双包层光纤扫描显微镜的制作方法

文档序号:2777250阅读:207来源:国知局
专利名称:双包层光纤扫描显微镜的制作方法
技术领域
本发明涉及扫描显微镜,并更具体地涉及利用双包层光纤提高检测效率的扫描显微镜。
背景技术
最初,采用载物台扫描,以便通过移动光栅图中的样本穿过静止光束的聚焦点来获得图像。出射针孔放置在与被扫描点共轭的图像平面中,这样,仅源自焦斑的信号通过针孔被传送,而离焦信号被阻止到达检测系统。因此,共焦显微镜通常具有比广角显微镜更高的分辨率,更重要的是,它具有切片能力,以获得3-D图像。载物台扫描的优点是大大地扩展了视野范围,这是因为可被成像的区域由扫描载物台的行程决定,而不由显微镜的光学系统决定。然而,也存在限制其应用的缺点。由于它需要时间来精确地平移整个载物台,所以扫描速度极低。此外,移动载物台导致样品特别是液体浸没生物样品的震动问题。当激光扫描共焦显微镜在20世纪80年代晚期发展成为实用仪器时,这些问题被回避,而是光束扫描由两个检流计镜控制,其中检流计镜被成像到物镜的入射光瞳上。因而,在入射平面仅入射激发光线的方向被偏移,而光瞳在整个扫描中仍完全被照亮。因此,目标之外的激光束的焦斑扫过要被成像的样品。利用检流计镜的光束扫描具有较高的扫描速度,并且样品不受震动的干扰,因为不存在样品载物台的移动。然而,光束扫描也有其本身的缺点。因为激光束到物镜的入射光瞳上的入射角必须在特定的范围内变化,即使利用昂贵的高质量物镜,相关的象差也是不可避免的。此外,视野范围严重地受到物镜的可接受角的限制。尽管多光子共焦显微镜的发明通过省略出射针孔增强了检测效率,但是基本的扫描机制仍与先前的共焦显微镜相同。

发明内容
如上文简述,尽管载物台和光束扫描共焦显微镜在许多研究领域中,特别是在生物学研究中是必不可少的工具,但它们都有自己的缺点。在本发明中,新的基于双包层光纤的扫描共焦显微镜,其具有载物台和光束扫描配置的双重优点,而克服了传统共焦显微镜的所有主要缺点。此外,本发明还提供了重要的新特征,如增加的灵活性和低成本。
根据本发明的原理,提供了扫描显微镜,其具有输出激光能量的激光器。具有第一芯线和第二芯线的光纤部件耦合到激光器。光纤部件的第二芯线通常放置在第一芯线内,第一芯线也充当第二芯线的第一包层。第二芯线的尺寸小于第一芯线。第一芯线由第二包层包围。光纤部件的反端被安装到可移动载物台,以便与其一起移动。
另外,根据下文提供的详细描述,本发明的适用领域将变得显而易见。应该理解的是,详细的描述和特定的示例,虽然是说明本发明的优选实施例,但仅是示意性的,而不是要限制本发明的范围。


依据详细的描述和附图,本发明将被更充分地理解,其中图1是显示与单模光纤比较的穿过双包层光纤的被检测的双光子荧光能的图;图2是显示本发明的双包层光纤扫描显微镜的示意图;和图3显示当GRIN透镜用于聚焦激发光束并收集荧光或其它合成信号时的计算结果。被收集荧光的光斑大小的半径大约是49μm,其在光纤末端大于输出激发光束;图4是用作扫描头的双包层光纤阵列的透视图。
具体实施例方式
优选实施例的下列描述实际上仅是示范性的,而决不打算限制本发明、其应用或使用。
传统的光束扫描包括在物镜改变入射光束的角度,与传统的光束扫描相反,本发明的光束扫描可通过移动光纤而获得,该光纤传递激发所用的激光束,并沿同一光纤收集返回的信号。无论是单模还是多模光纤的传统光纤都不能以该方式被实际应用。尽管单模光纤(SMF)具有激发所用的可接受模式,数值孔径(NA)典型地是只有大约0.1,这导致效率非常低的信号收集。另一方面,虽然多模光纤具有适于收集信号的较大的数值孔径,但输出模式不能被紧聚焦,从而导致效率低的激发和低分辨率。另外,在多光子激发的情况下,多模光纤导致更低的激发速度,因为超短激光脉冲在通过多模光纤的传播过程中被严重畸变。
为解决用于生物传感的这一权衡问题,可使用双包层光纤以便为光纤生物传感同时增强激发和收集效率,如美国临时申请号60/434,604所描述的。该申请在此引用作为参考。在该申请中,与由线B表示的传统的SMF(参见图1)相比,由线A表示的双光子荧光检测敏感度,通过利用光子晶体双包层光纤而增加到40倍。
参考图2,其显示了通常标为10的双包层光纤扫描显微镜的示意图。虽然应该理解的是,基于该双包层光纤扫描机制,可选的配置也是可能的。双包层光纤扫描显微镜10被显示具有能输出激光束14的激光器12,激光束14也将被称为激发激光束。激光器12能通过光纤耦合器18耦合到双包层光纤或光纤部件16。更具体地,双包层光纤16包括内芯线20、外芯线22和外包层24。内芯线20被显示与外芯线22和外包层24中的每一个都同轴;但是,应理解的是,这不是必需的。应指出的是,外芯线22也可作为内芯线20的内包层,从而用于双重目的。如图3(a)所示,应理解的是,双包层光纤16可以是包括多个光纤16的光纤部件系统16′。
激光器12通过光纤耦合器18与双包层光纤16耦合,这样,激光束14在双包层光纤16的近端26被导入内芯线20。双包层光纤16的远端28被耦合到3-D快速扫描载物台30,载物台30用于移动从双包层光纤16的远端28射出的激光束14穿过关心的样本。诸如GRIN透镜的微透镜34可被连接到双包层光纤16的远端28,以便把激光束14聚焦成甚至更小的光斑,从而获得更高的分辨率。例如,但不限于从关心的样本32发出的荧光信号,拉曼信号,激光束14的背反射,等等的合成信号然后通过双包层光纤16的内芯线20和外芯线22被收集回来,并在到达光学检测系统38之前,利用诸如二向色镜的光学分离系统从激发激光束14被分离。滤波器40也可用于从到达光学检测系统38的信号中滤掉不想要的信号。
至于双包层光纤16,内芯线和外芯线(内包层)的数值孔径可被独立地调节。外芯线数值孔径的大小可以是大约0.8,或在空气中甚至正好如此,这可与最高放大率的物镜相比。此外,当诸如渐变折射率(GRIN)透镜的镜头与双包层光纤16连接以进一步聚焦激发光时,从镜头返回到双包层光纤而被接收的荧光信号的收集效率是高的,因为即使镜头的色差存在,较大的外芯线也可有效地收集荧光。如果在该情况下使用传统的光纤,合成信号收集效率是低的。
图3(a)-(e)显示来自GRIN透镜的被收集的荧光在双包层光纤16的远端28形成大光斑。即,如图3(a)所示,光纤部件系统16′包括上述多个内芯线20和外芯线22。如图3(b)所示,当激发光束300离开双包层光纤16时,其穿过诸如GRIN透镜的镜头34,并被聚焦在样本32上。激发光束300引起从样本32产生的合成信号302,这一般显示在图3(c)中。该合成信号302可具有,例如约1μm的半径。但是如图3(d)所示,合成信号302然后通过镜头34返回。理想的情况是,合成信号302将完全聚焦在双包层光纤16的远端28上。然而,由于色差和/或其它异常原因,产生了合成信号302的较大的足迹,并且该足迹可能具有约49μm的半径。在传统的收集中,将不收集该较大的足迹,因而将降低该系统的效率。但是,在本发明中,具有高数值孔径的外芯线22能收集更多的合成信号302,因此提供了改进的检测效率。
应该理解的是,本发明的双包层光纤扫描显微镜10提供了许多与传统的扫描显微镜相比的优点。例如,如上所述,双包层光纤扫描显微镜10具有极其简单的结构。但是,它具有革命性和根本性变化的扫描机制,这保证了该新型扫描显微镜的许多独特的特征。
良好的灵活性本发明的双包层光纤扫描显微镜10是极其灵活的。更具体地,双包层光纤扫描显微镜10可被自由地调节,而不影响激发源和检测,因为包含双包层光纤16的远端28的扫描头是由扫描载物台30的(例如x-y或x-y-z的)小的平移通过单个光纤来控制的。因此,可在垂直的或颠倒的配置中,或者如有需要的话,在任意角度的配置中执行扫描成像。扫描载物台30也可容易地获得所关心的样本上的任何扫描图形。此外,扫描载物台30可用于创建连同激发源和检测系统的独立显微镜。它也可用作包含在传统光学显微镜中的单元。例如,扫描载物台30可被制作为用螺纹拧入换镜旋座中的标准部件。因此,人们可容易地把传统的显微镜转换为具有如本文描述的有利功能的扫描显微镜。
大的扫描范围不同于传统的光束扫描显微镜,双包层光纤扫描显微镜10的扫描范围由用于控制双包层光纤16的远端28的扫描载物台30的行程来确定。实际上,已经发现,可将该行程增加到几个毫米或更大,同时保持诸如小于一微米的高分辨率。该特征允许人们获得大样本的全部图像。例如,传统的光束扫描显微镜由于物镜的有限视野而只有细胞大小的扫描范围。相反,基于双包层光纤16的新的光束扫描机制使利用单次扫描对整个生物体或瘤进行成像成为可能。
快速扫描创建实用的仪器要求快的扫描速度。对传统的载物台扫描显微镜来说,扫描速度一般是很低的,因为它需要时间平移与样本和样本固定器一起的整个载物台。本文描述的扫描机制只包括移动重量轻的光纤末端。类似于在光束扫描中使用的扫描仪镜,光纤末端利用快速的扫描仪可快速扫描。
不震动样本尽管是上文提到的快速扫描,但没有震动来干扰成像的样本,因为在扫描过程中样本保持静止,这与载物台扫描相反。除了光纤末端重量轻,这是允许快速扫描的另一个实用的原因。另外,这里利用来自光纤末端的远场激发,以获得安静的光束扫描,这避免了在近场扫描光学显微镜方法中不可避免的问题,其中扫描末端与样本之间的交互作用一般是严重的问题。
无象差的扫描在传统的光束扫描中,使用两个扫描仪镜来改变激发光在物镜的入射光瞳上的入射角,这引起严重的离轴象差。设计和制造纠正离轴象差的物镜是十分困难和昂贵的。而且,即使费了很大劲,仍然必须在视野与图像质量之间进行权衡,因为离轴象差是难以完全补偿的,尤其是对于相对大的视野。具有灵活的双包层光纤16的激发光束的扫描从根本上解决了与传统光束扫描有关的象差问题。在双包层光纤扫描显微镜10中,样本的每个被扫描的点在整个扫描范围内被平均地照亮,并且信号收集保持不变。该特征确保大的关心的样本的高质量的图像质量。
低成本创建双包层光纤扫描显微镜10的成本大大低于具有基于扫描仪镜的扫描单元的传统的光束扫描显微镜。如上所述,为了获得相对大的平面视野并补偿离轴象差,物镜的要求是重要的。另外,具有高的光学质量的成像系统也被要求把扫描仪镜成像到物镜的入射光瞳上。这些因素使传统光束扫描显微镜非常昂贵。
相反,在双包层光纤扫描显微镜10中,光纤耦合器18中所用的物镜只把光线聚焦到双包层光纤16的近端26上。因此,光纤耦合器18中的物镜满足了这些要求,并可较便宜地被制造。通过用扫描载物台30控制双包层光纤16的远端28而获得光束扫描,这代替了传统光束扫描显微镜中使用的由扫描仪镜和高质量成像系统组成的昂贵的扫描单元。因此,基于双包层光纤16的新扫描机制使创建低成本、高性能的显微镜成为可能。
C、双包层光纤阵列扫描显微镜在上文中,讨论了利用单个双包层光纤16的双包层光纤扫描显微镜10。但是,已经确定,通过利用一般以200表示的1-D或2-D阵列,可进一步增加双包层光纤16的扫描速度,如图4所示。
通过利用诸如MEMS开关的现有技术,可将激发光耦合进双包层光纤阵列200。当双包层光纤阵列200同时扫描而不是扫描单根光纤时,扫描速度以阵列中双包层光纤的数目为因子而增加。例如,采用以彼此之间为1mm的间距对齐并安装在单个平移载物台30上的5个双包层光纤16,扫描5mm的线只需要平移1mm。这样,与单根光纤扫描相比,扫描速度增加到5倍。如果使用双包层光纤的2-D阵列,即使对于大的成像区域,也应该能保持高的扫描速度。
提供了基于双包层光纤扫描的形成新的扫描显微镜的新颖机制。该显微镜克服了传统载物台和光束扫描显微镜的缺点,而具有上述的许多优点,即,良好的灵活性,大的扫描范围,快的扫描速度,安静的扫描,无象差的扫描和低成本。具有整合在一个显微镜中的所有这些优点,广泛的潜在应用是被预期的。
本发明的描述实际上仅是示范性的,因此不背离本发明主旨的各种变化要被包含在本发明的范围内。这些变化不被认为是对本发明的精神和范围的违背。
权利要求
1.扫描显微镜,其包括输出激发激光束的激光器;具有第一芯线和第二芯线的光纤部件,所述第二芯线通常放置在所述第一芯线内,所述第二芯线能接收来自所述激光器的所述激发激光束,并传输所述激发激光束到被测试的样本;和可移动载物台,其用于承载由所述光纤部件的末端和被测试的所述样本组成的一组中的至少一个,所述可移动载物台能使所述光纤部件的所述末端和被测试的所述样本彼此相对地移动。
2.如权利要求1所述的扫描显微镜,其中所述激发激光束作用于被测试的所述样本,以产生表示被测试的所述样本的合成信号,至少所述的第一芯线能够从被测试的所述样本收集所述合成信号。
3.如权利要求2所述的扫描显微镜,其中所述合成信号是荧光信号。
4.如权利要求2所述的扫描显微镜,其中所述合成信号是拉曼信号。
5.如权利要求2所述的扫描显微镜,其中所述合成信号是所述激发激光束的背反射信号。
6.如权利要求2所述的扫描显微镜,其进一步包括光学分离系统,其能被耦合以同时接收所述激发激光束和所述合成信号;和光学检测系统,其能被耦合到所述光学分离系统,其中所述光学分离系统允许传输所述合成信号到所述光学检测系统。
7.如权利要求1所述的扫描显微镜,其中所述第二芯线同轴放置在所述第一芯线内。
8.如权利要求1所述的扫描显微镜,其进一步包括光纤耦合器,其放置在所述激光器与所述光纤部件之间,用于在彼此之间传输所述激光能量。
9.如权利要求1所述的扫描显微镜,其中所述光纤部件包括多个芯线。
10.如权利要求1所述的扫描显微镜,其中被测试的所述样本是生物组织。
11.如权利要求1所述的扫描显微镜,其进一步包括透镜,其能被连接到所述光纤部件的所述末端,利用所述透镜能获得增加的分辨率和被测试的所述样本的增强的激发。
12.如权利要求11所述的扫描显微镜,其中所述透镜是渐变折射率透镜。
13.扫描显微镜,其包括输出激发激光束的激光源;具有多个光纤部件的光纤部件系统,每个所述的多个光纤部件具有第一芯线和第二芯线,所述第二芯线通常放置在所述第一芯线内,所述第二芯线能接收来自所述激光源的所述激发激光束,并传输所述激发激光束到被测试的样本,以产生来自所述样本的合成信号;和光学分离系统,其能被耦合以同时接收所述激发激光束和所述合成信号;和光学检测系统,其能被耦合到所述光学分离系统,其中所述光学分离系统允许传输所述合成信号到所述光学检测系统用于检测。
14.如权利要求13所述的扫描显微镜,其进一步包括可移动载物台,其用于承载由所述光纤部件系统和被测试的所述样本组成的一组中的至少一个,所述可移动载物台能使所述光纤部件系统和被测试的所述样本彼此相对地移动。
15.如权利要求13所述的扫描显微镜,其中每一个所述多个光纤部件的所述第一芯线和所述第二芯线用于从被测试的所述样本收集所述合成信号。
16.如权利要求13所述的扫描显微镜,其中所述合成信号是荧光信号。
17.如权利要求13所述的扫描显微镜,其中所述合成信号是拉曼信号。
18.如权利要求13所述的扫描显微镜,其中所述合成信号是所述激发激光束的背反射信号。
19.如权利要求13所述的扫描显微镜,其中所述每一个第二芯线同轴放置在所述每一个第一芯线内。
20.如权利要求13所述的扫描显微镜,其进一步包括光纤耦合器,其耦合到所述光纤部件系统,用于经由它传输所述激发激光束和所述合成信号。
21.如权利要求13所述的扫描显微镜,其中所述样本是生物组织。
22.如权利要求13所述的扫描显微镜,其进一步包括透镜,其能被连接到所述光纤部件系统,利用所述透镜能获得增加的分辨率和所述样本的增强的激发。
23.如权利要求22所述的扫描显微镜,其中所述透镜是渐变折射率透镜。
全文摘要
本发明公开了一种扫描显微镜(10),其包括输出激发激光束(14)的激光器(12)和具有第一芯线(22)和第二芯线(20)的光纤部件。第二芯线(20)通常放置在第一芯线(22)内,并用于接收来自激光器的激发激光束,并传输激发激光束到被测试的样本(32)。可移动载物台(30)用于承载光纤部件(16)的末端(28)和/或被测试的样本,并能使该光纤部件的末端和被测试的样本彼此相对地移动。
文档编号G02B6/04GK1795405SQ200480014607
公开日2006年6月28日 申请日期2004年5月28日 优先权日2003年5月29日
发明者J·Y·叶, T·B·诺里斯 申请人:密歇根大学董事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1