影像撷取装置与方法

文档序号:2742946阅读:97来源:国知局

专利名称::影像撷取装置与方法
技术领域
:本发明有关于一种撷取影像的装置与方法,更特别地,有关于一种撷取场景影像的装置与方法。
背景技术
:可提供三维视觉效果的二维影像产品已成为视觉艺术领域的长期目标。图1是人类的深度识别(cbpthperception)如何建立三维视觉的示意图。立体视觉要求两只眼睛通过重叠的视野范围去观看场景。例如,如图1所示,首先,每只眼睛从轻微不同的角度去观看影像,并将该影像点(imagepoint)聚焦在视网膜之上。然后,在人类大脑中组合该两个二维视网膜影像,以形成三维视觉。影像点的视差(Clisparity)D是指由左眼及右眼所观看的影像点的影像位置的差值,该视差D是由特定的两眼间距所导致,人类大脑将该视差D解释为与该影像点相关的深度信息。S卩,当该影像点为近时,屏幕平面的视差D为大;然而,当该影像点为远时,屏幕平面的视差D为小。更特别地是,由人类大脑所解释的视差与影像点的深度成反比,即,视差~1/深度。为了导出可提供三维视觉的二维影像,传统的立体影像撷取装置配置有多个透镜。例如,传统的双透镜立体相机具有一个左透镜和一个右透镜,其中在场景的已撷取的左影像产物中使用左透镜,在该相同场景的已撷取的右影像产物中使用右透镜。除左透镜和右透镜之外,传统的双透镜立体相机需要一个同步系统,用以获得该已撷取的左影像与该已撷取的右影像的同步产物。由于透镜在相机的尺寸和成本方面占据相当大的比例,因而很难减少传统的双透镜立体相机的尺寸和成本。此外,由于双透镜立体相机具有两个透镜,因此与只具有一个透镜的普通二维影像撷取系统不兼容。因此,需要设计一个单透镜影像撷取装置,用以产生撷取场景的立体内容的影像。
发明内容为解决传统的立体相机的尺寸和成本难以降低,以及与单透镜的普通二维影像撷取系统不兼容的技术问题,本发明提供一种撷取影像的装置与方法。本发明的一个目的是提供一种影像撷取装置,该影像撷取装置包括影像传感器,用以检测入射光以产生相应的已撷取的影像;透镜,用以向影像传感器导入场景的入射光;调节机构,当影像撷取装置撷取场景时,调节机构用以在与透镜的光轴方向垂直的方向上,调节影像传感器与透镜之间的相对位置;以及控制器,用以控制该影像传感器在该影像传感器与该透镜之间不同的相对位置产生该场景的多个已撷取的影像。本发明的另一目的是提供一种影像撷取方法,该影像撷取方法包括当撷取场景时,在与透镜的光轴方向垂直的方向上,调节影像传感器与透镜之间的相对位置,其中,影像传感器用以检测入射光,以产生相应的已撷取的影像,且透镜用以向影像传感器导入场景的入射光;控制该影像传感器在该影像传感器与该透镜之间不同的相对位置产生该场景的多个已撷取的影像。本发明所提供的影像撷取装置与方法能降低立体相机的尺寸和成本,以及能与单透镜的普通二维影像撷取系统兼容。图1是人类的深度识别如何建立三维视觉的示意图;图2是本发明的影像撷取装置的第一实施例的方块图;图3是当影像撷取装置撷取场景时,调节影像传感器与透镜之间的相对位置的示意图;图4是当影像撷取装置撷取场景时,调节影像传感器与透镜之间的相对位置的示意图;图5是本发明的第一实施例的影像撷取方法的流程图;图6是本发明的影像撷取装置的第二实施例的方块图;图7是本发明的影像撷取装置的第三实施例的方块图;图8是用于普通立体深度估计的最近深度的测量示意图;图9是用于普通立体深度估计的最远深度的测量示意图;图10是用于固定透镜的深度估计的最近深度的测量示意图;图11是用于固定透镜的深度估计的最远深度的测量示意图。具体实施例方式在说明书及权利要求当中使用了某些词汇来指称特定组件。所属
技术领域
的技术人员应可理解,制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异作为区分组件的方式,而是以组件在功能上的差异作为区分准则。在通篇说明书及权利要求中所提及的“包含”为开放式用语,故应解释成“包含但不限定于”。此外,“耦接”一词在此包含任何直接及间接的电气连接手段。藉由以下的较佳实施例的叙述并配合全文的图1至图11说明本发明,但以下叙述中的装置、组件与方法、步骤乃用以解释本发明,而不应当用来限制本发明。简而言之,本发明的概念是当撷取该影像时,使用单个透镜,通过在与该透镜的光轴方向大致垂直的方向上调节影像传感器和该透镜之间的相对位置,从而产生场景的多个已撷取的影像。例如,为了撷取场景的立体内容,在水平方向上调节影像传感器和透镜之间的相对位置,其中该水平方向与该透镜的光轴方向垂直,用以允许影像传感器产生已撷取的左影像与已撷取的右影像。藉由以下的较佳实施例的叙述并配合全文的图2至图11更清楚地阐释本发明的特征。图2是本发明的影像撷取装置的第一实施例的方块图。影像撷取装置200(例如数字静止/视频相机)包括但不限于透镜202、影像传感器204、调节机构(adjustingmechanism)206、控制器208以及后置处理器210。影像传感器204,例如CCD传感器或CMOS传感器,用以检测入射光而产生相应的已撷取的影像。透镜202用以向影像传感器204导入场景的入射光。当影像撷取装置200撷取场景时(即当用户按下快门时),调节机构206调节影像传感器204与透镜202之间的相对位置。例如,在与透镜202的光轴方向大致垂直的方向上,调节机构206调节该相对位置。控制器208,用以控制影像传感器204在影像传感器204与透镜202之间不同的相对位置,产生场景的多个已撷取的影像。在一个实施例中,透镜202由浮动透镜实现,该浮动透镜可朝着与光轴方向大致垂直的方向移动,而影像传感器204是固定的。因此,由于透镜202是可移动,调节机构206可轻易实现在与透镜202的光轴方向大致垂直的方向上,调节影像传感器204与透镜202之间的相对位置的目的。图3是当影像撷取装置200撷取场景时,调节影像传感器204与透镜202之间的相对位置的示意图。在图3中,通过移动透镜202,调节机构206在水平方向Dl上调节固定的影像传感器204与可移动的透镜202之间的相对位置,该水平方向Dl与透镜202的光轴方向D2大致垂直。影像撷取装置200撷取时间交错(time-interleaved)的左影像与右影像,以产生场景的立体内容。特别地是,当透镜202位于位置Pl时导出已撷取的右影像,且当透镜202位于位置P2时导出已撷取的左影像。在另一个实施例中,影像传感器204由浮动影像传感器实现,该浮动影像传感器可朝着与光轴方向垂直的方向移动。因此,由于影像传感器204是可移动,调节机构206可轻易实现在与透镜202的光轴方向大致垂直的方向上,调节影像传感器204与透镜202之间的相对位置的目的。图4是当影像撷取装置200撷取场景时,调节影像传感器204与透镜202之间的相对位置的示意图。在图4中,调节机构206在水平方向Dl上调节可移动的影像传感器204与固定的透镜202之间的相对位置,该水平方向Dl与透镜202的光轴方向D2垂直,用以撷取时间交错的左影像与右影像,以产生场景的立体内容。特别地是,当影像传感器204位于位置ΡΓ时导出已撷取的右影像,且当影像传感器204位于位置P2’时导出已撷取的左影像。需注意的是,当影像撷取装置200撷取场景时,调节机构206可以一种主动方式或一种被动方式调节影像传感器204与透镜202之间的相对位置。例如,调节机构206包括耦接于特定的可移动光学组件(例如,图3的透镜202或图4的影像传感器204)的支持和引导组件,用以允许该特定的可移动光学组件朝着特定的方向(例如水平方向Dl)移动,该特定的方向与透镜202的光轴方向D2垂直。当用户的手震(handshake)很明显时,外部的手震作用力足够大,以致无需调节机构206的主动调节就能驱动撷取装置200朝水平方向Dl移动。即,调节机构206无需提供额外的驱动力,例如,通过使用内置马达(未显示)以使得图3的透镜202或图4的影像传感器204朝着水平方向Dl移动特定的距离,且调节机构206简单地提供被动引导,用以对撷取两个或多个影像进行定时。当用户的手震不明显或可忽略时,调节机构206主动提供驱动力,例如,通过使用内置马达(未显示)以使得图3的透镜202或图4的影像传感器204朝着水平方向Dl移动。需注意的是,上述的实施例仅用来例举本发明的实施态样。当影像撷取装置200撷取场景时,在与透镜的光轴方向垂直的方向上,任何能调节影像传感器与透镜之间的相对位置的机构都可用以实现图2中影像撷取装置200的调节机构206。依据本发明的精神轻易完成的改变或均等性的安排均属于本发明所主张的范围。如图2所示,影像撷取装置200包括后置处理器210。后置处理器210对已撷取的影像执行后置处理,例如,增强已撷取的影像的三维效果。在实施例中,控制器208使能(enable)后置处理器210,根据当影像传感器204与透镜202之间的相对位置在水平方向Dl上的位移小于预设的阈值时所产生的已撷取的影像,以产生经过后置处理的已撷取的影像。例如,当图3的位置Pl与P2(或图4的位置ΡΓ与P2’)之间的位移小于预设的阈值时,这意味着已撷取的影像之间的视差太小以致不能满足需求,因此通过对已撷取的影像执行视差估计以产生深度图(Cbpthmap),通过增强该深度图的对比度(contrast)以产生已增强的深度图,以及通过根据已增强的深度图和已撷取的影像产生经过后置处理的已撷取的影像,而使能后置处理器210以增强该视差。在一个实施例中,后置处理器210可利用传统的的深度影像绘图法(D印thImageBasedRendering,DIBR)技术,根据已增强的深度图和已撷取的影像产生经过后置处理的已撷取的影像。在一个实施例中,当深度图的对比度过大时,可通过例如平滑(smoothing)方法对该深度图进行处理,以及根据已处理的深度图和已撷取的影像产生经过后置处理的已撷取的影像,从而不产生差异度太大的三维影像。在另一个实施例中,可通过例如膨胀(dilation)或腐蚀(erosion)等处理方法对该深度图进行处理以减少深度图的噪声,然后产生已处理的深度图,以及根据已处理的深度图和已撷取的影像产生经过后置处理的已撷取的影像。依据本发明的精神轻易完成的改变或均等性的安排均属于本发明所主张的范围。需注意的是,后置处理器210是一个可选组件,在本发明的其它实施例中可省略。本发明可使用于多种领域,例如数字静止/视频相机的相关应用、使用导出于已撷取的影像的深度信息的脸检测应用、立体影像、立体显示等。需注意的是,通过在水平方向上移动影像撷取装置200的透镜202或影像传感器204,影像撷取装置200不仅限于撷取包含场景的左影像和右影像的两个影像。当撷取影像时,通过在与该透镜的光轴方向大致垂直的方向上调节影像传感器和透镜之间的相对位置,产生场景的多个已撷取的影像的任何影像撷取装置均顺从本发明的精神,皆属于本发明所主张的范围。图5是本发明的第一实施例的影像撷取方法的流程图,可使用如图5所示的流程更简洁地总结图2的影像撷取装置200所使用的方法。需注意的是,只要结果大致相同,并不需要按照图5所示特定的次序执行以下步骤。根据本发明一个实施例的影像撷取方法包括如下步骤步骤S501:开始。步骤S503当撷取影像时,在与该透镜的光轴方向大致垂直的方向(例如水平方向)上调节影像传感器和透镜之间的相对位置。步骤S505控制该影像传感器在该影像传感器与该透镜之间不同的相对位置,产生多个已撷取的影像。步骤S507检查在影像传感器所产生的已撷取的影像中是否应用后置处理?若应用,则进入步骤S509;若不应用,则进入步骤S511。步骤S509对已撷取的影像执行后置处理,以产生经过后置处理的已撷取的影像。步骤S511:结束。需注意的是,步骤S507和S509是可选,根据设计需要可省略。此外,任何技术人员在阅读以上段落后,能轻易知晓每一步骤的细节,为简洁起见,则不再赘述。为了与只具有一个透镜的普通二维影像撷取系统兼容,本发明也开发出影像稳定器,以实现撷取场景的立体内容的目的。图6是本发明的影像撷取装置的第二实施例的方块图。影像撷取装置500(例如数字静止/视频相机)包括但不限于浮动透镜502、影像传感器504、控制器508、可选的后置处理器510以及影像稳定器520。在此实施例中,影像稳定器520包括运动检测器(motiondetectiondevice)522和运动决定器(motiondeterminationdevice)524。运动检测器522用以检测第一方向上(例如相对于光轴方向的垂直方向)的运动以及第二方向上(例如相对于光轴方向的水平方向)的运动,其中第一方向和第二方向是与浮动透镜502的光轴方向相垂直,且第一方向与第二方向相垂直。例如,运动检测器522包括两个传感器,分别检测相机的水平运动以及相机的垂直运动。运动决定器524耦接于运动检测器522与浮动透镜502之间,当通过移动浮动透镜502以保持或增加第二方向上的所检测的运动时,用以补偿第一方向上的所检测的运动,从而调节影像传感器504与浮动透镜502之间的相对位置。如图6所示的第二实施例,影像稳定器520用以实现前述的图2的调节机构206。当影像撷取装置500撷取场景时(即当用户按下快门时),配置影像稳定器520,以在与浮动透镜502的光轴方向大致垂直的方向上,调节影像传感器504与浮动透镜502之间的相对位置。更特别地是,当影像撷取装置500撷取场景的立体内容时,影像稳定器520在与浮动透镜502的光轴方向垂直的水平方向上移动浮动透镜502。以上所述操作与图3类似。与用以补偿垂直方向和水平方向上所检测的运动的传统的影像稳定器相反,影像稳定器520对水平方向上所检测的运动不进行补偿。此外,可配置影像稳定器520,用以进一步扩大在水平方向上的运动,以增加浮动透镜502的移动距离。例如,影像稳定器520增强在水平方向上的运动,以使浮动透镜502具有由防手震(anti-handshake)设计的约束条件所限定的最大移动距离。更特别地是,由于在运动决定器524的控制下保持或增加了水平方向上的运动,从而允许浮动透镜502在与浮动透镜502的光轴方向垂直的水平方向上移动。在所述方式之下,可成功地获得用于绘制场景的立体内容的已撷取的左影像和已撷取的右影像。由于当影像撷取装置500在撷取场景时,浮动透镜502改变自身位置,因而能实现调节影像传感器504和浮动透镜502之间的相对位置的目的。此外,任何技术人员在阅读以上有关于影像撷取装置200的段落后,能轻易知晓影像撷取装置500的其它组件的细节,为简洁起见,则不再赘述。此外,根据设计的需要,影像撷取的定时是可调的。在一个实施例中,在运动决定器524决定如何控制浮动透镜502的移动后,例如,运动决定器524决定从一个撷取位置移动至另一撷取位置的移动距离之后,影像传感器504产生所有已撷取的影像,如已撷取的左影像与已撷取的右影像。影像撷取装置500根据运动检测器522所产生的检测结果,移动浮动透镜502以撷取影像。以图3所示的方块图为例,在运动决定器524的控制下,当浮动透镜502的移动到达位置Pl时撷取已撷取的右影像;在运动决定器524的控制下,当浮动透镜502从位置Pl移动到位置P2时撷取已撷取的左影像。在另一个实施例中,在运动决定器524决定如何控制浮动透镜502的移动之前,影像传感器504产生第一已撷取的影像。然后运动决定器524根据运动检测器522所产生的检测结果,移动浮动透镜502以撷取第二已撷取的影像。以图3所示的方块图为例,当浮动透镜502的移动到达位置Pl或浮动透镜502在位置Pl保持静止时,撷取已撷取的右影像;运动决定器524根据运动检测器522所产生的检测结果移动浮动透镜502到位置P2,以撷取已撷取的左影像。图7是本发明的影像撷取装置的第三实施例的方块图。影像撷取装置600(例如数字静止/视频相机)包括但不限于透镜602、浮动影像传感器604、控制器608、可选的后置处理器610以及影像稳定器620。在此实施例中,影像稳定器620包括运动检测器622和运动决定器624。影像稳定器620的功能与操作与图6的影像稳定器520相似。不同之处在于使用运动决定器624以控制应用于浮动影像传感器604的补偿。如图7所示的第三实施例,影像稳定器620用以实现前述的图2的调节机构206。当影像撷取装置600撷取场景时,配置影像稳定器620,以在与透镜602的光轴方向大致垂直的方向上,调节浮动影像传感器604与透镜602之间的相对位置。更特别地是,当影像撷取装置600撷取场景的立体内容时,在与透镜602的光轴方向垂直的水平方向上,影像稳定器620移动浮动影像传感器604。以上所述操作与图4类似。在所述方式之下,可成功地获得撷取场景的立体内容的已撷取的左影像和已撷取的右影像。由于当影像撷取装置600撷取场景时,浮动影像传感器604改变自身位置,因而能实现调节浮动影像传感器604和透镜602之间的相对位置的目的。此外,任何技术人员在阅读以上有关于影像撷取装置200和影像撷取装置500的段落后,能轻易知晓影像撷取装置600的其它组件的细节,为简洁起见,则不再赘述。对于图7的第三实施例,根据设计的需要,影像撷取的定时也是可调的。在一个实施例中,在运动决定器624根据产生于运动检测器622的检测结果而决定控制浮动影像传感器604的移动后,浮动影像传感器604产生所有已撷取的影像,如已撷取的左影像与已撷取的右影像。以图4所示的方块图为例,在运动决定器624决定如何移动浮动影像传感器604之后,在运动决定器624的控制下,当浮动影像传感器604移动到位置P1’时撷取已撷取的右影像;在运动决定器624的控制下,当浮动影像传感器604从位置ΡΓ移动到位置P2’时撷取已撷取的左影像。在另一个实施例中,在运动决定器624根据运动检测器622所产生的检测结果,决定浮动影像传感器604的移动之前,浮动影像传感器604产生第一已撷取的影像。然后在运动决定器624根据该检测结果,决定如何移动浮动影像传感器604之后,浮动影像传感器604产生第二已撷取的影像。以图4所示的方块图为例,当浮动影像传感器604的移动到达位置ΡΓ或浮动影像传感器604在位置ΡΓ保持静止时,撷取已撷取的右影像,在运动决定器624决定如何移动浮动影像传感器604到位置P2’之后,撷取已撷取的左影像。以下揭示一种具有可接受撷取深度范围(acceptablecapturedepthrange)的相机,根据本发明而开发出可选影像稳定器系统以撷取时间交错的左影像和右影像。图8是用于普通立体深度估计(cbpthestimation)的最近深度(nearestdepth)的测量示意图。图9是用于普通立体深度估计的最远深度(furthestdepth)的测量示意图。图10是用于固定透镜的深度估计的最近深度的测量示意图。图11是用于固定透镜的深度估计的最远深度的测量示意图。假设下述相机模型采用具有IOM像素的3/4英寸CCD(即CCD尺寸为6.6mmX8.8mm)以及5.4mm焦距(广角)。或者如图8和图9所示,假设用于普通立体深度估计的两眼间距为60mm,且如图10和图11所示,假设用于固定透镜的深度估计的手震范围(即浮动透镜或浮动影像传感器所移动的最大范围)为3mm。需注意的是,图8-图11所示的比例仅用来例举。在图8中,C⑶传感器的最大感受差异(maximumperceivabledifference)等于4.4mm,且最近已测量深度等于68.24mm。在图9中,CXD传感器的最小感受差异等于0.0024mm,是两个相邻像素的距离(即8.8mm*l像素/3651像素),且最远已测量深度等于134994mm。至于固定透镜的深度估计,相机采用具有IOM像素的影像传感器,水平方向上的最小已检测手震为大约100像素。在图10中,CCD传感器的最大感受差异等于0.241mm(即8.8mm*100像素/3651像素),且最近已测量深度等于61.82_。在图11中,CXD传感器的最小感受差异等于0.0024mm,是两个相邻像素的距离,且最远已测量深度等于6744mm。鉴于上述深度估计分析,当手震范围(即,浮动透镜或浮动影像传感器的最大移动范围)为3mm时,根据本发明而开发出影像稳定器以实现撷取场景的立体内容的相机可撷取从61.82mm至6744mm的深度范围。换言之,上述相机能撷取室内场景的深度,在大多数情况下撷取的是室内场景。然而,需注意的是,如果浮动透镜/影像传感器能移动的距离更大,则可增加已撷取深度。上述的实施例仅用来例举本发明的实施方式,以及阐释本发明的技术特征,并非用来限制本发明的范畴。任何所属
技术领域
的技术人员依据本发明的精神而轻易完成的改变或均等性安排均属于本发明所主张的范围,本发明的权利范围应以权利要求为准。权利要求一种影像撷取装置,包括影像传感器,用以检测入射光以产生相应的已撷取的影像;透镜,用以向该影像传感器导入场景的该入射光;调节机构,当该影像撷取装置撷取该场景时,该调节机构用以在与该透镜的光轴方向垂直的方向上,调节该影像传感器与该透镜之间的相对位置;以及控制器,用以控制该影像传感器在该影像传感器与该透镜之间不同的相对位置,产生该场景的多个已撷取的影像。2.如权利要求1所述的影像撷取装置,其特征在于,该调节机构在与该光轴方向垂直的水平方向上调节该影像传感器与该透镜之间的该相对位置,以允许该影像传感器产生撷取该场景的立体内容的该多个已撷取的影像。3.如权利要求1所述的影像撷取装置,其特征在于,更包括后置处理器,用以对该多个已撷取的影像执行视差估计以产生深度图,并对该深度图进行处理以产生已处理的深度图,以及根据该已处理的深度图和该多个已撷取的影像产生多个经过后置处理的已撷取的影像。4.如权利要求3所述的影像撷取装置,其特征在于,当该影像传感器与该透镜之间的该相对位置的位移小于预设的阈值时,该控制器使能该后置处理器以产生该多个经过后置处理的已撷取的影像。5.如权利要求1所述的影像撷取装置,其特征在于,该透镜是浮动透镜,该影像传感器与该浮动透镜之间的该相对位置根据该浮动透镜的移动而变化。6.如权利要求5所述的影像撷取装置,其特征在于,该调节机构包括影像稳定器,该影像稳定器包括运动检测器,用以检测第一方向上的运动以及第二方向上的运动,其中该第一方向和该第二方向与该光轴方向相垂直,且该第一方向与该第二方向相垂直;运动决定器,耦接于该运动检测器与该浮动透镜之间,当通过移动该浮动透镜以保持或增加该第二方向上的所检测的运动时,该运动决定器用以补偿该第一方向上的所检测的运动,从而调节该影像传感器与该浮动透镜之间的该相对位置。7.如权利要求6所述的影像撷取装置,其特征在于,该第一方向是相对于该光轴方向的垂直方向,且该第二方向是相对于该光轴方向的水平方向。8.如权利要求6所述的影像撷取装置,其特征在于,该运动决定器根据该运动检测器所产生的检测结果决定该浮动透镜的该移动之后,该影像传感器产生该多个已撷取的影像。9.如权利要求6所述的影像撷取装置,其特征在于该运动决定器根据该运动检测器所产生的检测结果决定该浮动透镜的该移动之前,该影像传感器产生第一已撷取的影像,然后该运动决定器根据该检测结果决定该浮动透镜的该移动之后,该影像传感器产生第二已撷取的影像。10.如权利要求1所述的影像撷取装置,其特征在于,该影像传感器是浮动影像传感器,该浮动影像传感器与该透镜之间的该相对位置是根据该浮动影像传感器的移动而变化。11.如权利要求10所述的影像撷取装置,其特征在于,该调节机构包括影像稳定器,该影像稳定器包括运动检测器,用以检测第一方向上的运动以及第二方向上的运动,其中该第一方向和该第二方向与该光轴方向相垂直,且该第一方向与该第二方向相垂直;以及运动决定器,耦接于该运动检测器与该浮动影像传感器之间,当通过移动该浮动影像传感器以保持或增加该第二方向上的所检测的运动时,该运动决定器用以补偿该第一方向上的所检测的运动,从而调节该浮动影像传感器与该透镜之间的该相对位置。12.如权利要求11所述的影像撷取装置,其特征在于,该第一方向是相对于该光轴方向的垂直方向,且该第二方向是相对于该光轴方向的水平方向。13.如权利要求11所述的影像撷取装置,其特征在于,该运动决定器根据该运动检测器所产生的检测结果决定该浮动影像传感器的该移动之后,该浮动影像传感器产生该多个已撷取的影像。14.如权利要求11所述的影像撷取装置,其特征在于,该运动决定器根据该运动检测器所产生的检测结果决定该浮动影像传感器的该移动之前,该浮动影像传感器产生第一已撷取的影像,然后该运动决定器根据该运动检测器所产生的该检测结果决定该浮动影像传感器的该移动之后,该浮动影像传感器产生第二已撷取的影像。15.一种影像撷取方法,包括当撷取场景时,在与透镜的光轴方向垂直的方向上,调节影像传感器与该透镜之间的相对位置,其中,该影像传感器用以检测入射光,以产生相应的已撷取的影像,且该透镜用以向该影像传感器导入场景的该入射光;以及控制该影像传感器在该影像传感器与该透镜之间不同的相对位置产生该场景的多个已撷取的影像。16.如权利要求15所述的影像撷取方法,其特征在于,调节该影像传感器与该透镜之间的该相对位置的步骤包括在与该光轴方向垂直的水平方向上调节该影像传感器与该透镜之间的该相对位置,以允许该影像传感器产生撷取该场景的立体内容的该多个已撷取的影像。17.如权利要求16所述的影像撷取方法,更包括通过以下步骤对该多个已撷取的影像进行后置处理以产生多个经过后置处理的已撷取的影像对该多个已撷取的影像执行视差估计以产生深度图;处理该深度图以产生已处理的深度图;以及根据该已处理的深度图和该多个已撷取的影像产生该多个经过后置处理的已撷取的影像。18.如权利要求17所述的影像撷取方法,其特征在于,当该影像传感器与该透镜之间的该相对位置的位移小于预设的阈值时,使能该后置处理以产生该多个经过后置处理的已撷取的影像。19.如权利要求15所述的影像撷取方法,其特征在于,该透镜是浮动透镜,该影像传感器与该浮动透镜之间的该相对位置是根据该浮动透镜的移动而变化。20.如权利要求19所述的影像撷取方法,其特征在于,调节该影像传感器与该浮动透镜之间的该相对位置的步骤包括检测第一方向上的运动以及第二方向上的运动,其中该第一方向和该第二方向与该光轴方向相垂直,且该第一方向与该第二方向相垂直;以及当通过移动该浮动透镜以保持或增加该第二方向上的所检测的运动时,决定该浮动透镜的该移动以补偿该第一方向上的所检测的运动,从而调节该影像传感器与该浮动透镜之间的该相对位置。21.如权利要求20所述的影像撷取方法,其特征在于,该第一方向是相对于该光轴方向的垂直方向,且该第二方向是相对于该光轴方向的水平方向。22.如权利要求20所述的影像撷取方法,其特征在于,控制该影像传感器以产生该场景的该多个已撷取的影像的步骤包括在决定该浮动透镜的该移动之后,产生该多个已撷取的影像。23.如权利要求20所述的影像撷取方法,其特征在于,控制该影像传感器以产生该场景的该多个已撷取的影像的步骤包括在决定该浮动透镜的该移动之前,产生第一已撷取的影像;以及在决定该浮动透镜的该移动之后,产生第二已撷取的影像。24.如权利要求15所述的影像撷取方法,其特征在于,该影像传感器是浮动影像传感器,该浮动影像传感器与该透镜之间的该相对位置是根据该浮动影像传感器的移动而变化。25.如权利要求24所述的影像撷取方法,其特征在于,调节该浮动影像传感器与该透镜之间的该相对位置的步骤包括检测第一方向上的运动以及第二方向上的运动,其中该第一方向和该第二方向与该光轴方向相垂直,且该第一方向与该第二方向相垂直;以及当通过移动该浮动影像传感器以保持或增加该第二方向上的所检测的运动时,决定该浮动影像传感器的该移动以补偿该第一方向上的所检测的运动,从而调节该浮动影像传感器与该透镜之间的该相对位置。26.如权利要求25所述的影像撷取方法,其特征在于,该第一方向是相对于该光轴方向的垂直方向,且该第二方向是相对于该光轴方向的水平方向。27.如权利要求25所述的影像撷取方法,其特征在于,控制该浮动影像传感器以产生该场景的该多个已撷取的影像的步骤包括在决定该浮动影像传感器的该移动之后,产生该多个已撷取的影像。28.如权利要求25所述的影像撷取方法,其特征在于,控制该浮动影像传感器以产生该场景的该多个已撷取的影像的步骤包括在决定该浮动影像传感器的该移动之前,产生第一已撷取的影像;以及在决定该浮动影像传感器的该移动之后,产生第二已撷取的影像。全文摘要本发明提供一种影像撷取装置与方法。其中影像撷取装置包括影像传感器,用以检测入射光以产生相应的已撷取的影像;透镜,用以向影像传感器导入场景的入射光;调节机构,当影像撷取装置撷取场景时,调节机构用以在与透镜的光轴方向垂直的方向上,调节影像传感器与透镜之间的相对位置;以及控制器,用以控制该影像传感器在该影像传感器与该透镜之间不同的相对位置,产生该场景的多个已撷取的影像。本发明的影像撷取装置与方法能降低立体相机的尺寸和成本,以及能与单透镜的普通二维影像撷取系统兼容。文档编号G03B35/06GK101833229SQ200910140738公开日2010年9月15日申请日期2009年5月13日优先权日2009年3月9日发明者张毓麟,郭志辉,陈菀瑜申请人:联发科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1