42之间,玻璃基板被设置成使得透明电极43和44彼此面对。
作为聚合物液晶层45,可以使用聚合物网状液晶或者聚合物分散型液晶,前者由含有液晶分子的、在聚合物基体(matrix)中延伸的网状物构成,后者由含有液晶分子的分散于聚合物基体中的微滴构成。从低驱动电压的观点来看,聚合物网状液晶是有优势的。
如图1所示,上述液晶面板12和漫射光学元件13按照背光11,液晶面板12和漫射光学元件13的顺序设置。在这种设置中,该液晶面板12在任一模式中都起到显示元件作用,并且对该漫射光学元件13进行控制,使之在反射模式中具有散射态,在透射模式中具有非散射态。
图4是显示根据本发明实施例1所述的透反射型液晶显示设备的设置的结构图。这个设置包括控制整个装置的控制部51,背光11,液晶面板12,控制施加给光学元件13的电压的开关控制部52,和提供用于施加电压的功率的电源53。此外,这个设置包括用于开关控制的开关SW1和SW2。此外,该开关控制部52包括图5所示的开关表,并且基于这个开关表进行开关控制。
接下来解释根据这个实施例所述的具有上述设置的透反射型液晶显示设备的操作。
控制部51根据用户输入或者环境情况(亮度和光通量等)自动设置显示模式(反射模式或者透射模式),并且将该模式信息输出到开关控制部52。在反射模式中,该开关控制部52控制SW1和SW2,使得SW1和SW2切换所述电源,以便可以利用外部光以及按照散射态使用漫射光学元件13,而在透射模式中,SW1和SW2切换所述电源,使得可以利用背光11的光并且按照非散射态使用漫射光学元件13。
首先解释反射模式的情形。在反射模式中,如图5具体所示,将SW1设在OFF位置,以按照散射态使用该漫射光学元件13。由于在该反射模式中利用外部光,因此没有功率提供到背光11。因此,SW2也设在OFF位置。
在这样的条件下,在电源53提供功率以将电压施加到液晶面板12的情况下执行显示。在这种情况中,作为外部光的入射光通过该漫射光学元件13,到达液晶面板12,经液晶面板12的漫反射片25有效反射,变成反射光,并且通过该漫射光学元件13,从液晶面板12到外部。此时,入射光由漫反射片25规则反射,同时,该漫反射片25的不平坦表面将漫射/反射分量增加到该反射光中。当入射光在该漫反射片25的不平坦表面反射的时候,在该不平坦表面的凸起部分产生了相同光路方向的光线在该凸起部分的顶点附近的光线和在该凸起部分的谷点附近的光线。由于该漫射光学元件13处于散射态,当这些处于相同光路方向上的光线通过该漫射光学元件13的时候,它们发生漫射并且由此具有不同的光路。这样,这些通过该漫射光学元件13的反射光不会干涉,并且不会产生虹彩现象。结果,作为液晶显示设备,其可以保持高的显示质量。
然后将解释透射模式的情形。在透射模式中,具体如图5所示,将SW1置于ON位置,使得漫射光学元件13处于非散射态,以便背光11的光通过。此外,由于在该透射模式中没有使用外部光,因此对背光11提供功率。因而,SW2也置于ON位置。
在这种条件下,在电源53提供功率以将电压施加到液晶面板12的情况下执行显示。在透射模式中,由于该漫射光学元件13处于非散射态,因此来自背光11的光在通过液晶面板12后可以到达外面。以这种方式,可以防止透射模式中对比度的降低。此外,假定该透射模式是用于外部光较弱的场合,因此,漫反射片25中的干涉对于显示质量没有影响。
以这种方式,在根据实施例1所述的透反射型液晶显示设备中,该漫射光学元件13在反射模式中以散射态工作,这样,在反射模式中,能够使产生于该漫反射片的不平坦表面上的相同光路方向上的、可能引起干涉的光线发生漫射,从而使得它们的光路方向彼此不同,因而避免了因光线的干涉引起的虹彩现象。此外,该漫射光学元件在透射模式中以非散射态工作,这样光在透射模式中不发生漫射,因此可以防止对比度的降低。此外,在根据实施例1所述的透反射型液晶显示设备中,该漫射光学元件13设置在液晶面板12上,因此液晶面板12的偏振态不会受到影响。
(实施例2)这个实施例将解释漫射光学元件13与液晶面板12结合在一起的设置。图6是显示根据本发明实施例2所述的透反射型液晶显示设备的液晶面板的设置的截面图。在图6中,与图2中部件相同的部件用相同的参考数字表示,并且省去对其的详细解释。
如图6所示,漫射光学元件13设在液晶面板61的玻璃基板22的另一主表面上,即与其上提供有滤色片27的那个主表面相对的主表面上。该漫射光学元件13的设置情况与图3所示的相同。偏振片31设在该漫射光学元件13上。
根据这个实施例所述的具有上述设置的透反射型液晶显示设备的操作基本上与实施例1的相同。首先,将解释反射模式的情形。在反射模式中,具体如图5所示,将SW1置于OFF位置,以在散射态使用该漫射光学元件13。由于在该反射模式中利用外部光,因此不提供功率到背光11。因此,SW2也置于OFF位置。
在这样的条件下,在电源53提供功率以将电压施加到液晶面板61的情况下执行显示。这里,作为外部光的入射光穿过液晶面板61的漫射光学元件13,经该漫反射片25有效反射,变成反射光,并且穿过该漫射光学元件13,从液晶面板61到达外面。此时,入射光由该漫反射片25规则反射,同时,该漫反射片25的不平坦表面将漫射/反射分量增加到该反射光中。当该入射光经该漫反射片25的不平坦表面反射的时候,在该不平坦表面的一个凸起部分产生了相同光路方向的光线在该凸起部分的顶点附近的光线和在该凸起部分的谷点附近的光线。由于该漫射光学元件13处于散射态,当这些处于相同光路方向上的光线通过该漫射光学元件13的时候,它们发生漫射并且由此具有不同的光路。以这种方式,这些通过该漫射光学元件13的反射光不会发生干涉,并且不会产生虹彩现象。结果,作为液晶显示设备,其可以保持高的显示质量。
接下来解释透射模式的情形。在透射模式中,具体如图5所示,将SW1置于ON位置,使得漫射光学元件13处于非散射态,以便背光11的光通过。此外,由于在该透射模式中没有使用外部光,因此对背光11提供功率。因而,SW2也置于ON位置。
在这种条件下,在电源53提供功率以将电压施加到液晶面板61的情况下执行显示。在透射模式中,由于该漫射光学元件13处于非散射态,因此来自背光11的光在通过液晶面板12后可以到达外面。以这种方式,可以防止透射模式中对比度的降低。此外,透射模式中外部光减少了,因此,漫反射片25中的干涉对于显示质量没有影响。
以这种方式,在根据实施例2所述的透反射型液晶显示设备中,该漫射光学元件在反射模式中以散射态工作,这样,在反射模式中,能够使产生于该漫反射片的不平坦表面上的相同光路方向上的、可能引起干涉的光线发生漫射,从而使得它们的光路方向彼此不同,因而避免了因光线的干涉引起的虹彩现象。此外,该漫射光学元件在透射模式中以非散射态工作,这样光在透射模式中不发生漫射,因此可以防止对比度降低。此外,在根据实施例2所述的透反射型液晶显示设备中,该漫射光学元件13的玻璃基板没有设在顶层上,因此没有必要在该玻璃基板的表面上形成任何抗反射膜,或者进行抗反射处理。
本发明不限于上述实施例1和2,而能够以各种变化的方式来实施。例如,实施例1和2描述了以无源液晶显示元件作为构成显示元件的液晶面板的情形,但是有源矩阵液晶显示元件也可以用于本发明中。
此外,实施例1和2描述了以聚合物网状液晶作为漫射光学元件的情形,但是本发明也可应用于以聚合物分散型液晶作为漫射光学元件的情形。此外,作为本发明中的漫射光学元件,不但可以使用由聚合物网状液晶或者聚合物分散型液晶构成的漫射光学元件,而且可以使用能够对于在使光通过的状态和使光漫射的状态之间的切换进行电控制的漫射光学元件。
此外,上面的实施例1和2描述了将所使用的该漫射光学元件13设置为聚合物液晶层35夹在玻璃基板之间的情形,但是本发明也适用于该漫射光学元件13是不采用任何玻璃基板的薄膜的情形。在这种情形中,可以将其粘合到液晶面板,因此简化了制造工艺。
此外,上面的实施例1和2描述了控制该漫射光学元件13以使之在没有施加电压的时候具有散射态而在施加了电压的时候具有非散射态(透明)的情形,但是本发明也可应用于控制该漫射光学元件13以使之在没有施加电压的时候具有非散射态(透明)而在施加了电压的时候具有散射态的情形。在这种情形下,如图7所示,开关控制是这样进行的在反射模式中,SW1置于ON位置,SW2置于OFF位置,而在透射模式中,SW1置于OFF位置,SW2置于ON位置。以这种方式,在透射模式中能够减少功耗,当对透射模式具有重要意义的时候这是优选的。
本发明在透射模式和反射模式中都能够提供足够明亮的显示,因此可应用于在外部环境中使用的所有类型的液晶显示设备,例如蜂窝电话和PDA(便携式信息终端)或者装在汽车或者飞机上的液晶显示设备。
如上所述,本发明提供一种具有利用外部光的反射模式和使用光源的透射模式的透反射型液晶显示设备,其包括在透射模式中使用的光源,设在该光源之上作为显示元件工作的液晶面板,和设在该液晶面板之上且在反射模式中具有散射态而在透射模式中具有非散射态的漫射光学元件,因此能够防止反射模式中由反射光引起的干涉,并且提高透射模式中的对比度。
本申请是基于2002年11月22日提交的日本专利申请号2002-339552,在这里特别将其全部内容引入作为参考。
权利要求
1.一种透反射型液晶显示设备,具有使用外部光的反射模式和使用光源的透射模式,其包括用于透射模式中的光源;液晶面板,设在所述光源之上,用于作为显示元件工作;和漫射光学元件,设在所述液晶面板之上,用于在所述反射模式中具有散射态,在所述透射模式中具有非散射态。
2.如权利要求1的设备,还包括开关控制装置,用于控制对所述漫射光学元件的功率供给,使得所述漫射光学元件在所述反射模式中具有散射态,并且在所述透射模式中具有非散射态。
3.如权利要求1或者2的设备,其中所述液晶面板具有一对中间夹有液晶层的玻璃基板和设在每个玻璃基板上的偏振片,其中所述漫射光学元件设置在一个玻璃基板和在所述这个玻璃基板上所设置的所述偏振片之间。
4.如权利要求1至3中任一项的设备,其中所述漫射光学元件具有聚合物分散型液晶或者聚合物网状液晶。
全文摘要
一种透反射型液晶显示设备,具备利用外部光的反射模式和使用光源的透射模式,包括在透射模式中使用的光源(11),设在该光源之上作为显示元件工作的液晶面板(12),和设在该液晶面板之上的漫射光学元件(13),其在反射模式中具有散射态,在透射模式中具有非散射态。
文档编号G02F1/1347GK1714311SQ200380103749
公开日2005年12月28日 申请日期2003年10月16日 优先权日2002年11月22日
发明者鹈川雄成 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1