液晶显示板及薄膜晶体管阵列板的制作方法

文档序号:2782443阅读:108来源:国知局
专利名称:液晶显示板及薄膜晶体管阵列板的制作方法
技术领域
本发明涉及一种液晶显示器及其中的薄膜晶体管阵列板。
背景技术
液晶显示器(LCD)是最广泛使用的平板显示器中的一种。LCD可包括具有场发生电极,诸如公共电极和像素电极的两个板,以及插入两板之间的液晶(LC)层。LCD通过向场发生电极施加电压从而在LC层中产生电场来显示图像,所产生的电场确定LC层中LC分子的取向从而调整入射光的偏振。
由于其高对比率和宽参考视角,通常利用垂面排列(VA)模式LCD,该模式LCD排列LC分子使其纵轴在无电场时垂直于板。
VA模式LCD的宽视角能够通过在场发生电极中提供切口和突出体(protrusions)实现。切口和突出体能够决定LC分子的倾斜方向,该倾斜方向能够分布为不同的方向从而加宽参考视角。
然而,典型的VA模式LCD仍然具有比正面能见度差的侧面能见度。

发明内容
本发明提供了一种薄膜晶体管阵列板,其包括基板;形成在该基板上的第一信号线;与该第一信号线交叉的第二信号线;连接于该第一信号线和该第二信号线的薄膜晶体管;以及像素电极,其包括连接于该薄膜晶体管的第一子像素部分和第二子像素部分,和电容性地耦合到该第一子像素部分和该第二子像素部分中的至少一个的第三子像素部分。
本发明进一步提供了一种液晶显示板,其包括具有公共电极的公共电极板;相对该公共电极设置的薄膜晶体管阵列板,该薄膜晶体管阵列板包括基板,形成在该基板上的第一信号线,与该第一信号线交叉的第二信号线,连接于该第一信号线和该第二信号线的第一薄膜晶体管,以及像素电极,该像素电极包括连接于该第一薄膜晶体管的第一电极部分和第二电极部分,和电容性地耦合到该第一和该第二子像素部分中的至少一个的第三电极部分;设置在该公共电极板之间的液晶层;以及第二薄膜晶体管,其具有包括该第一或第二电极部分并向其施加第一电压的第一子像素,和包括该第三电极部分并向其施加第二电压的第二子像素。


本发明将通过参考附图,详细地描述实施例而变得更加清楚。
图1是根据本发明实施例的LCD的TFT阵列板的布局图;图2是根据本发明实施例的LCD的公共电极板的布局图;图3是包括图1中所示的TFT阵列板和图2中所示的公共电极板的LCD的布局图;图4是图3中所示LCD沿线IV-IV’所取的剖面图;图5是图1至4中所示LCD的等效电路图;图6是根据本发明另一实施例的LCD的布局图;图7是图6中所示LCD沿线VII-VII’所取的剖面图;图8是根据本发明另一实施例的LCD的布局图;图9是根据本发明另一实施例的LCD的TFT阵列板的布局图;图10是根据本发明另一实施例的LCD的公共电极板的布局图;图11是包括图9中所示的TFT阵列板和图10中所示的公共电极板的LCD的布局图;图12是根据本发明另一实施例的LCD的TFT阵列板的布局图;图13是根据本发明另一实施例的LCD的公共电极板的布局图;图14是包括图12中所示的TFT阵列板和图13中所示的公共电极板的LCD的布局图;图15是图14中所示LCD沿线XV-XV’所取的剖面图;图16A、图17A、图18A和图20A是根据本发明实施例的图12至15所示TFT阵列板的制造方法的中间步骤中TFT阵列板的布局图。
图16B、图17B、图18B和图20B是图16A,图17A,图18A和图20A中所示TFT阵列板分别沿线XVIB-XVIB’,XVIIB-XVIIB’,XVIIIB-XVIIIB’和XXB-XXB’所取的剖面图。
图19是在图18B中所示步骤之后的中间步骤中图18A中所示TFT阵列板沿线XVIIIB-XVIIIB’所取的剖面图;图21是在图20B中所示中间步骤之后的步骤中图20A中所示TFT阵列板沿线XXB-XXB’所取的剖面图;图22是根据本发明另一实施例的LCD的布局图;图23是图22中所示LCD沿线XXIII-XXIII’所取的剖面图;图24是根据本发明另一实施例的LCD的TFT阵列板的布局图;图25是包括图24中所示的TFT阵列板和图2中所示的公共电极板的LCD的布局图;图26是图25中所示LCD沿线XXVI-XXVI’所取的剖面图;图27是根据本发明另一实施例的LCD的TFT阵列板的布局图;图28是包括图27中所示的TFT阵列板和图2中所示的公共电极板的LCD的布局图;图29是图28中所示LCD沿线XXIX-XXIX’所取的剖面图。
具体实施例方式
此后将参考附图更加全面地描述本发明,附图示出了本发明的实施例。然而,本发明可以实施为很多不同的形式并且不应理解为局限于在此提出的实施例。
在附图中,为了清楚夸大了层、膜和区域的厚度。自始至终,同样的附图标记表示同样的元件。元件的位置可以参考它们在图中的方向进行描述,例如向上就是朝向图的上部。可以理解的是,当元件诸如层、膜、区域或基板表示为在另一元件的之“上”时,它可直接在其他元件之上或者也可以存在中间元件。相反,当元件表示为“直接”在另一元件之上时,就不存在中间元件了。
参考图1,根据本发明实施例的LCD包括TFT阵列板100,公共电极板200,以及插入板100和200之间的LC层3。
参考图1、图3和图4详细描述TFT阵列板100。
包括多条栅极线121、多条存储电极线131以及多个电容电极136的多个栅极导体,形成在诸如透明玻璃或塑料的绝缘基板110上。
栅极线121传送栅极信号并基本沿着像素的横向延伸。每条栅极线121包括向上和向下凸出的多个栅极124和具有大面积用以接触另一层或外部驱动电路的端部129。产生栅极信号的栅极驱动电路(未示出)可以设置在柔性印刷电路(FPC)膜(也未示出)上,该柔性印刷电路膜可以附着、直接设置、或集成在基板110上。栅极线121可以延伸到与集成在基板110上的驱动电路相连。
存储电极线131提供有预定电压并基本平行于栅极线121延伸。每条存储电极线131布置在两条相邻的栅极线121之间并可以靠近两条相邻栅极线121中较低的一条。每条存储电极线131包括向上和向下扩张的更大宽度的多个存储电极137。
每个与存储电极线131分开的电容电极136包括宽的横向部分和与其连接的窄的纵向部分,宽的横向部分包括向上突出的突出部分139。横向部分是基本平行于相邻的两条栅极线121并从该处基本等距延长的矩形。纵向部分从横向部分右端向存储电极线131延伸。
栅极导体121,131和136优选由金属诸如Al或Al合金,Ag或Ag合金,Cu或Cu合金,Mo或Mo合金,Cr,Ta,或Ti构成。导体也可具有包括具有不同物理特性的两层导电膜(未示出)的多层结构。两层膜中的一层优选包括低电阻率金属如Al、Ag或Cu,以减小信号延迟或电压降。另一层膜优选包括具有良好的物理、化学特性和与其它材料诸如氧化铟锡(ITO)或氧化铟锌(IZO)有电接触特性的金属如Mo,Cr,Ta,或Ti。两层膜组合的例子有下层Cr膜和上层Al(合金)膜,或下层Al(合金)膜和上层Mo(合金)膜。然而,如本领域技术人员所知,栅极导体121,131和136能够由各种金属或导体制成。
栅极导体121,131和136的横向侧面相对于基板110的表面倾斜,这样的倾斜角能够在大约30度至80度的范围内。
优选的由氮化硅(SiNx)或氧化硅(SiOx)构成的栅极绝缘层140在栅极导体121,131和136上形成。
优选的由氢化非晶硅(简写为“a-Si”)或多晶硅制成的多条半导体条纹151在栅极绝缘层140上形成。每条半导体条纹151基本在纵向方向上延伸并在接近栅极线121和存储电极线131处加宽,从而半导体条纹151覆盖栅极线121和存储电极线131的大面积。每条半导体条纹151具有多个朝向栅极124向外分支的突出部分154。
多条欧姆接触条纹和岛161和165在半导体条纹151上形成。欧姆接触条纹和岛161和165能够由例如重掺杂n型掺杂剂诸如磷或硅化物的n+氢化a-Si构成。每条欧姆接触条纹161具有多个突出部分163,突出部分163和欧姆接触岛165成对地位于半导体条纹151的突出部分154上。
半导体条纹151的横向侧面和欧姆接触161和165相对于基板110的表面倾斜,这些倾斜角能够在大约30度至80度的范围内。
包括多条数据线171和多个漏极175的多个数据导体在欧姆接触161和165以及栅极绝缘层140上形成。
数据线171传送数据信号并基本在纵向方向上延伸到与栅极线121和存储电极线131交叉。每条数据线171可包括朝向栅极电极124凸出的多个源极173和具有用于与另一层或外部驱动电路接触的大面积的端部179。产生数据信号的数据驱动电路(未示出)可设置在FPC膜(未示出)上,该FPC膜可采用与上述连接于栅极线121的FPC膜相似的方式附着在基板110上。
每个漏极175与数据线171分开并包括与源极173关于栅极124相对设置的窄的端部。漏极175的端部由源极173部分围绕。
每个漏极175还包括延伸部分177和连接于此的耦合电极176。
延伸部分177可成梯形并平行于栅极线121延长,与存储电极137交叠。
耦合电极176与形状基本相同的电容电极136交叠。耦合电极176具有宽的横向部分以及连接于横向部分和延伸部分177的纵向部分,但是不与电容电极136的突出部分139交叠。
栅极124,源极173和漏极175以及半导体条纹151的突出部分154形成具有设置在突出部分154内的沟道,突出部分154位于源极173和漏极175之间。
数据导体171和175优选由难熔金属诸如Cr,Mo,Ta,Ti或它们的合金构成。然而,数据导体171和175可具有包括难熔金属膜(未示出)和低电阻率膜(未示出)的多层结构。多层结构的例子有包括下层Cr/Mo(合金)膜和上层Al(合金)膜的双层结构,或下层Mo(合金)膜,中间层Al(合金)膜和上层Mo(合金)膜的三层结构。然而如本领域技术人员所知,数据导体171和175可由各种金属或导体制成。
数据导体171和175也可具有倾斜的边缘轮廓,其角度可在大约30度至80度的范围内。
仅插入在下面的半导体条纹151和上面的数据导体171和175之间的欧姆接触161和165减小相邻的上下层之间的接触电阻。尽管半导体条纹151在大部分地方比数据线171窄,但是如上所述,半导体条纹151在接近上述栅极线121处加宽,用于平滑表面的轮廓,从而防止数据线171断开。半导体条纹151包括没有覆盖数据导体171和175的一些暴露部分,例如位于源极173和漏极175之间的部分。
钝化层180可包括优选由无机绝缘体诸如氮化硅或氧化硅制成的下层钝化膜180p和优选由有机绝缘体制成的上层钝化膜180q。有机绝缘体优选具有小于大约4.0的介电常数并可具有感光性,并提供平坦的表面。
多个彩色滤光片(未示出)可设置在下层钝化膜180p和上层钝化膜180q之间,或可替换上层钝化膜180q。
钝化层180具有使数据线171的端部179暴露的多个接触孔182和使漏极电极175的延伸部分177暴露的多个接触孔185。钝化层180和栅极绝缘层140具有使栅极线121的端部129暴露的多个接触孔181和使电容电极136的突出部分139暴露的多个接触孔186。接触孔181、182、185和186可具有倾斜的或阶梯形的侧壁,从而能够容易的通过使用有机材料形成。
多个像素电极190和多个辅助接触部分81和82在钝化层180上形成,辅助接触部分优选由透明导体诸如ITO或IZO或反射导体诸如Ag、Al、Cr或它们的合金制成。
每个像素电极190可以是具有倾斜于栅极线121的斜切的左角的矩形。像素电极190与栅极线121交叠,从而增加孔径比。
每个像素电极190具有缝隙92,该缝隙将像素电极190分为外部和内部子像素电极190a和190b。
缝隙92可包括倾斜的下部和上部92a和92b以及连接它们的纵向部分。下部和上部92a和92b从像素电极190的右边向左边延伸。纵向部分92c连接下部和上部92a和92b的左端部。
因此,内部子像素电极190b可成形为旋转一直角的等腰梯形,而且外部子像素电极190a包括一对旋转一直角的直角梯形和与直角梯形耦合的纵向部分,其可被认为是上部和下部外部子像素电极部分。
外部子像素电极190a能够通过接触孔185电连接于延伸部分177。
内部子像素电极190b能够通过接触孔186电连接于电容电极136并与耦合电极176交叠。内部子像素电极190b、电容电极136和耦合电极176形成“耦合电容”。
内部子像素电极190b可具有在横向方向延伸的、在像素电极190右边设有入口的切口91。该入口具有一对基本平行于缝隙92的下部和上部92a和92b的斜边。
像素电极190相对于电容电极136基本对称。间隙92的单独部分92a,92b和92c在下面也将称为切口。
切口的数量和隔板的数量根据诸如像素电极190的尺寸、像素电极190横边与纵边的比率、以及例如LC层3的特性的设计因素而不同。
辅助接触部分81和82能够通过接触孔181和182分别与栅极线121的端部129和数据线171的端部179相连。辅助接触部分81和82保护端部129和179,并加强端部129和179与外部器件之间的附着力。
现在参考图2至4描述公共电极板200。
称为黑色矩阵用于防止光泄漏的光阻隔部件220能够在诸如透明玻璃或塑料的绝缘基板210上形成。光阻隔部件220具有面对像素电极190的多个开口225,且它可具有与像素电极190基本相同的平面形状。不同的是,光阻隔部件220可包括面向TFT阵列板100上的数据线171的多个直线部分和面向TFT阵列板100上的TFT的多个加宽部分。
多个彩色滤光片230也可在基板210上形成,并且它们基本设置在由光阻隔部件220围绕的区域内。彩色滤光片230可基本沿着像素电极190的纵向方向延伸。彩色滤光片230可表现诸如红、绿或蓝的三原色中的一种颜色。
保护层250能够在彩色滤光片230和光阻隔部件220上形成。保护层250优选由有机绝缘体制成,并且它提供有平坦表面并进一步防止彩色滤光片230被暴露。
公共电极270在保护层250上形成。公共电极270优选由透明导体材料诸如ITO和IZO制成,并可包括切口组71、72a和72b。
一组切口面对像素电极190并包括中心切口71、下部切口72a和上部切口72b。每个切口71-72b设置在相邻的切口91-92b之间,或者在切口92a或92b与像素电极190的斜切边之间。每个切口71-72b至少具有倾斜部分,该倾斜部分具有凹下的凹口并平行于下部切口92a或上部切口92b延伸。切口71-72b能够相对于电容电极136基本对称。
如图3中所示,每个下部和上部切口72a和72b包括大约从像素电极190左边向下部或上部边缘延伸的倾斜部分,以及从倾斜部分各个端部沿着像素电极190的边缘延伸、与像素电极190的边缘交叠、并与倾斜部分成钝角的横向和纵向部分。
中心切口71包括大约从像素电极190左边沿着横线延伸的中心横向部分、一对从中心横向部分的端部大约向像素电极190的右边延伸的倾斜部分以及一对从各个倾斜部分的端部沿着像素电极190的右边延伸的终端纵向部分,从而与像素电极190的右边缘交叠并与各个倾斜部分成钝角。
与切口91-92b一样,切口71-72b的数量可根据设计因素而不同。而且,光阻隔部件220还可与切口71-72b交叠以阻隔通过其的光泄漏。
可为同向(homeotropic)的取向层11和21、以及偏振片12和22可分别在板100和200的内部和外部表面上提供,使得它们的偏振轴交叉并且偏振轴中的一个可平行于栅极线121。当LCD是反射LCD时,可省略偏振片12或22中的一个。
LCD还可包括至少一个用于补偿LC层3的延迟的延迟膜(未示出)。延迟膜具有双折射并提供与LC层3所提供的相反的延迟。
LCD还可包括通过偏振片12和22、延迟膜以及板100和200向LC层3提供光的背光单元(未示出)。
优选的是,LC层3具有负的介电各向异性,并且它服从垂直排列,从而LC分子310在没有电场时,以它们的纵轴基本与板100和200表面正交而排列。因此,入射光不能通过偏振器12和22的交叉的偏振系统。
可替换地,LCD的像素可包括包括第一子像素和第二子像素的TFT Q,该第一子像素包括第一LC电容器Clca和存储电容器Cst,该第二子像素包括第二LC电容器Clcb和耦合电容器Ccp。
第一LC电容器Clca包括作为一个终端的外部子像素电极190a、作为另一个终端的公共电极270的相应部分以及LC层3设置在其间作为介质的部分。相类似的,第二LC电容器Clcb具有相似的结构并包括作为一个终端的内部子像素电极190b、作为另一个终端的公共电极270的相应部分以及LC层3设置在其上的作为介质的部分。
存储电容Cst包括作为一个终端的漏极175的延伸部分177,作为另一终端的存储电极137,以及栅极绝缘层140置于其间的作为介质的部分。
耦合电容Ccp包括作为一个终端的内部子像素电极190b和电容电极136,作为另一终端的耦合电极176,以及钝化层180和栅极绝缘层140置于其间的作为介质的部分。
第一LC电容Clca和存储电容Cst平行地连接于TFT Q的漏极。耦合电容CCp连接于TFT Q的漏极与第二LC电容Clcb之间。公共电极270被供给公共电压Vcom,该电压被提供到存储电极线131。
TFT Q响应来自栅极线121的栅极信号从数据线171向第一LC电容器Clca和耦合电容器Ccp提供数据电压,且耦合电容器Ccp向第二LC电容器Clcb传送具有改变大小的数据电压。
如果存储电极线131被供给公共电压Vcom,且每个电容器Clca、Cst、Clcb和Ccp及其电容以相同的参考特征表示,充到第二LC电容器Clcb的电压Vb如下给出Vb=Va×[Ccp/(Ccp+Clcb)],这里Va表示第一LC电容器Clca的电压。
由于项Ccp/(Ccp+C1cb)小于1,第二LC电容器Clcb的电压Vb小于第一LC电容器Clca的电压。这种不相等在存储电极线131的电压不等于公共电压Vcom的情况也是正确的。
当在第一LC电容器Clca或第二LC电容器Clcb产生电势差时,在LC层3内产生基本与板100和200的表面正交的电场,像素电极190和公共电极270在下文中一般都称为场发生电极。然后,LC层3内的LC分子310响应电场而倾斜,从而它们的纵轴与场方向正交。LC分子310的倾斜度确定LC层3上入射光的偏振变化,该偏振变化转变为由偏振片12和22通过的光的变化。这样,LCD显示图像。
LC分子310的倾斜角取决于电场的强度。由于第一LC电容器Clca的电压Vb和第二LC电容器Clcb的电压Va彼此不相同,第一子像素内LC分子310的倾斜方向不同于第二子像素内LC分子310的倾斜方向,这样两个子像素的亮度就不同。因此,通过使两个子像素的平均亮度保持在目标亮度,能够调整第一和第二子像素的电压Va和Vb,这样从横向侧面观察的图像最接近于从前面观察的图像,从而改善了侧面能见度。
电压Va和Vb的比率能够通过改变耦合电容Ccp的电容来调整,且耦合电容Ccp能够通过改变耦合电极176和内部子像素电极190b(以及电容电极136)之间的交叠面积以及距离而变化。例如,当电容电极136移动并且耦合电极176移动到电容电极136以前的位置上时,耦合电极176与内部子像素电极190b之间的距离变大。优选地,第二LC电容Clcb的电压Vb大约是第一LC电容Clca的电压Va的0.6至0.8倍。
第二LC电容器Clcb内所充的电压Vb可以大于第一LC电容器Clca的电压Va。这通过对第二LC电容器Clcb预充诸如公共电压Vcom的预定电压来实现。
第二子像素的内部子像素电极190b优选地大约是第一子像素的外部子像素电极190a宽度的0.8-1.5倍,在每个LC电容器Clca和Clcb内的子像素电极的数量可以改变。
LC分子310的倾斜方向受到由场发生电极190和270的切口91-92b和71-72b产生的水平分量和使电场变形的像素电极190的倾斜边的影响,LC分子的倾斜方向基本与切口91-92b和71-72b的边缘和像素电极190的倾斜边正交。参考图3,一组切口91-92b和71-72b将像素电极190分为多个子区域,且每个子区域具有两条长边。由于在每个子区域上的LC分子310垂直于长边倾斜,倾斜方向的方位分布位于四个方向,从而增加了LCD的参考视角。
切口71-72b内的凹口确定切口71-72b上LC分子310的倾斜方向,并且它们可以在切口91-92b提供并也可具有不同的形状和排列。
确定LC分子310倾斜方向的切口91-92b和71-72b的形状和排列可以改变,且91-92b和71-72b中至少一个切口可以被突出体(未示出)或下陷体(未示出)代替。突出体可以由有机或无机材料制成并设置在场发生电极190或270的上部或下部。
参考图6和7详细描述根据本发明另一实施例的LCD。
根据该实施例的板100和200的层结构基本上与图1至4中所示的相同。
然而,在该实施例中,半导体条纹151与数据线171和漏极电极175以及下部欧姆接触161和165几乎具有相同的平面形状。但是半导体条纹151包括一些没有被数据线171和漏极电极175覆盖的暴露部分,例如半导体条纹151位于源极173和漏极175之间的部分。
此外,电容电极136没有倾斜部分,且每个漏极175包括平行于数据线171延伸并连接延伸部分177和接近其左侧面的耦合电极176的互联部分178。
例如,图4和图7中所示的TFT阵列板的制造方法使用一次光刻步骤,同时形成数据线171、漏极电极175、半导体151和欧姆接触161和165。
用于光刻工艺的光致抗蚀剂掩膜图案具有不同厚度,特别是,它具有较厚部分和较薄部分。较厚部分位于数据线171和漏极电极175将占据的布线区域上,较薄部分位于TFT沟道区域上。
光致抗蚀剂的随位置而变化的厚度通过几项技术获得,例如,通过在暴露掩膜上提供半透明区域以及透明区域和光阻隔不透明区域。半透明区域可以具有狭缝图案,格子图案,或者一层或更多层具有中间能见度或中间厚度的膜。当使用狭缝图案时,优选狭缝的宽度或狭缝间的距离小于用于光刻的曝光器(light exposer)的分辨率。另一示例是使用再流光致抗蚀剂。详细地,一旦由再流材料构成的光致抗蚀剂掩膜通过使用仅具有透明区域和不透明区域的常规曝光掩膜形成,就要经过再流过程,其中材料可流动到没有光致抗蚀剂的区域,从而形成薄的部分。
结果,制造过程通过省略光刻步骤而得到简化。
参考图8详细描述根据本发明另一实施例的LCD,其具有与图1至4中所示LCD基本相同的层结构。
然而,在图8的LCD中,每个耦合电极176从漏极电极175的延伸部分177向上延伸并转向沿着公共电极270的中心切口71延伸。电容电极136具有与耦合电极176基本相同的形状,除了与子像素电极190b接触的突出部分139。
耦合电极176和电容电极136阻隔接近切口71处的光泄漏,由电极176和136所占据的透射区域的无效部分减小,从而增加孔径比。
参考图9、图10和图11详细描述根据本发明另一实施例的LCD。
在该实施例中,每个像素电极具有5个切口93,94,95,96a和96b。切口95是将像素电极190分为子像素电极190a和190b的间隙且子像素电极190b内的切口93沿着电容电极136的横向部分延伸并具有在像素电极190的右边的入口。子像素电极190b内的切口94包括沿着电容电极136的横向部分延伸的短的横向部分,以及一对朝着像素电极190的右边倾斜延伸的倾斜部分。子像素电极190a内的每个切口96a和96b大约从像素电极190的下边或上边向像素电极190的大约左边中心延伸。
相似的,公共电极270包括一组6个切口73,74,75a,75b,76a和76b。每个切口73和74包括中心横向部分,一对倾斜部分,和一对终端纵向部分。每个切口75a-76b包括倾斜部分和一对横向和纵向部分或一对纵向部分。此外,切口75a和75b包括延伸部分。切口73-76b的倾斜部分平行于切口93-96b的倾斜部分延伸。
参考图12、图13、图14和图15详细描述根据本发明另一实施例的LCD。
根据该实施例的板100和200的层结构与前述实施例示出的基本上相同。
然而,在该实施例的LCD中没有电容电极。
每条存储电极线131与两个相邻的栅极线121等距且存储电极137在外部和内部子像素电极190a和190b上延伸。耦合电极176能够完全的与存储电极137重叠并与漏极电极175物理断开,耦合电极没有与存储电极线131交叠的延伸部分。
上层钝化膜180q具有设置在耦合电极176上的多个开口188,下层膜180p具有设置在开口188中暴露耦合电极176的多个接触孔187。
每个外部子像素电极190a包括由纵向部分相连的下部分和上部分,外部子像素电极具有通过接触孔187连接于耦合电极176的突出部分191。
内部子像素电极190b可仅通过开口188中的下层钝化膜180p与耦合电极176交叠,从而在没有电容电极的情况下增加耦合电容。
现在,参考图16A至图21详细描述例如图15中所示的TFT阵列板的制造方法。
参考图16A和图16B,优选由金属制成的传导层例如通过溅射法沉积在绝缘基板110上。然后,传导层经过光刻和蚀刻形成包括栅极124和端部129的多条栅极线121以及包括存储电极137的多条存储电极线131。
现在看图17A和图17B,栅极绝缘层140、本征非晶硅层和非本征非晶硅层顺序沉积。非本征和本征非晶硅层通过光刻和蚀刻构图,以形成包括突出部分154的多条非本征半导体条纹164和多条本征半导体条纹151。
如图18A和图18B中所示,传导层例如通过溅射法沉积,并通过光刻和蚀刻构图,以形成包括源极173和端部179的多条数据线171、多个漏极电极175以及多个耦合电极176。
其后,非本征半导体条纹的不覆盖数据线171或漏极电极175的暴露部分被去除,从而完成多个欧姆接触岛161和165并使本征半导体条纹151的部分暴露。优选随后进行氧等离子体处理,用以稳定半导体条纹151的暴露表面。
参考图19,沉积下层膜180p和上层膜180q,包括设置在区域A上的厚部分52和区域B上的薄部分54的光致抗蚀剂掩膜部件在上层膜180q上形成。区域C没有光致抗蚀剂。掩膜部件52和54的随位置变化的厚度能够通过参考图6和图7的前述技术获得。
上层和下层膜180q和180p的暴露部分以及区域C内栅极绝缘层140被去除,以形成多个接触孔181,182,185和186。通过此步骤,仅可制造接触孔181,182,185和186的上部分。
下面,参考图20A和图20B,掩膜部件52和54经过厚度缩减,例如通过抛光(ashing),直到薄部分54被去除以使上层膜180q的表面暴露。
看图21,上层膜180q的暴露部分被去除以形成多个开口188。当没有完成接触孔181,182,185和186时,层180q,180p和140的未去除部分在此步骤中被去除。
最后,具有大约500-1,500的厚度的ITO或IZO层例如通过溅射法而沉积,并通过光刻和蚀刻构图,以形成如图12至图15中所示的多个像素电极190和多个辅助接触部分81和82。
参考图22和图23详细描述根据本发明另一实施例的LCD,其所具有的板100和200具有与图12至15中所示的前述实施例相似的层结构。
这里,半导体条纹151与数据线171和漏极175以及下部欧姆接触161和165具有相同的平面形状。然而,半导体条纹151包括没有覆盖数据线171和漏极175的一些暴露部分,就像位于源极173和漏极175之间的那些部分。
此外,多个半导体岛156和多个欧姆接触岛166在耦合电极176下面形成。
能够根据简化方法制造TFT阵列板,该简化方法使用一个光刻步骤同时的形成数据线171、漏极175、耦合电极176、半导体151和156以及欧姆接触161、165和166。
参考图24、图25和图26详细描述根据本发明另一实施例的LCD,其中板100和200的层结构与前述实施例基本上相同。
在本实施例中,每个外部子像素电极190a分为下部分和上部分190a1和190a2(此后称为下部和上部子像素电极),它们关于内部子像素电极190b彼此相对设置。也就是说,每个切口92包括直线分离像素电极190的两个倾斜部分92a和92b。因此,切口92没有纵向部分,并且没有连接外部子像素电极190a的部分的纵向部分。
因此,内部子像素电极190b延伸到像素电极190的左边以增加孔径比。
每个电容电极136接近像素电极190的左边设置并基本平行于数据线171延长,以覆盖下部和上部子像素电极190a1和190a2的部分。电容电极136包括突出部分139,该突出部分可由接触孔186暴露并可连接于内部子像素电极190b。接触孔186设置在从切口91延伸、不属于有效显示区域的直线上,从而改善显示特性。
每个耦合电极176与电容电极136重叠并与其形状类似,除突出部分139以外。每个漏极175还包括连接延伸部分177和耦合电极176的互联部分178。互联部分178沿着切口72a倾斜延伸,以阻隔通过其的光泄漏并增加孔径比。
钝化层180具有暴露耦合电极176两端部的成对的孔185a1和185a2,从而下部和上部子像素电极190a1和190a2分别通过接触孔185a和185b与耦合电极176连接。
图24至图26中所示LCD的孔径比经过计算比图1至图4中所示LCD的孔径比大4%-5%。
参考图27,图28和图29详细描述根据本发明另一实施例的LCD,其中像素布置的与图24至图26中所描述的像素相似。
然而,在这一实施例中,每个漏极175还包括将耦合电极176连接到漏极175的下部互联部分178a1以及从耦合电极176延伸到上部子像素电极190a2的上部互联部分178a2。下部互联部分178a1沿着切口72a倾斜延伸,从而阻隔通过其的光泄漏,并因而增加孔径比。然后,下部互联部分178a1向上转从而连接于耦合电极176。
此外,暴露下部互联部分178a1的接触孔185a1可在互联部分178a1的转向位置提供且暴露上部互联部分178a2的另一接触孔185a2在上部互联部分的上端提供。下部和上部子像素电极190a1和190a2分别通过接触孔185a1和185a2连接于下部和上部互联部分178a1和178a2。
本实施例LCD的孔径比经过计算比图12至图15中所示LCD的孔径比大2%-4%。
本发明能够应用于扭曲(twisted)向列(TN)模式LCD或平面开关(in-plane switching)模式LCD。
虽然这里已经参考一些实施例详细描述了本发明,但是本领域技术人员可以知道,在不脱离如所附的权利要求阐明的本发明的精神和范围的前提下,可对其进行各种不同的修改和替换。
本申请要求2004年7月27日在韩国知识产权局申请的No.10-2004-0058709韩国专利申请的优先权,其全部内容在此引用作为参考。
权利要求
1.一种薄膜晶体管阵列板,包括基板;第一信号线,形成在该基板上;第二信号线,该第一信号线交叉;薄膜晶体管,连接于该第一信号线和该第二信号线;以及像素电极,其包括电连接于该薄膜晶体管的第一子像素部分和第二子像素部分,和与该第一子像素部分和该第二子像素部分中的至少一个电容耦合的第三子像素部分。
2.根据权利要求1的薄膜晶体管阵列板,其中该第一子像素部分和该第二子像素部分关于该第三子像素部分彼此相对设置。
3.根据权利要求1的薄膜晶体管阵列板,还包括电连接于该第一子像素部分或该第二子像素部分的耦合电极,其中该耦合电极与该第三子像素部分电容耦合。
4.根据权利要求3的薄膜晶体管阵列板,还包括在该第一子像素部分、该第二子像素部分和该耦合电极中至少一个的下部的存储电极。
5.根据权利要求3的薄膜晶体管阵列板,其中该耦合电极在该第三子像素部分的下部。
6.根据权利要求5的薄膜晶体管阵列板,还包括设置在该耦合电极和该像素电极之间的绝缘层,其中该绝缘层的一部分设置在该耦合电极和该第三子像素部分之间并比该绝缘层的其他部分薄。
7.根据权利要求6的薄膜晶体管阵列板,其中该绝缘层包括无机膜和有机膜。
8.根据权利要求7的薄膜晶体管阵列板,其中该有机膜具有设置在该耦合电极上的开口,其中该耦合电极通过该有机膜内的该开口电连接于该第三子像素部分。
9.根据权利要求5的薄膜晶体管阵列板,还包括电连接于该第三子像素部分并在该耦合电极下部的电容电极。
10.根据权利要求9的薄膜晶体管阵列板,还包括第一绝缘层,设置在该第一信号线和该第二信号线之间,其中该第一绝缘层还设置在该电容电极和该耦合电极之间;以及第二绝缘层,设置在该第二信号线和该像素电极之间,其中该第二绝缘层还设置在该耦合电极和该第三子像素部分之间。
11.根据权利要求10的薄膜晶体管阵列板,其中该第二绝缘层包括无机膜和设置在该无机膜上的有机膜。
12.根据权利要求3的薄膜晶体管阵列板,还包括电连接于该第三子像素部分并在该耦合电极下部的电容电极。
13.根据权利要求12的薄膜晶体管阵列板,还包括设置在该第一信号线和该第二信号线之间的绝缘层,其中该绝缘层还设置在该电容电极和该耦合电极之间。
14.根据权利要求3的薄膜晶体管阵列板,其中该耦合电极从该薄膜晶体管延伸。
15.根据权利要求1的薄膜晶体管阵列板,还包括电连接于该第三子像素部分并与该第一子像素部分或该第二子像素部分电容耦合的电容电极。
16.根据权利要求1的薄膜晶体管阵列板,还包括设置在该第二信号线和该像素电极之间的绝缘层。
17.根据权利要求16的薄膜晶体管阵列板,其中该绝缘层包括无机膜和设置在该无机膜上的有机膜。
18.根据权利要求1的薄膜晶体管阵列板,还包括将该像素电极分为该第一子像素部分,该第二子像素部分,和该第三子像素部分的分割部件。
19.根据权利要求1的薄膜晶体管阵列板,其中该第一子像素部分和该第二子像素部分间隔开。
20.一种液晶显示板,包括公共电极板,包括公共电极;薄膜晶体管阵列板,相对该公共电极设置,该薄膜晶体管阵列板包括基板,第一信号线,形成在该基板上,第二信号线,与该第一信号线交叉,第一薄膜晶体管,连接于该第一信号线和该第二信号线,以及像素电极,其包括电连接于该第一薄膜晶体管的第一电极部分和第二电极部分,和与该第一和该第二子像素部分中的至少一个电容耦合的第三电极部分;液晶层,设置在该公共电极板和该薄膜晶体管阵列板之间;以及具有像素的第二薄膜晶体管,其中该像素包括第一子像素,包括施加有第一电压的该第一电极部分或该第二电极部分,以及第二子像素,包括施加有第二电压的该第三电极部分。
21.根据权利要求20的液晶显示板,其中该第一子像素包括第一液晶电容器和存储电容器;以及该第二子像素包括第二液晶电容器和耦合电容器。
22.根据权利要求21的液晶显示板,其中该第一液晶电容器包括具有该第一电极部分或第二电极部分的第一终端、包括该公共电极的第一交叠部分的第二终端以及设置在该第一终端和该第二终端之间作为介质的一部分液晶层;并且该第二液晶电容器包括具有该第三电极部分的第一终端、包括该公共电极的第二交叠部分的第二终端以及设置在该第一终端和该第二终端之间作为介质的一部分液晶层。
23.根据权利要求20的液晶显示板,其中该第一电压大于该第二电压。
24.根据权利要求23的液晶显示板,其中该第二电压大约是该第一电压的60%至80%。
25.根据权利要求22的液晶显示板,其中该存储电容器包括具有该第一薄膜晶体管的漏极的延伸部分的第一终端、包括设置在该基板上的存储电极的第二终端以及设置在该第一终端和该第二终端之间作为介质的一部分栅极绝缘层;并且该耦合电容器包括具有第一或第二电极部分以及设置在该基板上的电容电极的第一终端、包括电连接于该漏极的延伸部分的耦合电极的第二终端、以及设置在该第一终端和该第二终端之间作为介质的部分栅极绝缘层和钝化层。
26.根据权利要求25的液晶显示板,其中通过改变该耦合电极相对于该第一电极部分或第二电极部分的位置,使该耦合电容器的电容发生变化,从而调整该第一电压与该第二电压的比率。
全文摘要
本发明提供了一种液晶显示器,其包括根据本发明实施例的薄膜晶体管阵列板,该薄膜晶体管阵列板包括基板;形成在该基板上的栅极线;与该栅极线交叉的数据线;连接于该栅极线和数据线的薄膜晶体管;以及像素电极,该像素电极包括电连接于该薄膜晶体管的第一和第二子像素部分,以及与该第一和该第二子像素部分中的至少一个电容耦合的第三子像素部分。这样的TFT的布置允许在相同像素内的液晶分子的倾斜方向的分布,从而改善该液晶显示器的侧面视角。
文档编号G02F1/1368GK1755470SQ20051010676
公开日2006年4月5日 申请日期2005年7月27日 优先权日2004年7月27日
发明者申暻周, 李昶勋, 朴哲佑, 蔡钟哲 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1