与液晶偏振干涉仪一起使用的滤色器的制作方法

文档序号:18139375发布日期:2019-07-10 10:55阅读:156来源:国知局
与液晶偏振干涉仪一起使用的滤色器的制作方法

本公开涉及一种与液晶偏振干涉仪一起使用的滤色器。在一个实施例中,一种设备包含液晶偏振干涉仪,所述液晶偏振干涉仪在输入光的第一偏振和第二偏振之间造成光路延时。所述液晶偏振干涉仪包含液晶可变延迟器,所述液晶可变延迟器响应于遍及液晶单元施加的电压而提供可变延迟。第一偏振器和第二偏振器位于所述液晶单元的相对侧上。所述设备包含图像传感器,所述图像传感器基于传递通过所述液晶偏振干涉仪的输出光感测干涉图。所述设备包含滤色器,所述滤色器过滤所述输入光和所述输出光中的一个。所述滤色器具有在蓝色光谱区中比在红色光谱区中传递更多的光的光谱透射特性。

在另一个实施例中,一种方法包括经由液晶偏振干涉仪在输入光的第一偏振和第二偏振之间造成光路延时。所述液晶偏振干涉仪包含液晶可变延迟器,所述液晶可变延迟器响应于遍及液晶单元施加的电压而提供可变延迟,并且所述液晶偏振干涉仪还包含在所述液晶单元的相对侧上的第一偏振器和第二偏振器。过滤所述输入光和传递通过所述液晶偏振干涉仪的输出光中的一个,使得在蓝色光谱区中比在红色光谱区中传递按比例更多的光。基于所述输出光形成干涉图。

附图说明

下面的讨论参考以下各图,其中相同的附图标记可用于标识多个图中的相似/相同的部件。附图不一定按比例绘制。

图1和2是示出根据示例性实施例的输入光谱和高光谱成像器对输入光谱的响应的绘图;

图3和4是示出根据示例性实施例的图像传感器的特性的绘图;

图5、6、7、8和9是示出根据示例性实施例的偏振干涉仪的透射和灵敏度特性的绘图;

图10是示出根据示例性实施例的滤光器的透射分布的绘图;

图11是示出根据示例性实施例的高光谱成像器与滤光器的组合的灵敏度的绘图;

图12是根据示例性实施例的设备的图解;

图13是根据示例性实施例的方法的流程图;并且

图14是根据示例性实施例的系统和设备的图解。

具体实施方式

本公开涉及高光谱成像装置。本文中所描述的高光谱成像装置使用偏振干涉仪,所述偏振干涉仪被配置成在传递通过所述干涉仪的光分量中引入可变光路延时。造成路径延时的装置(被称为可变光学延迟器)放置在两个偏振器之间,使得在入射偏振方向上的第一光线和正交偏振方向上的第二光线(例如,寻常光线和非常光线)之间引入可变路径延时。此路径延时在第一光线和第二光线之间造成波长相依的相移。路径延时造成离开偏振干涉仪的光形成共路径干涉图,所述共路径干涉图是经由例如焦平面阵列的光学传感器来检测。

偏振干涉仪可使用一个或多个液晶(lc)单元作为可变光学延迟器。这种装置在本文中被称为液晶可变延迟器(lcvr)。通常,液晶(lc)材料是具有可通过施加例如电场或磁场的外部刺激而可选择性地改变的一些结晶性质(例如,内部结构的取向,例如指示lc分子的局部平均配向的lc指向矢)的液体。lc指向矢的取向变化会改变lc材料的光学性质,例如改变lc双折射的光轴。

lcvr在行进通过液晶的两个正交光偏振之间产生可变光路延时(也被称为可变延迟)。lcvr内的一个或多个液晶单元用作可电调谐双折射元件。通过改变遍及液晶单元的电极的电压,单元分子改变它们的取向,并且有可能在一段时间内可控地改变光路延时。

为了创建具有lcvr的偏振干涉仪,将lcvr放置在具有标称平行或垂直偏振轴的第一偏振器和第二偏振器之间。lcvr的慢轴(具有可变光路延时的偏振轴)相对于第一偏振器的偏振方向被取向为标称45度。入射光被第一偏振器偏振到入射偏振方向。因为lcvr的慢轴相对于此入射偏振方向成45度,所以可根据平行于lcvr的慢轴偏振的一部分光和垂直于此轴偏振的一部分光来描述偏振入射光。

随着光传递通过lcvr,它获取第一偏振和第二偏振之间的波长相依的相对相移,由此导致偏振态发生波长相依的变化。被取向为与第一偏振器平行或垂直的第二偏振器或分析器使平行于lcvr的慢轴偏振的那部分光与垂直偏振的那部分光干涉,从而将lcvr的输出处的波长相依的偏振态改变为可由光学检测器或焦平面阵列感测的波长相依的强度图案。通过在改变lcvr的延迟的同时感测此强度,有可能测量入射光的干涉图,其可用于确定入射光的光谱性质。

如上文所提到,lcvr可用于高光谱成像应用,这是因为它能够将入射光的光谱信息编码成可容易用非光谱分辨检测器测量的强度图案。高光谱成像是指用于获取高光谱数据集或数据立方体的方法和装置,所述高光谱数据集或数据立方体可包含其中在每个像素处提供密集采样的精细分辨的光谱信息的图像。

一些高光谱成像装置出现的一个问题是蓝色的灵敏度相对于红色的灵敏度降低。这种灵敏度差异使这些高光谱成像装置遍及其可检测的光谱范围的动态范围降低。当例如使用lcvr偏振干涉仪执行傅里叶变换高光谱成像时,有多种因素都会导致较短波长(例如,400-500nm及更低,或蓝色光谱区)相对于较长波长(例如,500-600nm及更高,或红色光谱区)的灵敏度降低。下文将更详细地阐释这些因素。

由于这种系统的时间和波长复用的图像采集,在较短波长下的此灵敏度不足可能会有问题,这意味着,在任何给定时间,图像传感器处都会检测到遍及高光谱成像器的光谱范围的光。来自每个波长的散粒噪声分布在整个重建光谱上。因此,如果要感测的光谱具有每单位波长相等的能量,但是高光谱成像器具有差的短波长灵敏度,则短波长信号将被在较长波长下产生的散粒噪声遮蔽。

另外,这种系统的光谱重建并不完美,并且通常存在一定程度的光谱泄漏。例如,红色的单色光源将在重建光谱中具有以蓝色显现的边带。如果边带抑制大约是(或小于)红色和蓝色之间的相对灵敏度,则红色光源将严重扭曲蓝色中的任何真实信号。

上文所描述的情境可通过图1和2中的绘图来观测。图1示出由氙弧灯发射的每单位波长的光谱功率的绘图,并且图2示出根据示例性实施例的高光谱成像器的光谱灵敏度和分辨率特性。为了产生这些图,将来自氙弧灯的光通过单色仪发送到积分球中,其中光功率检测器耦合到一个端口。在以单色仪波长为中心的窄波长带中,随着功率检测器记录光功率,单色仪从400nm到1000nm以10nm的步长前进,从而进入积分球。图1中绘制了此功率对波长曲线。同时,高光谱成像器指向第二积分球端口,以对来自单色仪的漫射光成像,从而针对每个单色仪波长产生高光谱数据立方体。图2中绘制了来自每个高光谱数据立方体的小区域的空间平均值;每条曲线表示一个单色仪波长的高光谱成像器线形,并且每条曲线下方的区域对应于给定波长下的高光谱成像器灵敏度与所述波长下发射的氙灯功率的乘积,如图1所示出。可看出,对蓝色波长的灵敏度远低于对红色波长的灵敏度。而且,可看出,出现在蓝色中的红色波长边带具有与蓝色中的峰值信号相似的量值,并且这将在存在红色信号的情况下显著地扭曲大多数蓝色信号。

上述问题可通过将高光谱成像器与被称为色温补偿滤光器的特定种类的滤光器组合来解决,所述滤光器旨在增加光源的表观色温。这些滤光器对于本申请来说具有理想的特性,这在于,光学透射在蓝色中高并且向红色中逐渐减小,通常在近红外中再次升高,这也可在所述光谱范围内补偿相对较低的光谱灵敏度。此特性在与高光谱成像器的光谱灵敏度相乘时将使整体灵敏度曲线变平并且有助于增加遍及可检测光谱的动态范围。在下面的讨论中,详述了许多可能降低基于液晶偏振干涉仪的傅里叶变换高光谱成像器的蓝色灵敏度的因素。另外,描述了用于补偿不均匀光谱灵敏度以便维持遍及光谱的动态范围的机制。

在一些实施方案中导致低蓝色灵敏度的一个因素是图像传感器的响应度,其是将所产生的光电流与入射光功率相关的函数。它既考虑了传感器的量子效率,也考虑了更蓝(较短波长)光子比更红光子携带更多的能量的基本事实;因此,在较短波长下每单位入射功率产生较少的光电流。这在图3和4的绘图中被描绘,图3和4分别示出根据示例性实施例的图像传感器的量子效率和近似响应度。如图4所示,400nm处的信号与600nm处的信号之间的响应度差异大约为三倍。

在一些实施方案中导致低蓝色灵敏度的另一个因素是波长和光谱分辨率之间的关系;对于所利用的干涉技术,光谱分辨率按波长平方缩放。因此,对于每单位波长具有均匀光功率的光谱,每个光谱带的测量能量将按波长平方缩放,从而再次降低遍及可检测光谱的动态范围。

遍及可变光学延迟器的通光孔径存在的任何路径延时误差都将导致相位不均匀性(和条纹对比度的损失),相对于较长波长,所述相位不均匀性在较短波长下更明显。在图1-4的绘图所示出的波长范围内,此条纹对比度差异可以是50%或更多。

对于基于液晶偏振干涉仪的高光谱成像系统(并且更通常对于采用透射光学元件的高光谱成像系统),应考虑液晶单元衬底(例如玻璃)透射和偏振器衬底透射,以及由偏振器提供的偏振度。如图5和6所示出,所有这些量都在较短波长下减小。图5中的绘图示出在具有和不具有液晶材料的情况下,根据示例性实施例的用于高光谱成像器的偏振干涉仪中的单个液晶单元的光学透射。由于此单元由常规的钠钙玻璃构成,因此随着透射波长接近400nm,存在轻微的透射下降。此透射下降由于多个液晶单元的堆叠而复合,这对于构建具有足够的最大光路延时的液晶可变延迟器可能是必要的。硼硅酸盐玻璃或熔融硅石衬底的使用将有助于缓解这个问题。通过比较空lc单元的透射与填充有lc的单元的透射来推断液晶(lc)材料的透射;在此测量的情况下,lc透射相对均匀。然而,关于不同衬底和偏振器材料的均匀光谱透射的所有考虑也适用于lc材料。图6中的绘图示出两种偏振器衬底类型和四种偏振器类型的透射。可选择偏振器衬底和偏振器类型以具有从红色到蓝色或遍及可检测光谱的均匀的(或尽可能均匀的)透射。

在图7-11中,各种绘图示出导致高光谱成像器实施例的非均匀灵敏度的不同因素的复合效应,以及这些因素中的一些被解决时发生的情况。在图7中,绘图示出通过液晶偏振干涉仪(具有两个填充的液晶单元和两个偏振器,如图5和6中)的透射与图4中图像传感器响应度的组合效应。红色在600nm处的灵敏度比在400nm处的蓝色(紫色)高约14倍。图8中的绘图组合了图7的绘图与不同波长下干涉图条纹对比度的相对变化和光谱分辨率的波长平方相依性(并且因此,对每单位波长具有均匀功率的光源的灵敏度)的效应。

图9中的绘图采取图8的绘图,并且消除了液晶偏振干涉仪的不均匀光谱透射的效应。这假设可通过适当选择lc材料、lc单元衬底和偏振器来使偏振干涉仪光谱透射变平。图10中的绘图是根据示例性实施例的色彩平衡滤光器(或色温偏移滤光器)的光谱透射分布。在这种情况下,色彩平衡滤光器的色温偏移为-200迈尔德;滤光器包括由corporation生产的2.5mm厚的lb-200彩色玻璃板块。图11中的绘图示出图9的高光谱成像器灵敏度与图10所示出的滤光器透射相乘之后的情况。

因此,为了补偿上述非均匀光谱灵敏度,一种设备(例如,高光谱成像器)包含一种或多种材料(例如,用于偏振器和lc单元的衬底材料),其具有偏振器效率和补偿滤光器特性以产生相对于波长相对平的光谱响应,至少在蓝色和红色之间。用于实现此目的的优选方式是在光路中引入用于增加白炽(例如,钨-卤素)光源的表观色温的种类的色温平衡滤光器。下文在方程式(1)中示出了这种滤光器的色温偏移,以“迈尔德”表示,其中k1是白炽源的色温,k2是通过滤光器所观察的源的表观色温。下文在方程式(2)中示出了另一种用于表征将适合于增加相对于红色的蓝色灵敏度的滤光器的“迈尔德”的方式,其中tr是遍及610nm、635nm和655nm的平均滤光器透射率值(以%表示),并且tb是遍及405nm、435nm和465nm的平均滤光器透射率值(以%表示)。

v=221(log10tr-log10tb)(2)

在图12中,框图示出根据示例性实施例的成像系统1200和设备。系统1200包含液晶偏振干涉仪1202。液晶偏振干涉仪1202包含液晶可变延迟器1204,液晶可变延迟器1204响应于遍及一个或多个液晶单元1204a施加的电压(例如,经由沉积在单元衬底1204b上的电极;注意,液晶单元1204a可包括图中未指示的额外单元衬底和电极)而提供可变延迟。第一偏振器1206和第二偏振器1208位于液晶可变延迟器的相对侧上。液晶偏振干涉仪1202在输入光1201的第一偏振和第二偏振之间造成光路延时。图像传感器1210感测由输出光1203的偏振分量中的相对路径延时形成的干涉图1211,所述偏振分量已传递通过液晶偏振干涉仪1202并且已在第二偏振器1208处干涉。液晶可变延迟器1204的液晶单元以及两个偏振器1206、1208中的任一个可由熔融硅石衬底和/或硼硅酸盐衬底形成。

系统1200还包含滤色器1212,滤色器1212过滤由图像传感器1210感测的光。滤色器1212具有在蓝色光谱区中比在红色光谱区中传递更多的光的光谱透射特性。例如,滤色器1212可例如通过增加输入光1201的表观色温来补偿图像传感器1210在蓝色光谱区中降低的灵敏度。

滤色器1212在此实例中被示出为位于液晶偏振干涉仪1202和图像传感器1210之间。滤色器1212可位于系统1200内的其它位置处,如由虚线1213-1217所指示。滤色器1212可包含吸收滤光器和干涉滤光器中的一个,并且可使用相同或不同类型的多个滤光器1212。滤色器可具有-20和-400迈尔德之间的组合色温偏移,和/或具有将干涉图的波长相依性修改为在红色和蓝色波长带之间分别为1%到100%的相对差异的性质。

在图13中,流程图示出根据示例性实施例的方法。所述方法包括经由液晶偏振干涉仪在输入光的第一偏振和第二偏振之间造成1300光路延时。液晶偏振干涉仪包含液晶可变延迟器,液晶可变延迟器响应于遍及液晶单元施加的电压而提供可变延迟,并且液晶偏振干涉仪还包含在液晶单元的相对侧上的第一偏振器和第二偏振器。过滤1301输入光和传递通过液晶偏振干涉仪的输出光中的一个,使得在蓝色光谱区中比在红色光谱区中传递按比例更多的光。注意,由于此过滤1301,蓝光振幅不需要比红光振幅更大(在绝对意义上),只是蓝色过滤的相对量小于红色过滤的相对量。基于输出光形成1302干涉图。

在图14中,框图示出根据示例性实施例的执行图像处理的设备1400。设备1400包含装置控制器1402,装置控制器1402可包含一个或多个处理器,例如中央处理单元、子处理器、图形处理单元、数字信号处理器等等。控制器1402耦合到存储器1404,存储器1404包含下文将更详细地描述的功能模块。存储器1404可包含易失性和非易失性存储器的组合,并且可存储本领域已知的指令和数据。

设备1400包含光学区段1406,光学区段1406具有从设备1400外部接收光的外部光学接口1408。外部光学接口1408可包含适合于将光1409从设备1400外部传递到内部光学部件的窗口、透镜、滤光器、孔径等等。在此实例中,外部光学接口1408被示出为耦合到外部透镜1410。

偏振干涉仪1412位于设备1400的光学区段1406中。偏振干涉仪1412例如经由电信号线耦合到控制器1402。控制器1402将信号施加到偏振干涉仪1412,以在作为干涉仪1412的部分的lcvr1412a中造成时变光路延时或延迟。此时变光路延时在光1409的不同偏振之间造成偏移,从而导致输出光1411形成随光路延时而变的干涉图。干涉图由图像传感器1414(例如,传感器像素阵列、焦平面阵列)检测,图像传感器1414也耦合到控制器1402。图像传感器1414可基于干涉图形成静止图像和/或视频帧。

延迟控制器1418指示装置控制器1402向lcvr1412a施加控制信号以实现时变延迟轨迹。图像处理器1420使用此延迟轨迹作为时变路径延时的度量以及在图像传感器1414处检测的干涉图。可通过依据lcvr1412a的对应位置处的路径延时计算变换来处理每个检测到的干涉图,并且随位置而变的处理后的干涉图一起产生空间分辨的光谱信息,例如高光谱数据立方体。高光谱数据立方体可被呈现为静止图像和视频中的一个或两个。

光学区段1406包含滤色器1430,滤色器1430过滤输入光1409和输出光中的一个或多个。滤色器1430具有在蓝色光谱区中比在红色光谱区中传递更多的光的光谱透射特性。滤色器1430尤其补偿图像传感器在蓝色光谱区中降低的灵敏度。滤色器1430可包含吸收滤光器或干涉滤光器。滤色器1430增加源的表观色温,例如具有-20和-400迈尔德之间的色温偏移。滤色器1430可将设备的光谱灵敏度修改为在红色和蓝色波长带之间分别为1%到100%的相对差异。在其它实施例中,滤色器可包含在例如透镜1410的外部光学组件中,输入光1409传递通过所述外部光学组件。

鉴于液晶偏振干涉仪可用于高光谱成像系统以及执行光谱感测的其它设备,可能有益的是在这种设备中包含具有适应于补偿它们的非均匀光谱灵敏度的光谱的照明源。例如,设备1400可包含照明源1440,照明源1440被定向到设备1400外部以照明外部场景。来自照明源1440的光然后从外部场景反射,从而结合关于外部场景中存在的反射光谱的信息,并且其作为输入光1409进入设备1400。因此,透镜1410将由源1440照明的外部场景成像到fpa1414上。如在本实施例中,如果设备1400的灵敏度在蓝色光谱范围中比在红色光谱范围中低,则照明源1440可在蓝色光谱范围中比在红色光谱范围中包含更高强度的光以补偿这种情形。这种照明源1440可包括多个窄带源,例如led,具有个别定制的输出强度和中心波长。或者,它可包括高色温源,例如氙弧灯。可经由来自源1440的光和环境光的组合来照明外部场景。源1440可用与本实施例中使用的滤色器1430相似的滤色器来过滤,以增加蓝光对红光的比率。

设备1400可被配置用于许多应用。例如,设备1400可被配置为移动装置(例如,便携式相机、移动电话、平板电脑、可穿戴装置),和/或用于移动装置的附件。通常,移动装置可包含移动电源(例如,电池、燃料电池、太阳能电池),并且可具有适合于用户运输的尺寸和重量。移动装置可被配置成使得控制器1402能够在内部执行图像处理,但是仍然可被配置成经由数据接口1422将未处理或处理后的数据传送到外部计算机1424。数据接口1422可包含无线接口,例如wifi、蓝牙等等。

上述各种实施例可使用互动以提供特定结果的电路、固件和/或软件模块来实施。相关领域的技术人员可使用本领域公知的知识以模块化水平或作为整体容易地实施这种所描述的功能。例如,本文中所示出的流程图和控制图可用于创建用于由处理器执行的计算机可读指令/代码。此类指令可存储在非暂时性计算机可读媒体上并且传送到处理器以供执行,如本领域中所知。上文所示出的结构和过程仅是可用于提供上文所描述的功能的实施例的代表性实例。

除非另有指示,否则在说明书和权利要求书中使用的表示特征尺寸、量和物理性质的所有数字应被理解为在所有情况下均由术语“约”修饰。因此,除非有相反的指示,否则在前述说明书和所附权利要求书中列出的数值参数是近似值,其可根据本领域技术人员利用本文中所公开的教导寻求获得的期望性质而变化。使用端点数值范围包含所述范围内的所有数字(例如,1到5包含1、1.5、2、2.75、3、3.80、4和5)和所述范围内的任何范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1