光学成像系统的制作方法

文档序号:16549315发布日期:2019-01-08 21:01阅读:242来源:国知局
光学成像系统的制作方法

本发明是有关于一种光学成像系统,且特别是有关于一种应用于电子产品上的光学成像系统。



背景技术:

近年来,随着具有摄影功能的可携式电子产品的兴起,光学系统的需求日渐提高。一般光学系统的感光组件不外乎是感光耦合组件(Charge Coupled Device;CCD)或互补性氧化金属半导体元(Complementary Metal-Oxide SemiconduTPor Sensor;CMOS Sensor)两种,且随着半导体制程技术的精进,使得感光组件的画素尺寸缩小,光学系统逐渐往高画素领域发展,因此对成像质量的要求也日益增加。

传统搭载于便携设备上的光学系统,多采用二片或三片式透镜结构为主,然而由于便携设备不断朝提升画素并且终端消费者对大光圈的需求例如微光与夜拍功能或是对广视角的需求例如前置镜头的自拍功能。惟设计大光圈的光学系统常面临产生更多像差致使周边成像质量随的劣化以及制造难易度的处境,而设计广视角的光学系统则会面临成像的畸变率(distortion)提高,习知的光学成像系统已无法满足更高阶的摄影要求。

因此,如何有效增加光学成像系统的进光量与增加光学成像系统的视角,除进一步提高成像的总画素与质量外同时能兼顾微型化光学成像系统的衡平设计,便成为一个相当重要的议题。



技术实现要素:

本发明实施例的态样针对一种光学成像系统,能够利用四个透镜的屈光力、凸面与凹面的组合(本发明所述凸面或凹面原则上指各透镜的物侧面或像侧面于光轴上的几何形状描述),进而有效提高光学成像系统的进光量与增加光学成像系统的视角,同时提高成像的总画素与质量,以应用于小型的电子产品上。

本发明实施例相关的透镜参数的用语与其代号详列如下,作为后续描述的参考:

与长度或高度有关的透镜参数

光学成像系统的成像高度以HOI表示;光学成像系统的高度以HOS表示;光学成像系统的第一透镜物侧面至第四透镜像侧面间的距离以InTL表示;光学成像系统的第四透镜像侧面至成像面间的距离以InB表示;InTL+InB=HOS;光学成像系统的固定光栏(光圈)至成像面间的距离以InS表示;光学成像系统的第一透镜与第二透镜间的距离以IN12表示(例示);光学成像系统的第一透镜于光轴上的厚度以TP1表示(例示)。

与材料有关的透镜参数

光学成像系统的第一透镜的色散系数以NA1表示(例示);第一透镜的折射律以Nd1表示(例示)。

与视角有关的透镜参数

视角以AF表示;视角的一半以HAF表示;主光线角度以MRA表示。

与出入瞳有关的透镜参数

光学成像系统的入射瞳直径以HEP表示。

与透镜面形深度有关的参数

第四透镜物侧面于光轴上的交点至第四透镜物侧面的最大有效半径位置于光轴的水平位移距离以InRS41表示(例示);第四透镜像侧面于光轴上的交点至第四透镜像侧面的最大有效半径位置于光轴的水平位移距离以InRS42表示(例示)。

与透镜面型有关的参数

临界点C指特定透镜表面上,除与光轴的交点外,一与光轴相垂直的切面相切的点。承上,例如第三透镜物侧面的临界点C31与光轴的垂直距离为HVT31(例示),第三透镜像侧面的临界点C32与光轴的垂直距离为HVT32(例示),第四透镜物侧面的临界点C41与光轴的垂直距离为HVT41(例示),第四透镜像侧面的临界点C42与光轴的垂直距离为HVT42(例示)。第四透镜物侧面上最接近光轴的反曲点为IF411,该点沉陷量SGI411,该点与光轴间的垂直距离为HIF411(例示)。第四透镜像侧面上最接近光轴的反曲点为IF421,该点沉陷量SGI421(例示),该点与光轴间的垂直距离为HIF421(例示)。第四透镜物侧面上第二接近光轴的反曲点为IF412,该点沉陷量SGI412(例示),该点与光轴间的垂直距离为HIF412(例示)。第四透镜像侧面上第二接近光轴的反曲点为IF422,该点沉陷量SGI422(例示),该点与光轴间的垂直距离为HIF422(例示)。

与像差有关的变数

光学成像系统的光学畸变(Optical Distortion)以ODT表示;其TV畸变(TV Distortion)以TDT表示,并且可以进一步限定描述在成像50%至100%视野间像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。

本发明提供一种光学成像系统,其第四透镜的物侧面或像侧面设置有反曲点,可有效调整各视场入射于第四透镜的角度,并针对光学畸变与TV畸变进行补正。另外,第四透镜的表面可具备更佳的光路调节能力,以提升成像质量。

依据本发明提供一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜以及第四透镜。第一透镜具有正屈折力以及第四透镜具有屈折力。该第四透镜的物侧表面及像侧表面皆为非球面,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该光学成像系统的最大视角的一半为HAF,该第一透镜物侧面至该成像面具有一距离HOS,其满足下列条件:1.2≦f/HEP≦3.0;以及0.5≦HOS/f≦3.0。

优选地,所述光学成像系统于结像时的TV畸变为TDT,所述光学成像系统于结像时的光学畸变为ODT,所述光学成像系统的可视角度的一半为HAF,其满足下列公式:0deg<HAF≦70deg;│TDT│<60%以及│ODT│<50%。

优选地,所述第三透镜以及所述第四透镜其个别透镜的至少一表面具有至少一个反曲点。

优选地,所述第四透镜的任一表面均具有至少一个反曲点。

优选地,所述第一透镜以及所述第二透镜其个别透镜的至少一表面具有至少一个反曲点。

优选地,所述反曲点与光轴间的垂直距离为HIF,其满足下列公式:0mm<HIF≦5mm。

优选地,所述第四透镜为负屈折力。

优选地,所述第一透镜物侧面至所述第四透镜像侧面具有一距离InTL,且满足下列公式:0.5≦InTL/HOS≦0.9。

优选地,更包括光圈,于所述光轴上所述光圈至所述成像面具有一距离InS,所述光学成像系统设有影像感测组件于所述成像面,所述影像感测组件有效感测区域对角线长的半数为HOI,满足下列关系式:0.5≦InS/HOS≦1.2;以及0<HIF/HOI≦0.9。

依据本发明另提供一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜以及第四透镜。第一透镜具有正屈折力,其物侧面及像侧面皆为非球面。第二透镜具有屈折力。第三透镜具有屈折力。第四透镜具有屈折力。第四透镜具有屈折力,其物侧面及像侧面皆为非球面。该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该光学成像系统的最大视角的一半为HAF,该第一透镜物侧面至该成像面具有一距离HOS,该光学成像系统于结像时的光学畸变为ODT并且TV畸变为TDT,其满足下列条件:1.2≦f/HEP≦3.0;0.4≦│tan(HAF)│≦3.0;0.5≦HOS/f≦3.0;│TDT│<60%;以及│ODT│≦50%。

优选地,所述第三透镜以及所述第四透镜其个别透镜的至少一表面具有至少一个反曲点。

优选地,所述第一透镜以及所述第二透镜其个别透镜的至少一表面具有至少一个反曲点。

优选地,所述光学成像系统满足下列公式:0mm<HOS≦7mm。

优选地,所述第一透镜与所述第二透镜之间于光轴上的距离为IN12,且满足下列公式:0<IN12/f≦0.2。

优选地,所述第三透镜与所述第四透镜之间于光轴上的距离为IN34,且满足下列公式:0<IN34/f≦0.2。

优选地,所述第三透镜于光轴上的厚度为TP3,且满足下列公式:0<TP3/f≦0.2。

优选地,所述第三透镜物侧表面于光轴上的交点至所述第三透镜物侧表面的最大有效半径位置于光轴的水平位移距离为InRS31,所述第三透镜像侧表面于光轴上的交点至所述第三透镜像侧表面的最大有效半径位置于光轴的水平位移距离为InRS32,所述第四透镜物侧表面于光轴上的交点至所述第四透镜物侧表面的最大有效半径位置于光轴的水平位移距离为InRS41,所述第四透镜像侧表面于光轴上的交点至所述第四透镜像侧表面的最大有效半径位置于光轴的水平位移距离为InRS42,其满足下列条件:0<(│InRS31│+│InRS32│+│InRS41│+│InRS42│)/InTL≦2。

优选地,所述第二透镜与所述第三透镜于光轴上的厚度分别为TP2以及TP3,所述第二透镜与所述第三透镜之间于光轴上的距离为IN23,其满足下列条件:0.01<IN23/(TP2+IN23+TP3)≦0.5。

优选地,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,所述光学成像系统满足下列条件:0<│f/f1│≦2;0<│f/f2│≦2;0<│f/f3│≦2;以及0<│f/f4│≦3。

依据本发明再提供一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜以及第四透镜。第一透镜具有正屈折力,其物侧面及像侧面皆为非球面。第二透镜具有负屈折力。第三透镜具有屈折力。第四透镜具有屈折力,其中至少一表面具有至少一反曲点,其物侧面及像侧面皆为非球面。该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该光学成像系统的最大视角的一半为HAF,该第一透镜物侧面至该成像面具有一距离HOS,该光学成像系统于结像时的光学畸变为ODT并且TV畸变为TDT,其满足下列条件:1.2≦f/HEP≦2.8;0.4≦│tan(HAF)│≦1.5;0.5≦HOS/f≦2.5;│TDT│<1.5%;以及│ODT│≦2.5%。

优选地,所述反曲点与光轴间的垂直距离为HIF,其满足下列公式:0mm<HIF≦5mm。

优选地,所述光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的个别比值f/fp为PPR,所述光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的个别比值f/fn为NPR,所有正屈折力的透镜的PPR总和为ΣPPR,所有负屈折力的透镜的NPR总和为ΣNPR,其满足下列条件:0.5≦ΣPPR/│ΣNPR│≦4.5。

优选地,所述第一透镜以及第二透镜于光轴上的厚度分别为TP1、TP2,其满足下列条件:0<TP1/TP2≦10。

优选地,所述第三透镜以及第四透镜于光轴上的厚度分别为TP3以及TP4,其满足下列条件:0<TP3/TP4≦10。

优选地,更包括光圈,于所述光轴上所述光圈至所述成像面具有一距离InS,所述光学成像系统设有影像感测组件于所述成像面并且至少设置800万个像素,所述影像感测组件有效感测区域对角线长的半数为HOI,满足下列关系式:0.5≦InS/HOS≦1.2;以及HOI>2.3mm。

前述光学成像系统可用以搭配成像在对角线长度为1/1.2英吋大小以下的影像感测组件,该影像感测组件的尺寸较佳者为1/2.3英吋,该影像感测组件的像素尺寸小于1.4微米(μm),较佳者其像素尺寸小于1.12微米(μm),最佳者其像素尺寸小于0.9微米(μm)。此外,该光学成像系统可适用于长宽比为16:9的影像感测组件。

前述光学成像系统可适用于百万或千万像素以上的摄录像要求(例如4K2K或称UHD、QHD)并拥有良好的成像质量。

当│f1│>f4时,光学成像系统的系统总高度(HOS;Height of Optic System)可以适当缩短以达到微型化的目的。

当│f2│+│f3│>│f1│+│f4│时,藉由第二透镜至第三透镜中至少一透镜具有弱的正屈折力或弱的负屈折力。所称弱屈折力,指特定透镜的焦距的绝对值大于10。当本发明第二透镜至第三透镜中至少一透镜具有弱的正屈折力,其可有效分担第一透镜的正屈折力而避免不必要的像差过早出现,反的若第二透镜至第三透镜中至少一透镜具有弱的负屈折力,则可以微调补正系统的像差。

第四透镜可具有负屈折力,其像侧面可为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,第四透镜的至少一表面可具有至少一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。

附图说明

本发明上述及其他特征将通过参照附图详细说明。

图1A绘示本发明第一实施例的光学成像系统的示意图;

图1B由左至右依序绘示本发明第一实施例的光学成像系统的球差、像散以及光学畸变的曲线图;

图1C绘示本发明第一实施例的光学成像系统的TV畸变曲线图;

图2A绘示本发明第二实施例的光学成像系统的示意图;

图2B由左至右依序绘示本发明第二实施例的光学成像系统的球差、像散以及光学畸变的曲线图;

图2C绘示本发明第二实施例的光学成像系统的TV畸变曲线图;

图3A绘示本发明第三实施例的光学成像系统的示意图;

图3B由左至右依序绘示本发明第三实施例的光学成像系统的球差、像散以及光学畸变的曲线图;

图3C绘示本发明第三实施例的光学成像系统的TV畸变曲线图;

图4A绘示本发明第四实施例的光学成像系统的示意图;

图4B由左至右依序绘示本发明第四实施例的光学成像系统的球差、像散以及光学畸变的曲线图;

图4C绘示本发明第四实施例的光学成像系统的TV畸变曲线图;

图5A绘示本发明第五实施例的光学成像系统的示意图;

图5B由左至右依序绘示本发明第五实施例的光学成像系统的球差、像散以及光学畸变的曲线图;

图5C绘示本发明第五实施例的光学成像系统的TV畸变曲线图;

图6A绘示本发明第六实施例的光学成像系统的示意图;

图6B由左至右依序绘示本发明第六实施例的光学成像系统的球差、像散以及光学畸变的曲线图;

图6C绘示本发明第六实施例的光学成像系统的TV畸变曲线图。

附图标记说明

光学成像系统:1、20、30、40、50、60

光圈:100、200、300、400、500、600

第一透镜:110、210、310、410、510、610

物侧面:112、212、312、412、512、612

像侧面:114、214、314、414、514、614

第二透镜:120、220、320、420、520、620

物侧面:122、222、322、422、522、622

像侧面:124、224、324、424、524、624

第三透镜:130、230、330、430、530、630

物侧面:132、232、332、432、532、632

像侧面:134、234、334、434、534、634

第四透镜:140、240、340、440、540、640

物侧面:142、242、342、442、542、642

像侧面:144、244、344、444、544、644

红外线滤光片:170、270、370、470、570、670

成像面:180、280、380、480、580、680

影像感测组件:190、290、390、490、590、690

光学成像系统的焦距:f

第一透镜的焦距:f1;第二透镜的焦距:f2;第三透镜的焦距:f3;第四透镜的焦距:f4

光学成像系统的光圈値:f/HEP;Fno;F#

光学成像系统的最大视角的一半:HAF

第一透镜的色散系数:NA1

第二透镜至第四透镜的色散系数:NA2、NA3、NA4

第一透镜物侧面以及像侧面的曲率半径:R1、R2

第二透镜物侧面以及像侧面的曲率半径:R3、R4

第三透镜物侧面以及像侧面的曲率半径:R5、R6

第四透镜物侧面以及像侧面的曲率半径:R7、R8

第一透镜于光轴上的厚度:TP1

第二透镜至第四透镜于光轴上的厚度:TP2、TP3、TP4

所有具屈折力的透镜的厚度总和:ΣTP

第一透镜与第二透镜于光轴上之间隔距离:IN12

第二透镜与第三透镜于光轴上之间隔距离:IN23

第三透镜与第四透镜于光轴上之间隔距离:IN34

第三透镜物侧面于光轴上的交点至第三透镜物侧面的最大有效半径位置于光轴的水平位移距离:InRS31

第三透镜像侧面于光轴上的交点至第三透镜像侧面的最大有效半径位置于光轴的水平位移距离:InRS32

第四透镜物侧面于光轴上的交点至第四透镜物侧面的最大有效半径位置于光轴的水平位移距离:InRS41

第四透镜像侧面于光轴上的交点至第四透镜像侧面的最大有效半径位置于光轴的水平位移距离:InRS42

第四透镜物侧面上最接近光轴的反曲点:IF411;该点沉陷量:SGI411

第四透镜物侧面上最接近光轴的反曲点与光轴间的垂直距离:HIF411

第四透镜像侧面上最接近光轴的反曲点:IF421;该点沉陷量:SGI421

第四透镜像侧面上最接近光轴的反曲点与光轴间的垂直距离:HIF421

第四透镜物侧面上第二接近光轴的反曲点:IF412;该点沉陷量:SGI412

第四透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离:HIF412

第四透镜像侧面上第二接近光轴的反曲点:IF422;该点沉陷量:SGI422

第四透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离:HIF422

第四透镜物侧面上第三接近光轴的反曲点:IF413;该点沉陷量:SGI413

第四透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离:HIF413

第四透镜像侧面上第三接近光轴的反曲点:IF423;该点沉陷量:SGI423

第四透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离:HIF423

第四透镜物侧面上第四接近光轴的反曲点:IF414;该点沉陷量:SGI414

第四透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离:HIF414

第四透镜像侧面上第四接近光轴的反曲点:IF424;该点沉陷量:SGI424

第四透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离:HIF424

第四透镜物侧面的临界点:C41;第四透镜像侧面的临界点:C42

第四透镜物侧面的临界点与光轴的水平位移距离:SGC41

第四透镜像侧面的临界点与光轴的水平位移距离:SGC42

第四透镜物侧面的临界点与光轴的垂直距离:HVT41

第四透镜像侧面的临界点与光轴的垂直距离:HVT42

系统总高度(第一透镜物侧面至成像面于光轴上的距离):HOS

影像感测组件的对角线长度:Dg;光圈至成像面的距离:InS

第一透镜物侧面至该第四透镜像侧面的距离:InTL

第四透镜像侧面至该成像面的距离:InB

影像感测组件有效感测区域对角线长的一半(最大像高):HOI

光学成像系统于结像时的TV畸变(TV Distortion):TDT

光学成像系统于结像时的光学畸变(Optical Distortion):ODT

具体实施方式

一种光学成像系统,由物侧至像侧依序包含具屈折力的第一透镜、第二透镜、第三透镜以及第四透镜。光学成像系统更可包含一影像感测组件,其设置于成像面。

光学成像系统使用三个工作波长进行设计,分别为486.1nm、587.5nm、656.2nm,其中587.5nm为主要参考波长并以555nm为主要提取技术特征的参考波长。

光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值NPR,所有正屈折力的透镜的PPR总和为ΣPPR,所有负屈折力的透镜的NPR总和为ΣNPR,当满足下列条件时有助于控制光学成像系统的总屈折力以及总长度:0.5≦ΣPPR/│ΣNPR│≦4.5,较佳地,可满足下列条件:1≦ΣPPR/│ΣNPR│≦3.5。

光学成像系统的系统高度为HOS,当HOS/f比值趋近于1时,将有利于制作微型化且可成像超高画素的光学成像系统。

光学成像系统的每一片具有正屈折力的透镜的焦距fp的总和为ΣPP,每一片具有负屈折力的透镜的焦距总和为ΣNP,本发明的光学成像系统的一种实施方式,其满足下列条件:0<ΣPP≦200;以及f1/ΣPP≦0.85。较佳地,可满足下列条件:0<ΣPP≦150;以及0.01≦f1/ΣPP≦0.65。藉此,有助于控制光学成像系统的聚焦能力,并且适当分配系统的正屈折力以抑制显著的像差过早产生。

第一透镜可具有正屈折力,其物侧面可为凸面。藉此,可适当调整第一透镜的正屈折力强度,有助于缩短光学成像系统的总长度。

第二透镜可具有负屈折力。藉此,可补正第一透镜产生的像差。

第三透镜可具有正屈折力。藉此,可分担第一透镜的正屈折力。

第四透镜可具有负屈折力,其像侧面可为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,第四透镜的至少一表面可具有至少一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。较佳地,其物侧面以及像侧面均具有至少一反曲点。

光学成像系统可更包含一影像感测组件,其设置于成像面。影像感测组件有效感测区域对角线长的一半(即为光学成像系统的成像高度或称最大像高)为HOI,第一透镜物侧面至成像面于光轴上的距离为HOS,其满足下列条件:HOS/HOI≦3;以及0.5≦HOS/f≦3.0。较佳地,可满足下列条件:1≦HOS/HOI≦2.5;以及1≦HOS/f≦2。藉此,可维持光学成像系统的小型化,以搭载于轻薄可携式的电子产品上。

另外,本发明的光学成像系统中,依需求可设置至少一光圈,以减少杂散光,有助于提升影像质量。

本发明的光学成像系统中,光圈配置可为前置光圈或中置光圈,其中前置光圈意即光圈设置于被摄物与第一透镜间,中置光圈则表示光圈设置于第一透镜与成像面间。若光圈为前置光圈,可使光学成像系统的出瞳与成像面产生较长的距离而容置更多光学组件,并可增加影像感测组件接收影像的效率;若为中置光圈,有助于扩大系统的视场角,使光学成像系统具有广角镜头的优势。前述光圈至成像面间的距离为InS,其满足下列条件:0.5≦InS/HOS≦1.2。较佳地,可满足下列条件:0.8≦InS/HOS≦1藉此,可同时兼顾维持光学成像系统的小型化以及具备广角的特性。

本发明的光学成像系统中,第一透镜物侧面至第四透镜像侧面间的距离为InTL,于光轴上所有具屈折力的透镜的厚度总和ΣTP,其满足下列条件:0.45≦ΣTP/InTL≦0.95。较佳地,可满足下列条件:0.6≦ΣTP/InTL≦0.9。藉此,当可同时兼顾系统成像的对比度以及透镜制造的良率并提供适当的后焦距以容置其他组件。

第一透镜物侧面的曲率半径为R1,第一透镜像侧面的曲率半径为R2,其满足下列条件:0.01≦│R1/R2│≦0.5。藉此,第一透镜的具备适当正屈折力强度,避免球差增加过速。较佳地,可满足下列条件:0.01≦│R1/R2│≦0.25。

第四透镜物侧面的曲率半径为R7,第四透镜像侧面的曲率半径为R8,其满足下列条件:-200<(R7-R8)/(R7+R8)<30。藉此,有利于修正光学成像系统所产生的像散。

第一透镜与第二透镜于光轴上之间隔距离为IN12,其满足下列条件:0<IN12/f≦0.2。较佳地,可满足下列条件:0.01≦IN12/f≦0.20。藉此,有助于改善透镜的色差以提升其性能。

第二透镜与第三透镜于光轴上之间隔距离为IN23,其满足下列条件:0<IN23/f≦0.25。较佳地,可满足下列条件:0.01≦IN23/f≦0.20。藉此,有助于改善透镜的性能。

第三透镜与第四透镜于光轴上之间隔距离为IN34,其满足下列条件:0<IN34/f≦0.2。较佳地,可满足下列条件:0.001≦IN34/f≦0.20。藉此,有助于改善透镜的性能。

第一透镜与第二透镜于光轴上的厚度分别为TP1以及TP2,其满足下列条件:1≦(TP1+IN12)/TP2≦10。藉此,有助于控制光学成像系统制造的敏感度并提升其性能。

第三透镜与第四透镜于光轴上的厚度分别为TP3以及TP4,前述两透镜于光轴上之间隔距离为IN34,其满足下列条件:0.2≦(TP4+IN34)/TP4≦3。藉此,有助于控制光学成像系统制造的敏感度并降低系统总高度。

第二透镜与第三透镜于光轴上之间隔距离为IN23,第一透镜至第四透镜于光轴上的总和距离为ΣTP,其满足下列条件:0.01≦IN23/(TP2+IN23+TP3)≦0.5。较佳地,可满足下列条件:0.05≦IN23/(TP2+IN23+TP3)≦0.4。藉此有助层层微幅修正入射光行进过程所产生的像差并降低系统总高度。

本发明光学成像系统的第一透镜物侧表面于光轴上的交点至第一透镜物侧表面的最大有效半径位置于光轴的水平位移距离为InRS11(若水平位移朝向像侧,InRS11为正值;若水平位移朝向物侧,InRS11为负值),第一透镜像侧表面于光轴上的交点至第一透镜像侧表面的最大有效半径位置于光轴的水平位移距离为InRS12,第一透镜于光轴上的厚度为TP1,其满足下列条件:0mm<│InRS11│+│InRS12│≦2mm;以及1.0≦(│InRS11│+TP1+│InRS12│)/TP1≦3。藉此,可控制第一透镜的中心厚度与其有效半径厚度间的比例(厚薄比),进而提升该透镜制造上的良率。

第二透镜物侧表面于光轴上的交点至第二透镜物侧表面的最大有效半径位置于光轴的水平位移距离为InRS21,第二透镜像侧表面于光轴上的交点至第二透镜像侧表面的最大有效半径位置于光轴的水平位移距离为InRS22,第二透镜于光轴上的厚度为TP2,其满足下列条件:0mm<│InRS21│+│InRS22│≦2mm;以及1.0≦(│InRS21│+TP2+│InRS22│)/TP2≦5。藉此,可控制第二透镜的中心厚度与其有效半径厚度间的比例(厚薄比),进而提升该透镜制造上的良率。

第三透镜物侧表面于光轴上的交点至第三透镜物侧表面的最大有效半径位置于光轴的水平位移距离为InRS31,第三透镜像侧表面于光轴上的交点至第三透镜像侧表面的最大有效半径位置于光轴的水平位移距离为InRS32,第三透镜于光轴上的厚度为TP3,其满足下列条件:0mm<│InRS31│+│InRS32│≦2mm;以及1.0≦(│InRS31│+TP3+│InRS32│)/TP3≦10。藉此,可控制第三透镜的中心厚度与其有效半径厚度间的比例(厚薄比),进而提升该透镜制造上的良率。

第四透镜物侧表面于光轴上的交点至第四透镜物侧表面的最大有效半径位置于光轴的水平位移距离为InRS41,第四透镜像侧表面于光轴上的交点至第四透镜像侧表面的最大有效半径位置于光轴的水平位移距离为InRS42,第四透镜于光轴上的厚度为TP4,其满足下列条件:0mm<│InRS41│+│InRS42│≦5mm;以及1.0≦(│InRS41│+TP4+│InRS42│)/TP4≦10。藉此,可控制第四透镜的中心厚度与其有效半径厚度间的比例(厚薄比),进而提升该透镜制造上的良率。

所有具屈折力的透镜其个别的物侧表面于光轴上的交点至该透镜个别的物侧表面的最大有效半径位置于光轴的水平位移距离的绝对值总和为InRSO,亦即InRSO=│InRS11│+│InRS21│+│InRS31│+│InRS41│。所有具屈折力的透镜其个别的像侧表面于光轴上的交点至该透镜个别的像侧表面的最大有效半径位置于光轴的水平位移距离的绝对值总和为InRSI,亦即InRSI=│InRS12│+│InRS22│+│InRS32│+│InRS42│。本发明的光学成像系统中,所有具屈折力的透镜的任一表面于光轴上的交点至该表面的最大有效半径位置于光轴的水平位移距离的绝对值的总和为Σ│InRS│=InRSO+InRSI,其满足下列条件:0<Σ│InRS│≦15mm。藉此,可有效提升系统修正离轴视场像差的能力。

本发明的光学成像系统其满足下列条件:0<Σ│InRS│/InTL≦3;以及0<Σ│InRS│/HOS≦2,藉此,可同时兼顾降低系统总高度并且有效提升系统修正离轴视场像差的能力。

本发明的光学成像系统其满足下列条件:0<│InRS31│+│InRS32│+│InRS41│+│InRS42│≦8mm;0<(│InRS31│+│InRS32│+│InRS41│+│InRS42│)/InTL≦2;以及0<(│InRS31│+│InRS32│+│InRS41│+│InRS42│)/HOS≦2,藉此,可同时兼顾提升最接近成像片的二透镜制造上的良率以及有效提升系统修正离轴视场像差的能力。

第三透镜物侧面的临界点与光轴的垂直距离为HVT31,第三透镜像侧面的临界点与光轴的垂直距离为HVT32,其满足下列条件:HVT31≧0mm;HVT32≧0mm。藉此,可有效修正离轴视场的像差。

第四透镜物侧面的临界点与光轴的垂直距离为HVT41,第四透镜像侧面的临界点与光轴的垂直距离为HVT42,其满足下列条件:HVT41≧0;HVT42≧0。藉此,可有效修正离轴视场的像差。

本发明的光学成像系统其满足下列条件:0.2≦HVT42/HOI≦0.9。较佳地,可满足下列条件:0.3≦HVT42/HOI≦0.8。藉此,有助于光学成像系统的外围视场的像差修正。

本发明的光学成像系统其满足下列条件:0≦HVT42/HOS≦0.5。较佳地,可满足下列条件:0.2≦HVT42/HOS≦0.45。藉此,有助于光学成像系统的外围视场的像差修正。

本发明的光学成像系统的一种实施方式,可藉由具有高色散系数与低色散系数的透镜交错排列,而助于光学成像系统色差的修正。

上述非球面的方程式为:

z=ch2/[1+[1-(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+…(1)

其中,z为沿光轴方向在高度为h的位置以表面顶点作参考的位置值,k为锥面系数,c为曲率半径的倒数,且A4、A6、A8、A10、A12、A14、A16、A18以及A20为高阶非球面系数。

本发明提供的光学成像系统中,透镜的材质可为塑料或玻璃。当透镜材质为塑料,可以有效降低生产成本与重量。另当透镜的材质为玻璃,则可以控制热效应并且增加光学成像系统屈折力配置的设计空间。此外,光学成像系统中第一透镜至第四透镜的物侧面及像侧面可为非球面,其可获得较多的控制变量,除用以消减像差外,相较于传统玻璃透镜的使用甚至可缩减透镜使用的数目,因此能有效降低本发明光学成像系统的总高度。

再者,本发明提供的光学成像系统中,若透镜表面为凸面,则表示透镜表面于近光轴处为凸面;若透镜表面为凹面,则表示透镜表面于近光轴处为凹面。

另外,本发明的光学成像系统中,依需求可设置至少一光栏,以减少杂散光,有助于提升影像质量。

本发明的光学成像系统更可视需求应用于移动对焦的光学系统中,并兼具优良像差修正与良好成像质量的特色,从而扩大应用层面。

根据上述实施方式,以下提出具体实施例并配合图式予以详细说明。

第一实施例

请参照图1A及图1B,其中图1A绘示依照本发明第一实施例的一种光学成像系统的示意图,图1B由左至右依序为第一实施例的光学成像系统的球差、像散及光学畸变曲线图。图1C为第一实施例的光学成像系统的TV畸变曲线图。由图1A可知,光学成像系统10由物侧至像侧依序包含光圈100、第一透镜110、第二透镜120、第三透镜130、第四透镜140、红外线滤光片170、成像面180以及影像感测组件190。

第一透镜110具有正屈折力,且为塑料材质,其物侧面112为凸面,其像侧面114为凹面,并皆为非球面,且其物侧面112以及像侧面114均具有一反曲点。第一透镜物侧面于光轴上的交点至第一透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI111表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI121表示,其满足下列条件:SGI111=0.2008mm;SGI121=0.0113mm;│SGI111│/(│SGI111│+TP1)=0.3018;│SGI121│/(│SGI121│+TP1)=0.0238。

第一透镜物侧面于光轴上的交点至第一透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF111表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF121表示,其满足下列条件:HIF111=0.7488mm;HIF121=0.4451mm;HIF111/HOI=0.2552;HIF121/HOI=0.1517。

第二透镜120具有正屈折力,且为塑料材质,其物侧面122为凹面,其像侧面124为凸面,并皆为非球面,且其物侧面122具有一反曲点。第二透镜物侧面于光轴上的交点至第二透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI211表示,第二透镜像侧面于光轴上的交点至第二透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI221表示,其满足下列条件:SGI211=-0.1791mm;│SGI211│/(│SGI211│+TP2)=0.3109。

第二透镜物侧面于光轴上的交点至第二透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF211表示,第二透镜像侧面于光轴上的交点至第二透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF221表示,其满足下列条件:HIF211=0.8147mm;HIF221=0.1856mm;HIF211/HOI=0.2777;HIF221/HOI=0.063258。

第三透镜130具有负屈折力,且为塑料材质,其物侧面132为凹面,其像侧面134为凸面,并皆为非球面,且其像侧面134具有一反曲点。第三透镜物侧面于光轴上的交点至第三透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI311表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI321表示,其满足下列条件:SGI321=-0.1647mm;│SGI321│/(│SGI321│+TP3)=0.1884。

第三透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF311表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF321表示,其满足下列条件:HIF311=0.1089mm;HIF321=0.7269mm;HIF311/HOI=0.037117;HIF321/HOI=0.2477。

第四透镜140具有负屈折力,且为塑料材质,其物侧面142为凸面,其像侧面144为凹面,并皆为非球面,且其物侧面142具有二反曲点以及像侧面144具有一反曲点。第四透镜物侧面于光轴上的交点至第四透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI411表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI421表示,其满足下列条件:SGI411=0.0137mm;SGI421=0.0922mm;│SGI411│/(│SGI411│+TP4)=0.0155;│SGI421│/(│SGI421│+TP4)=0.0956。

第四透镜物侧面于光轴上的交点至第四透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI412表示,其满足下列条件:SGI412=-0.1518mm;│SGI412│/(│SGI412│+TP4)=0.1482。

第四透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF411表示,第四透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF421表示,其满足下列条件:HIF411=0.2890mm;HIF421=0.5794mm;HIF411/HOI=0.0985;HIF421/HOI=0.1975。

第四透镜物侧面第二近光轴的反曲点与光轴间的垂直距离以HIF412表示,其满足下列条件:HIF412=1.3328mm;HIF412/HOI=0.4543。

红外线滤光片170为玻璃材质,其设置于第四透镜140及成像面180间且不影响光学成像系统的焦距。

第一实施例的光学成像系统中,光学成像系统的焦距为f,光学成像系统的入射瞳直径为HEP,光学成像系统中最大视角的一半为HAF,其数值如下:f=3.4375mm;f/HEP=2.23;以及HAF=39.69度与tan(HAF)=0.8299。

第一实施例的光学成像系统中,第一透镜110的焦距为f1,第四透镜140的焦距为f4,其满足下列条件:f1=3.2736mm;│f/f1│=1.0501;f4=-8.3381mm;以及│f1/f4│=0.3926。

第一实施例的光学成像系统中,第二透镜120至第三透镜130的焦距分别为f2、f3,其满足下列条件:│f2│+│f3│=10.0976mm;│f1│+│f4│=11.6116mm以及│f2│+│f3│<│f1│+│f4│。

光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值NPR,第一实施例的光学成像系统中,所有正屈折力的透镜的PPR总和为ΣPPR=│f/f1│+│f/f2│=1.95585,所有负屈折力的透镜的NPR总和为ΣNPR=│f/f3│+│f/f4│=0.95770,ΣPPR/│ΣNPR│=2.04224。同时亦满足下列条件:│f/f1│=1.05009;│f/f2│=0.90576;│f/f3│=0.54543;│f/f4│=0.41227。

第一实施例的光学成像系统中,第一透镜物侧面112至第四透镜像侧面144间的距离为InTL,第一透镜物侧面112至成像面180间的距离为HOS,光圈100至成像面180间的距离为InS,影像感测组件190有效感测区域对角线长的一半为HOI,第四透镜像侧面144至成像面180间的距离为InB,其满足下列条件:InTL+InB=HOS;HOS=4.4250mm;HOI=2.9340mm;HOS/HOI=1.5082;HOS/f=1.2873;InTL/HOS=0.7191;InS=4.2128mm;以及InS/HOS=0.95204。

第一实施例的光学成像系统中,于光轴上所有具屈折力的透镜的厚度总和为ΣTP,其满足下列条件:ΣTP=2.4437mm;以及ΣTP/InTL=0.76793。藉此,当可同时兼顾系统成像的对比度以及透镜制造的良率并提供适当的后焦距以容置其他组件。

第一实施例的光学成像系统中,第一透镜物侧面112的曲率半径为R1,第一透镜像侧面114的曲率半径为R2,其满足下列条件:│R1/R2│=0.1853。藉此,第一透镜的具备适当正屈折力强度,避免球差增加过速。

第一实施例的光学成像系统中,第四透镜物侧面142的曲率半径为R7,第四透镜像侧面144的曲率半径为R8,其满足下列条件:(R7-R8)/(R7+R8)=0.2756。藉此,有利于修正光学成像系统所产生的像散。

第一实施例的光学成像系统中,第一透镜110与第二透镜120的个别焦距分别为f1、f2,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f1+f2=7.0688mm;以及f1/(ΣPP)=0.4631。藉此,有助于适当分配第一透镜110的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。

第一实施例的光学成像系统中,第三透镜130与第四透镜140的个别焦距分别为f3以及f4,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f3+f4=-14.6405mm;以及f4/(ΣNP)=0.5695。藉此,有助于适当分配第四透镜的负屈折力至其他负透镜,以抑制入射光线行进过程显著像差的产生。

第一实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上之间隔距离为IN12,其满足下列条件:IN12=0.3817mm;IN12/f=0.11105。藉此,有助于改善透镜的色差以提升其性能。

第一实施例的光学成像系统中,第二透镜120与第三透镜130于光轴上之间隔距离为IN23,其满足下列条件:IN23=0.0704mm;IN23/f=0.02048。藉此,有助于改善透镜的色差以提升其性能。

第一实施例的光学成像系统中,第三透镜130与第四透镜140于光轴上之间隔距离为IN34,其满足下列条件:IN34=0.2863mm;IN34/f=0.08330。藉此,有助于改善透镜的色差以提升其性能。

第一实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上的厚度分别为TP1以及TP2,其满足下列条件:TP1=0.46442mm;TP2=0.39686mm;TP1/TP2=1.17023以及(TP1+IN12)/TP2=2.13213。藉此,有助于控制光学成像系统制造的敏感度并提升其性能。

第一实施例的光学成像系统中,第三透镜130与第四透镜140于光轴上的厚度分别为TP3以及TP4,前述两透镜于光轴上之间隔距离为IN34,其满足下列条件:TP3=0.70989mm;TP4=0.87253mm;TP3/f=0.20651;TP3/TP4=0.81359以及(TP4+IN34)/TP3=1.63248。藉此,有助于控制光学成像系统制造的敏感度并降低系统总高度。

第一实施例的光学成像系统中,其满足下列条件:IN23/(TP2+IN23+TP3)=0.05980。藉此有助层层微幅修正入射光行进过程所产生的像差并降低系统总高度。

第一实施例的光学成像系统中,第一透镜物侧表面112于光轴上的交点至第一透镜物侧表面112的最大有效半径位置于光轴的水平位移距离为InRS11,第一透镜像侧表面114于光轴上的交点至第一透镜像侧表面114的最大有效半径位置于光轴的水平位移距离为InRS12,第一透镜110于光轴上的厚度为TP1,其满足下列条件:InRS11=-0.00165mm;InRS12=-0.19364mm;TP1=0.46442mm以及(│InRS11│+TP1+│InRS12│)/TP1=1.4605。藉此,可控制第一透镜110的中心厚度与其有效半径厚度间的比例(厚薄比),进而提升该透镜制造上的良率。

第二透镜物侧表面122于光轴上的交点至第二透镜物侧表面122的最大有效半径位置于光轴的水平位移距离为InRS21,第二透镜像侧表面124于光轴上的交点至第二透镜像侧表面124的最大有效半径位置于光轴的水平位移距离为InRS22,第二透镜120于光轴上的厚度为TP2,其满足下列条件:InRS21=-0.19364mm;InRS22=-0.39073mm;TP2=0.39686mm以及(│InRS21│+TP2+│InRS22│)/TP2=2.4725。藉此,可控制第二透镜120的中心厚度与其有效半径厚度间的比例(厚薄比),进而提升该透镜制造上的良率。

第三透镜物侧表面132于光轴上的交点至第三透镜物侧表面132的最大有效半径位置于光轴的水平位移距离为InRS31,第三透镜像侧表面134于光轴上的交点至第三透镜像侧表面134的最大有效半径位置于光轴的水平位移距离为InRS32,第三透镜130于光轴上的厚度为TP3,其满足下列条件:InRS31=-0.38005mm;InRS32=-0.26306mm;TP3=0.70989mm以及(│InRS31│+TP3+│InRS32│)/TP3=1.9059。藉此,可控制第三透镜130的中心厚度与其有效半径厚度间的比例(厚薄比),进而提升该透镜制造上的良率。

第四透镜物侧表面142于光轴上的交点至第四透镜物侧表面142的最大有效半径位置于光轴的水平位移距离为InRS41,第四透镜像侧表面144于光轴上的交点至第四透镜像侧表面144的最大有效半径位置于光轴的水平位移距离为InRS42,第四透镜140于光轴上的厚度为TP4,其满足下列条件:InRS41=-0.23761mm;InRS42=-0.20206mm;TP4=0.87253mm以及(│InRS41│+TP4+│InRS42│)/TP4=1.5039。藉此,可控制第四透镜140的中心厚度与其有效半径厚度间的比例(厚薄比),进而提升该透镜制造上的良率。

第一实施例的光学成像系统中,所有具屈折力的透镜其个别的物侧表面于光轴上的交点至该透镜个别的物侧表面的最大有效半径位置于光轴的水平位移距离的绝对值总和为InRSO,亦即InRSO=│InRS11│+│InRS21│+│InRS31│+│InRS41│。所有具屈折力的透镜其个别的像侧表面于光轴上的交点至该透镜个别的像侧表面的最大有效半径位置于光轴的水平位移距离的绝对值总和为InRSI,亦即InRSI=│InRS12│+│InRS22│+│InRS32│+│InRS42│。本发明的光学成像系统中,所有具屈折力的透镜的任一表面于光轴上的交点至该表面的最大有效半径位置于光轴的水平位移距离的绝对值的总和为Σ│InRS│=InRSO+InRSI,其满足下列条件:InRSO=0.15888mm;InRSI=0.27211mm;Σ│InRS│=0.43099mm。藉此,可有效提升系统修正离轴视场像差的能力。

第一实施例的光学成像系统满足下列条件:Σ│InRS│/InTL=0.59111;以及Σ│InRS│/HOS=0.42509,藉此,可同时兼顾降低系统总高度并且有效提升系统修正离轴视场像差的能力。

第一实施例的光学成像系统满足下列条件:│InRS31│+│InRS32│+│InRS41│+│InRS42│=1.08279mm;(│InRS31│+│InRS32│+│InRS41│+│InRS42│)/InTL=0.59111;以及(│InRS31│+│InRS32│+│InRS41│+│InRS42│)/HOS=0.42509,藉此,可同时兼顾提升最接近成像片的二透镜制造上的良率以及有效提升系统修正离轴视场像差的能力。

第二透镜与第三透镜于光轴上的距离为IN23,第三透镜与第四透镜于光轴上的距离为IN34,其满足下列条件:(│InRS22│+│InRS31│)/IN23=10.9489;以及(│InRS32│+│InRS41│)/IN34=1.7485。藉此,有利于提升系统光程差的调整能力,并有效维持其小型化。

第一实施例的光学成像系统中,第四透镜物侧面142于光轴上的交点至第四透镜物侧面142的最大有效半径位置于光轴的水平位移距离为InRS41,第四透镜像侧面144于光轴上的交点至第四透镜像侧面144的最大有效半径位置于光轴的水平位移距离为InRS42,第四透镜140于光轴上的厚度为TP4,其满足下列条件:InRS41=-0.23761mm;InRS42=-0.20206mm;│InRS41│+│InRS42│=0.43967mm;│InRS41│/TP4=0.27232;以及│InRS42│/TP4=0.23158。藉此有利于镜片制作与成型,并有效维持其小型化。

本实施例的光学成像系统中,第三透镜物侧面132的临界点C31与光轴的垂直距离为HVT31,第三透镜像侧面134的临界点C32与光轴的垂直距离为HVT32,其满足下列条件:HVT31=0mm;HVT32=1.1142mm。藉此,有助于光学成像系统的外围视场的像差修正。

本实施例的光学成像系统中,第四透镜物侧面142的临界点C41与光轴的垂直距离为HVT41,第四透镜像侧面144的临界点C42与光轴的垂直距离为HVT42,其满足下列条件:HVT41=0.5695mm;HVT42=1.3556mm;HVT41/HVT42=0.4201。藉此,可有效修正离轴视场的像差。

本实施例的光学成像系统其满足下列条件:HVT42/HOI=0.4620。藉此,有助于光学成像系统的外围视场的像差修正。

本实施例的光学成像系统其满足下列条件:HVT42/HOS=0.3063。藉此,有助于光学成像系统的外围视场的像差修正。

第一实施例的光学成像系统中,第一透镜的色散系数为NA1,第二透镜的色散系数为NA2,第三透镜的色散系数为NA3,第四透镜的色散系数为NA4,其满足下列条件:│NA1-NA2│=0;NA3/NA2=0.39921。藉此,有助于光学成像系统色差的修正。

第一实施例的光学成像系统中,光学成像系统于结像时的TV畸变为TDT,结像时的光学畸变为ODT,其满足下列条件:│TDT│=0.4%;│ODT│=2.5%。

再配合参照下列表一以及表二。

表二、第一实施例的非球面系数

表一为第一实施例详细的结构数据,其中曲率半径、厚度、距离及焦距的单位为mm,且表面0-14依序表示由物侧至像侧的表面。表二为第一实施例中的非球面数据,其中,k表非球面曲线方程式中的锥面系数,A1-A20则表示各表面第1-20阶非球面系数。此外,以下各实施例表格乃对应各实施例的示意图与像差曲线图,表格中数据的定义皆与第一实施例的表一及表二的定义相同,在此不加赘述。

第二实施例

请参照图2A及图2B,其中图2A绘示依照本发明第二实施例的一种光学成像系统的示意图,图2B由左至右依序为第二实施例的光学成像系统的球差、像散及光学畸变曲线图。图2C为第二实施例的光学成像系统的TV畸变曲线图。由图2A可知,光学成像系统20由物侧至像侧依序包含第一透镜210、光圈200、第二透镜220、第三透镜230、第四透镜240、红外线滤光片270、成像面280以及影像感测组件290。

第一透镜210具有正屈折力,且为塑料材质,其物侧面212为凸面,其像侧面214为凹面,并皆为非球面,且其物侧面212以及像侧面214均具有一反曲点。

第二透镜220具有负屈折力,且为塑料材质,其物侧面222为凸面,其像侧面224为凹面,并皆为非球面,且其物侧面222具有二反曲点。

第三透镜230具有正屈折力,且为塑料材质,其物侧面232为凹面,其像侧面234为凸面,并皆为非球面,且其像侧面234具有二反曲点。

第四透镜240具有负屈折力,且为塑料材质,其物侧面242为凸面,其像侧面244为凹面,并皆为非球面,且其物侧面242具有二反曲点以及像侧面244具有一反曲点。

红外线滤光片270为玻璃材质,其设置于第四透镜240及成像面280间且不影响光学成像系统的焦距。

第二实施例的光学成像系统中,第二透镜220至第四透镜240的焦距分别为f2、f3、f4,其满足下列条件:│f2│+│f3│=15.7857mm;│f1│+│f4│=5.6102mm;以及│f2│+│f3│>│f1│+│f4│。

第二实施例的光学成像系统中,第一透镜210、第三透镜230均为正透镜,其个别焦距分别为f1以及f3,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f1+f3。藉此,有助于适当分配第一透镜210的正屈折力至其他正透镜,以抑制入射光行进过程显著像差的产生。

第二实施例的光学成像系统中,第二透镜220与第四透镜240的个别焦距分别为f2以及f4,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f2+f4。藉此,有助于适当分配第四透镜240的负屈折力至其他负透镜。

请配合参照下列表三以及表四。

表四、第二实施例的非球面系数

第二实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。

依据表三及表四可得到下列条件式数値:

依据表三及表四可得到下列条件式数値:

第三实施例

请参照图3A及图3B,其中图3A绘示依照本发明第三实施例的一种光学成像系统的示意图,图3B由左至右依序为第三实施例的光学成像系统的球差、像散及光学畸变曲线图。图3C为第三实施例的光学成像系统的TV畸变曲线图。由图3A可知,光学成像系统30由物侧至像侧依序包含第一透镜310、光圈300、第二透镜320、第三透镜330、第四透镜340、红外线滤光片370、成像面380以及影像感测组件390。

第一透镜310具有正屈折力,且为塑料材质,其物侧面312为凸面,其像侧面314为凸面,并皆为非球面,其物侧面312,其物侧面312具有一反曲点。

第二透镜320具有负屈折力,且为塑料材质,其物侧面322为凹面,其像侧面324为凹面,并皆为非球面,其物侧面322具有四反曲点。

第三透镜330具有正屈折力,且为塑料材质,其物侧面332为凹面,其像侧面334为凸面,并皆为非球面,其像侧面334具有二反曲点。

第四透镜340具有负屈折力,且为塑料材质,其物侧面342为凸面,其像侧面344为凹面,并皆为非球面,且其物侧面342具有二反曲点以及像侧面344具有一反曲点。

红外线滤光片370为玻璃材质,其设置于第四透镜340及成像面380间且不影响光学成像系统的焦距。

第三实施例的光学成像系统中,第二透镜320至第四透镜340的焦距分别为f2、f3、f4,其满足下列条件:│f2│+│f3│=7.7448mm;│f1│+│f4│=4.2836mm;以及│f2│+│f3│>│f1│+│f4│。

第三实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f1+f3。藉此,有助于适当分配第一透镜310的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。

第三实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f2+4。藉此,有助于适当分配第四透镜340的负屈折力至其他负透镜。

请配合参照下列表五以及表六。

表六、第三实施例的非球面系数

第三实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。

依据表五及表六可得到下列条件式数値:

依据表五及表六可得到下列条件式数値:

第四实施例

请参照图4A及图4B,其中图4A绘示依照本发明第四实施例的一种光学成像系统的示意图,图4B由左至右依序为第四实施例的光学成像系统的球差、像散及光学畸变曲线图。图4C为第四实施例的光学成像系统的TV畸变曲线图。由图4A可知,光学成像系统40由物侧至像侧依序包含第一透镜410、光圈400、第二透镜420、第三透镜430、第四透镜440、红外线滤光片470、成像面480以及影像感测组件490。

第一透镜410具有正屈折力,且为塑料材质,其物侧面412为凸面,其像侧面414为凸面,并皆为非球面,且其物侧面412具有一反曲点。

第二透镜420具有负屈折力,且为塑料材质,其物侧面422为凸面,其像侧面424为凹面,并皆为非球面,且其物侧面422具有二反曲点。

第三透镜430具有正屈折力,且为塑料材质,其物侧面432为凹面,其像侧面434为凸面,并皆为非球面,且其像侧面434具有二反曲点。

第四透镜440具有负屈折力,且为塑料材质,其物侧面442为凸面,其像侧面444为凹面,并皆为非球面,且其物侧面442具有三反曲点以及像侧面444具有一反曲点。

红外线滤光片470为玻璃材质,其设置于第四透镜440及成像面480间且不影响光学成像系统的焦距。

第四实施例的光学成像系统中,第二透镜420至第四透镜440的焦距分别为f2、f3、f4,其满足下列条件:│f2│+│f3│=9.8117mm;│f1│+│f4│=4.5239mm;以及│f2│+│f3│>│f1│+│f4│。

第四实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f1+f3。藉此,有助于适当分配第一透镜410的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。

第四实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f2+f4。藉此,有助于适当分配第四透镜440的负屈折力至其他负透镜。

请配合参照下列表七以及表八。

表八、第四实施例的非球面系数

第四实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。

依据表七及表八可得到下列条件式数値:

依据表七及表八可得到下列条件式数値:

第五实施例

请参照图5A及图5B,其中图5A绘示依照本发明第五实施例的一种光学成像系统的示意图,图5B由左至右依序为第五实施例的光学成像系统的球差、像散及光学畸变曲线图。图5C为第五实施例的光学成像系统的TV畸变曲线图。由图5A可知,光学成像系统50由物侧至像侧依序包含第一透镜510、光圈500、第二透镜520、第三透镜530、第四透镜540、红外线滤光片570、成像面580以及影像感测组件590。

第一透镜510具有正屈折力,且为塑料材质,其物侧面512为凸面,其像侧面514为凸面,并皆为非球面,其物侧面512具有一反曲点。

第二透镜520具有负屈折力,且为塑料材质,其物侧面522为凸面,其像侧面524为凹面,并皆为非球面,且其物侧面522具有二反曲点。

第三透镜530具有正屈折力,且为塑料材质,其物侧面532为凹面,其像侧面534为凸面,并皆为非球面,且其像侧面534具有二反曲点。

第四透镜540具有负屈折力,且为塑料材质,其物侧面542为凸面,其像侧面544为凹面,并皆为非球面,且其物侧面542具有三反曲点以及像侧面544具有一反曲点。

红外线滤光片570为玻璃材质,其设置于第四透镜540及成像面580间且不影响光学成像系统的焦距。

第五实施例的光学成像系统中,第二透镜520至第四透镜540的焦距分别为f2、f3、f4,其满足下列条件:│f2│+│f3│=10.1202mm;│f1│+│f4│=4.7004mm;以及│f2│+│f3│>│f1│+│f4│。

第五实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f1+f3。藉此,有助于适当分配第一透镜510的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。

第五实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f2+f4。藉此,有助于适当分配第四透镜540的负屈折力至其他负透镜。

请配合参照下列表九以及表十。

表十、第五实施例的非球面系数

第五实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。

依据表九及表十可得到下列条件式数値:

依据表九及表十可得到下列条件式数値:

第六实施例

请参照图6A及图6B,其中图6A绘示依照本发明第六实施例的一种光学成像系统的示意图,图6B由左至右依序为第六实施例的光学成像系统的球差、像散及光学畸变曲线图。图6C为第六实施例的光学成像系统的TV畸变曲线图。由图6A可知,光学成像系统60由物侧至像侧依序包含第一透镜610、光圈600、第二透镜620、第三透镜630、第四透镜640、红外线滤光片670、成像面680以及影像感测组件690。

第一透镜610具有正屈折力,且为塑料材质,其物侧面612为凸面,其像侧面614为凸面,并皆为非球面,且其物侧面612具有一反曲点。

第二透镜620具有正屈折力,且为塑料材质,其物侧面622为凸面,其像侧面624为凹面,并皆为非球面,且其物侧面622具有二反曲点。

第三透镜630具有负屈折力,且为塑料材质,其物侧面632为凹面,其像侧面634为凸面,并皆为非球面,且其像侧面634具有二反曲点。

第四透镜640具有正屈折力,且为塑料材质,其物侧面642为凸面,其像侧面644为凹面,并皆为非球面,且其物侧面642具有三反曲点以及像侧面644具有一反曲点。

红外线滤光片670为玻璃材质,其设置于第四透镜640及成像面680间且不影响光学成像系统的焦距。

第六实施例的光学成像系统中,第二透镜620至第四透镜640的焦距分别为f2、f3、f4,其满足下列条件:│f2│+│f3│=10.1424mm;│f1│+│f4│=4.7155mm;以及│f2│+│f3│<│f1│+│f4│。

第六实施例的光学成像系统中,所有具正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f1+f3。藉此,有助于适当分配第一透镜610的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。

第六实施例的光学成像系统中,所有具负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f2+f4。藉此,有助于适当分配第四透镜的负屈折力至其他负透镜。

请配合参照下列表十一以及表十二。

表十二、第六实施例的非球面系数

第六实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。

依据表十一及表十二可得到下列条件式数値:

依据表十一及表十二可得到下列条件式数値:

虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定者为准。

虽然本发明已参照其例示性实施例而特别地显示及描述,将为本领域的技术人员所理解的是,于不脱离所附的权利要求书及其等效物所定义的本发明的精神与范畴下可对其进行形式与细节上的各种变更。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1