显示装置的制作方法

文档序号:19921246发布日期:2020-02-14 16:20阅读:135来源:国知局
显示装置的制作方法

本实用新型涉及一种显示装置。



背景技术:

作为显示装置之一的车辆用平视显示器例如将具有显示信息的液晶面板配置于车厢内的仪表面板的内侧,通过反射镜使从液晶面板透射的来自背光源的光朝向前挡风玻璃射出。该射出光被前挡风玻璃反射后射入至驾驶员的眼睛,驾驶员能以虚像视觉确认来自液晶面板的显示信息。而且,在车辆中,降低由外光(太阳光)中的红外线(红外光)引起的热能对液晶面板的影响是重要的。因此,在专利文献1中,公开了一种在液晶面板与前挡风玻璃之间设置滤光器,来遮断射入至液晶面板的红外光的车辆用干视显示器。此外,在专利文献2中,公开了一种使用了两种聚合物膜作为红外光截止部的车辆用平视显示器。

现有技术文献

专利文献

专利文献1:日本特开平11-23997号公报

专利文献2:日本特开2017-138448号公报



技术实现要素:

实用新型要解决的问题

在上述专利文献1记载的显示装置中,在滤光器例如包含被拉伸后的聚合物膜时,在滤光器产生折射率的各向异性而显示出双折射。因此,在从显示部射出的具有显示信息的直线偏振波的可见光从滤光器透射时,有时从直线偏振波变为椭圆偏振波。当椭圆偏振波的可见光被前挡风玻璃反射时,可见光的反射率根据偏振波分量而变化。其结果是,驾驶员所识别的显示信息与从显示部射出时的显示信息不同,有时视觉确认性差。另一方面,在上述专利文献2记载的显示装置中,通过在第一聚合物膜上配置第二聚合物膜,利用第二聚合物膜来补偿在第一聚合物膜产生的双折射,但为了减少射入至液晶面板的红外光,同时维持驾驶员的视觉确认性,需要进一步的改善。

技术方案

本实用新型的一个方案的显示装置具备:显示部,射出具有显示信息的直线偏振波的可见光;红外光截止部,使来自显示部的可见光透射,且使红外光向显示部的入射量减少;以及反射部,使透射过红外光截止部的可见光反射,红外光截止部包含红外光截止层,红外光截止层具有滞相轴,滞相轴与直线偏振波的振动方向大致平行。

该显示装置的红外光截止部使来自显示部的可见光透射,同时减少红外光向显示部的入射量。其结果是,保持可见光所具有的显示信息的亮度,同时例如降低由太阳光中的红外光引起的热能对显示部的影响。此外,红外光截止部所包含的红外光截止层具有滞相轴,滞相轴与直线偏振波的振动方向大致平行。因此,直线偏振波的可见光从红外光截止部透射后变为椭圆偏振波的比例和滞相轴与直线偏振波的振动方向不大致平行的方案相比变小。其结果是,车辆的驾驶员等视觉确认者容易如上所述地识别从显示部射出的可见光所具有的显示信息,会维持显示信息的视觉确认性。

在另一方案的显示装置中,可以是,大致平行是指,滞相轴与直线偏振波的振动方向所成的角为0度以上且10度以下。

根据该显示装置,在来自显示部的可见光从红外光截止部透射后,该可见光的直线偏振波变为椭圆偏振波的比例进一步减小。椭圆偏振波占穿过红外光截止部的可见光的比例进一步变小,因此,识别被反射部反射的可见光的视觉确认者能通过从显示部射出的可见光的显示信息来识别近似的显示信息。

在另一方案的显示装置中,可以是,直线偏振波相对于红外光截止部的入射角为大于0度且小于90度。

根据该显示装置,容易调整红外光截止部相对于来自显示部的可见光的光路的朝向,以使太阳光这样的外部的光的一部分被红外光截止部反射后不朝向驾驶员等视觉确认者的眼睛前进。

在另一方案的显示装置中,可以是,红外光截止部进一步包含使紫外光的透射率降低的紫外光截止层,红外光截止层以及紫外光截止层均具有可见光区域的透射性。

根据该显示装置,红外光截止部进一步包含紫外光截止层,因此会防止太阳光等所包含的紫外光照射至显示部。此外,红外光截止层以及紫外光截止层均具有可见光区域的透射性,因此会保持穿过红外光截止部的可见光所具有的显示信息的亮度。

在另一方案的显示装置中,可以是,透射性在可见光区域中具有60%以上的透射率。

根据该显示装置,会进一步保持穿过红外光截止部的可见光所具有的显示信息的亮度。

在另一方案的显示装置中,可以是,红外光截止部包含硬涂层。

根据该显示装置,在红外光截止部可以包含硬涂层,因此红外光截止部的机械强度增大,此外,对划伤等的耐损伤性增大。

在另一方案的显示装置中,可以是,紫外光截止层为粘合剂层。

该显示装置的紫外光截止层可以为粘合剂层,因此能通过其粘合性层叠至例如红外光截止层。

在另一方案的显示装置中,可以是,进一步具备:窗部,装配于设于车辆的仪表板的开口,在可见光的光路上,配置于显示部与反射部之间,红外光截止部设于窗部与反射部之间。

根据该显示装置,红外光截止部设于窗部上,能保护窗部。能通过机械强度小的树脂这样的材料来构成窗部。

在另一方案的显示装置中,可以是,进一步具备:窗部,装配于设于车辆的仪表板的开口,在可见光的光路上,配置于显示部与反射部之间,红外光截止部设于显示部与窗部之间。

根据该显示装置,红外光截止部以及显示部设置于仪表板内,例如能被玻璃等窗材料保护。

实用新型的效果

根据本实用新型的一个方面,在维持了显示信息的视觉确认性的基础上,容易减少红外光向显示部的入射量。

附图说明

图1是表示本实用新型的实施方式的显示装置的一个例子的图。

图2的(a)以及图2的(b)是放大了图1所示的区域r1的图。

图3的(a)是概略性地表示卷取为辊状的拉伸聚合物膜的外观图。图3的(b)是概略性地表示图3的(a)的拉伸聚合物膜的俯视图。

图4的(a)是从中央区域的拉伸聚合物膜切下而形成的一个红外光截止膜的俯视图。图4的(b)是从周边区域的拉伸聚合物膜切下而形成的一个红外光截止膜的俯视图。

图5表示本实用新型的实施方式的红外光截止部的剖面图。

图6的(a)是示出了射入至红外光截止部的可见光的振动方向的朝向的说明图,图6的(b)是示出了可见光的振动方向与红外光截止部的滞相轴的关系的放大图。

图7的(a)是表示以可见光垂直射入的方式配置了红外光截止层的状态的说明图,图7的(b)是表示以可见光按规定的入射角射入而不是垂直射入的方式配置了红外光截止层的状态的说明图。

图8的(a)以及图8的(b)是表示调查穿过红外光截止部的直线偏振波的可见光的偏振波状态的测定系统的概略图。

图9的(a)是示出了实施例1中红外光截止膜的滞相轴与可见光的振动方向的关系的放大图。图9的(b)是示出了比较例1中红外光截止膜的滞相轴与可见光的振动方向的关系的放大图。图9的(c)是示出了比较例2中红外光截止膜的滞相轴与可见光的振动方向的关系的放大图。

符号说明

1…显示装置;

10…显示部;

20…红外光截止部;

22…红外光截止层;

24…紫外光截止层;

25…硬涂层;

30…反射部;

40…车辆;

42…仪表板;

44…开口;

46…窗部;

sa1…滞相轴。

具体实施方式

本实用新型的实施方式是显示装置,其具备:显示部,射出具有显示信息的直线偏振波的可见光;红外光截止部,使来自显示部的可见光透射,且使红外光向显示部的入射量减少;以及反射部,使从红外光截止部透射的可见光反射,红外光截止部包含红外光截止层,红外光截止层具有滞相轴,滞相轴与直线偏振波的振动方向大致平行。

该显示装置的红外光截止部使来自显示部的可见光透射,同时减少红外光向显示部的入射量。其结果是,保持可见光所具有的显示信息的亮度,同时例如降低由太阳光中的红外光引起的热能对显示部的影响。此外,红外光截止部所包含的红外光截止层具有滞相轴,滞相轴与直线偏振波的振动方向大致平行。因此,直线偏振波的可见光从红外光截止部透射后变为椭圆偏振波的比例和滞相轴与直线偏振波的振动方向不大致平行的方案相比变小。其结果是,车辆的驾驶员等视觉确认者容易如上所述地识别从显示部射出的可见光所具有的显示信息,会维持显示信息的视觉确认性。

需要说明的是,本说明书中的“显示信息”广泛地包含能通过视觉确认来掌握或识别特定的意思的信息,例如,在车载的显示装置的情况下,广泛地包含地图、交通标志、其他导航信息。“使红外光向显示部的入射量减少”是指,通过吸收或反射红外光来使红外光向显示部的入射量减少。此外,“折射率的各向异性”是指,在聚合物膜等二维介质中,折射率根据二维平面的各方向而不同,就是说折射率具有面内各向异性。此外,“md方向(machinedirection)”表示聚合物膜被卷绕的方向(纵向),“cd方向(crossmachinedirection)”表示与纵向垂直的方向(横向)。

以下,参照附图,对显示装置的实施方式进行详细说明。在本说明中,对于同一要素使用同一符号,省略重复的说明。在本实施方式中,对附图设定x轴、y轴、z轴,但这些各轴是为了便于说明而设定的,z轴设定于红外光截止部的层叠方向。

图1是表示本实用新型的实施方式的显示装置的一个例子的图。图1示出了本实施方式的显示装置1应用为车辆用平视显示器的例子。显示装置1在车辆40内具备:显示部10、红外光截止部20、以及反射部30。显示装置1可以进一步具备光源12,光源12例如包含氙灯、卤素灯、发光二极管或冷阴极管。光源12生成可见光l1。

显示部10例如包含液晶面板、有机el面板、数字反射镜设备、mems显示器、激光显示器,具有显示信息。显示部10接受来自光源12的可见光l1,朝向红外光截止部20射出具有显示信息的直线偏振波的可见光l2。在显示部10包含有机el面板的情况下,显示部10与光源12可以一体化,与光源12一体化的显示部10能朝向红外光截止部20射出可见光l2。图1示出了显示部10与光源12一体化的例子。

在本实施方式中,可以在显示部10与红外光截止部20之间,进一步具备第一光路变更部14以及第二光路变更部16。穿过显示部10的可见光l2依次由第一光路变更部14以及第二光路变更部16变更其光路后,射入至红外光截止部20。即,可见光l2由第一光路变更部14以朝向第二光路变更部16的方式变更其光路,接着,由第二光路变更部16以朝向红外光截止部20的方式变更其光路。第一光路变更部14以及第二光路变更部16均例如包含平面反射镜或凹面反射镜这样的反射镜。

红外光截止部20使红外光向显示部10的入射量减少。红外光为太阳光等所包含的光。此外,红外光截止部20使来自显示部10的可见光l2透射,并朝向反射部30射出透射后的可见光l3。反射部30例如包含车辆40的前挡风玻璃,使从红外光截止部20透射的可见光l3朝向驾驶员等视觉确认者d1反射。接受该反射后的可见光l4,视觉确认者d1除了车辆40的外部前方的视野以外,还能隔着前挡风玻璃在位置sr视觉确认显示信息。

如上所述,红外光截止部20使来自显示部10的可见光l2透射,同时减少红外光向显示部10的入射量。其结果是,保持可见光l2所具有的显示信息的亮度,同时例如降低由太阳光中的红外光引起的热能对显示部10的影响。

车辆40具备仪表板42,可以在该仪表板42设置开口44。开口44例如设于仪表板42的上部42a。显示装置1可以进一步具备窗部46。窗部46装配于开口44,在可见光l2的光路上,配置于显示部10与反射部30之间。

图2的(a)以及图2的(b)是放大了图1所示的区域r1的图,图2的(a)表示第一例子,图2的(b)表示第二例子。

如图2的(a)所示,在第一例子中,红外光截止部20可以设于窗部46与反射部30之间。具体而言,红外光截止部20例如设于窗部46上。红外光截止部20具有下表面20a和下表面20a的相反侧的上表面20b,下表面20a例如位于窗部46上。

在第一例子中,来自显示部10的可见光l2按窗部46以及红外光截止部20的顺序透射,从红外光截止部20射出可见光l3。此外,太阳光这样的外部的光sl1射入至红外光截止部20,该射入的光sl1的一部分被红外光截止部20的上表面20b反射而成为反射光sl2。

第一例子的显示装置1的红外光截止部20设于窗部46上,因此能保护窗部46。其结果是,能使用机械强度比玻璃等小的树脂这样的材料来形成窗部46。作为这些材料,例如可以列举出:聚酯、聚碳酸酯、聚砜、聚醚砜、脂环式烯烃聚合物、聚乙烯或聚丙烯等链状烯烃聚合物、三乙酰纤维素、聚乙烯醇、聚酰亚胺、聚芳酯、改性丙烯酸聚合物、环氧树脂、聚苯乙烯、丙烯酸树脂等合成树脂等。

如图2的(b)所示,在第二例子中,红外光截止部20也可以设于显示部10与窗部46之间。就是说,红外光截止部20可以设置于窗部46的下方的位置,具体而言为仪表板42内。其结果是,红外光截止部20能被窗部46保护。在该情况下,理想的是,通过足以保护红外光截止部20的坚固的窗材料来形成窗部46,作为该窗材料,例如可以列举出玻璃、或增强塑料等。

在第二例子中,来自显示部10的可见光l2按红外光截止部20以及窗部46的顺序透射,从窗部46射出可见光l3。此外,太阳光这样的外部的光sl1射入至窗部46,该射入的光sl1的一部分被窗部46的上表面46b反射而成为反射光sl2。

根据第二例子的显示装置1,红外光截止部20以及显示部10设置于仪表板42内,能被窗材料保护。

红外光截止部20使来自其一方的面例如下表面20a的可见光l2透射,使来自另一方的面例如上表面20b的红外的光sl1的入射量减少。红外光截止部20包含红外光截止层22(参照图4)。红外光截止层22可以具有可见光区域的透射性。

根据该显示装置1,红外光截止层22均具有可见光区域的透射性,因此会保持穿过红外光截止部20的可见光所具有的显示信息的亮度。在显示装置1中,透射性可以在可见光区域中具有60%以上的透射率。根据该显示装置1,会进一步保持穿过红外光截止部20的可见光所具有的显示信息的亮度。

红外光截止层22例如包含从卷取为辊状的拉伸聚合物膜切下的红外光截止膜。红外光截止膜可以由减少红外光的透射量的聚合物膜、具体而言为聚酯膜这样的膜构成。

图3的(a)是概略性地表示卷取为辊状的拉伸聚合物膜的外观图。图3的(b)是概略性地表示图3的(a)的拉伸聚合物膜的俯视图。拉伸聚合物膜50沿着md方向被卷绕,此外,具有沿着cd方向排列的中央区域e1以及周边区域e2。中央区域e1是在cd方向上位于周边区域e2之间的区域。

图4的(a)是从中央区域的拉伸聚合物膜切下而形成的一个红外光截止膜的俯视图。图4的(b)是从周边区域的拉伸聚合物膜切下而形成的一个红外光截止膜的俯视图。

拉伸聚合物膜50具有构成聚合物的分子链的主链方向的折射率和与主链正交的方向的折射率相互不同的特征。此外,拉伸聚合物膜50在其制造工序中被拉伸,具有折射率的各向异性。

在拉伸聚合物膜50中,md方向的折射率与cd方向的折射率相互不同,例如,在将具有正的固有双折射的聚合物膜沿cd方向拉伸时,cd方向的折射率变得比md方向的折射率大。此外,如图3的(a)以及图3的(b)所示,在拉伸聚合物膜50中,表示具有最大的折射率的方向的滞相轴sa1弯曲而不是沿着cd方向的直线状。

如图3的(a)以及图3的(b)所示,红外光截止膜可以从拉伸聚合物膜50的中央区域e1以及周边区域e2切下而形成。在本实施方式中,可以从拉伸聚合物膜50的中央区域e1切下例如具有大致长方形的二维形状的红外光截止膜60。红外光截止膜60具有长边62和与长边62大致垂直的短边64。红外光截止膜60可以以其长边62与拉伸聚合物膜50的cd方向大致平行的方式被切下。在红外光截止膜60中,例如,在将滞相轴sa1的中央部分的切线方向设为第一轴ax1的情况下,第一轴ax1与红外光截止膜60的cd方向大致平行,另一方面,滞相轴sa1的除了中央部分以外的各部分的切线具有与第一轴ax1交叉的角度(取向角)al1。

在本实施方式中,可以从拉伸聚合物膜50的周边区域e2切下例如具有大致长方形的二维形状的红外光截止膜70。红外光截止膜70具有长边72和与长边72大致垂直的短边74。红外光截止膜70可以以其长边62与滞相轴sa1大致平行的方式被切下。在红外光截止膜70中,例如,在将与滞相轴sa1的中央部分交叉且与第一轴ax1大致平行的方向设为第二轴ax2的情况下,滞相轴sa1的与第二轴ax2的交叉部分的切线具有与第二轴ax2交叉的角度(取向角)al2。

在本实施方式中,取向角al2比取向角al1大,取向角随着从cd方向的中央部分朝向端部而变大。

接着,参照图4的(a),对红外光截止膜60的滞相轴sa1进行说明。红外光截止膜60从拉伸聚合物膜50的中央区域e1切下而形成。红外光截止膜60的长边62的方向与沿着第一轴ax1的方向、即红外光截止膜60的滞相轴sa1大致平行。

红外光截止膜60的滞相轴sa1的取向角al1表示在红外光截止膜60面内,滞相轴sa1相对于第一轴ax1的偏离的大小。在红外光截止膜60面内,如果取向角al1小,则可以视为滞相轴sa1与第一轴ax1大致平行。为了视为该大致平行,取向角al1例如优选为0度以上、10度以下的角度范围。在此,取向角al1为0度是指,滞相轴sa1与第一轴ax1平行,“大致平行”也包含“平行”。

取向角al1更优选例如具有0度以上、5度以下的角度范围。通过设为该角度范围的取向角al1,能使红外光截止膜60的滞相轴sa1与第一轴ax1更接近于平行。

红外光截止膜60的二维形状除了长方形之外,例如也可以为正方形或菱形这样的四边形、或者圆形或椭圆形。

接着,参照图4的(b),对红外光截止膜70的滞相轴sa1进行说明。红外光截止膜70从拉伸聚合物膜50的周边区域e2切下而形成。示出了:在将滞相轴sa1的中央部分的切线方向设为第三轴ax3的情况下,在红外光截止膜70中,其长边72的方向与沿着第三轴ax3的方向、即红外光截止膜70的滞相轴sa1大致平行。

在红外光截止膜70中,滞相轴sa1的除了中央部分以外的各部分的切线具有与第三轴ax3交叉的角度(取向角)al3,该取向角al3表示在红外光截止膜70面内,滞相轴sa1相对于第三轴ax3的偏差的大小。在红外光截止膜70面内,也是如果取向角al3小,则可以视为滞相轴sa1与第三轴ax3大致平行,为了视为该大致平行,取向角al3例如优选为0度以上、10度以下的角度范围。

取向角al3更优选例如具有0度以上、5度以下的角度范围。通过设为该角度范围的取向角al3,能使红外光截止膜70的滞相轴sa1与第三轴ax3更接近于平行。

红外光截止膜70的二维形状与红外光截止膜60相同,除了长方形之外,例如也可以为正方形或菱形这样的四边形、或者圆形或椭圆形。

接着,参照图5,对红外光截止部20的结构、材料进一步进行详细说明。图5表示本实用新型的实施方式的红外光截止部的剖面图。红外光截止部20具备基板21和红外光截止层22。基板21具有上表面21a和下表面21b,红外光截止层22例如设于基板21的上表面21a之上或上方。红外光截止层22包含红外光截止膜60。

基板21例如包含:聚碳酸酯、聚酯、聚砜、聚醚砜、脂环式烯烃聚合物、聚乙烯或聚丙烯等链状烯烃聚合物、三乙酰纤维素、聚乙烯醇、聚酰亚胺、聚芳酯、改性丙烯酸聚合物、环氧树脂、聚苯乙烯、丙烯酸树脂等合成树脂。基板21的厚度例如为10μm~5000μm。

作为红外光截止层22所包含的红外光截止膜60,可以使用含有红外线吸收材料的单层聚合物膜、或多层聚合物膜。单层聚合物膜例如可以包含聚对苯二甲酸乙二醇酯(pet)、聚萘二甲酸乙二醇酯(pen)、丙烯酸系树脂、聚碳酸酯树脂、烯烃系树脂、聚酰亚胺树脂。单层聚合物膜的厚度例如为10μm~1000μm。

多层聚合物膜可以是层叠有多个聚合物膜的多层光学膜(multipleopticalfilm;mof),通过采用调节了各层的厚度的多层结构,来使红外线反射。各层的厚度例如为100nm~1000nm。

红外光截止膜60的聚合物膜例如包含晶质、半晶质、或液晶的聚合物以及共聚物等。

作为红外光截止膜60的聚合物膜所包含的材料,例如可以列举出:聚酯、具体而言为萘二羧酸聚酯的聚萘二甲酸乙二醇酯(pen)及其异构体(例如,2,6-、1,4-、1,5-、2,7-、以及2,3-pen)、聚萘二甲酸丁二醇酯、聚对苯二甲酸亚烷基酯(例如,聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、以及聚-1,4-环己烷二亚甲基对苯二甲酸酯)、聚酰亚胺(例如,聚丙烯酸酰亚胺)、聚醚酰亚胺、无规聚苯乙烯、聚碳酸酯、聚甲基丙烯酸酯(例如,聚甲基丙烯酸异丁酯、聚甲基丙烯酸丙酯、聚甲基丙烯酸乙酯、以及聚甲基丙烯酸甲酯)、聚丙烯酸酯(例如,聚丙烯酸丁酯以及聚丙烯酸甲酯)、间规聚苯乙烯(sps)、间规聚-α-甲基苯乙烯、间规聚二氯苯乙烯、由这些任意的聚苯乙烯形成的共聚物以及混合物、纤维素衍生物(例如,乙基纤维素、醋酸纤维素、丙酸纤维素、醋酸丁酸纤维素、以及硝基纤维素)、聚亚烷基聚合物(例如,聚乙烯、聚丙烯、聚丁烯、聚异丁烯、以及聚(4-甲基)戊烯)、氟化聚合物(例如,全氟烷氧基树脂、聚四氟乙烯、氟化乙烯-丙烯共聚物、聚偏氟乙烯、以及聚氯三氟乙烯)、氯化聚合物(例如,聚偏氯乙烯以及聚氯乙烯)、聚砜、聚醚砜、聚丙烯腈、聚酰胺、硅树脂、环氧树脂、聚醋酸乙烯酯、聚醚酰胺、离聚物树脂、弹性体(例如,聚丁二烯、聚异戊二烯、以及氯丁橡胶)、以及聚氨酯。

作为红外光截止膜60的聚合物膜所包含的其他材料,例如可以列举出:copen、即pen的共聚物(例如,2,6-、1,4-、1,5-、2,7-、和/或2,3-萘二羧酸或者它们的酯与(a)对苯二甲酸或它的酯、(b)间苯二甲酸或它的酯、(c)邻苯二甲酸或它的酯、(d)链烷二醇、(e)环烷二醇(例如,环己烷二甲醇二醇)、(f)链烷二羧酸、和/或(g)环烷二羧酸(例如,环己烷二羧酸)的共聚物)、聚对苯二甲酸亚烷基酯的共聚物(例如,对苯二甲酸或它的酯与(a)萘二羧酸或它的酯、(b)间苯二甲酸或它的酯、(c)邻苯二甲酸或它的酯、(d)链烷二醇、(e)环烷二醇(例如,环己烷二甲醇二醇)、(f)链烷二羧酸、和/或(g)环烷二羧酸(例如,环己烷二羧酸)的共聚物)、苯乙烯共聚物(例如,苯乙烯-丁二烯共聚物以及苯乙烯-丙烯腈共聚物)、以及4,4’-二苯甲酸以及乙二醇的共聚物等共聚物。

在红外光截止膜60的聚合物膜中,分别可以含有两种以上的上述的聚合物或共聚物的混合物,例如sps与无规聚苯乙烯的混合物。此外,copen可以为颗粒的混合物,至少一种成分为以萘二羧酸为基体材料的聚合物,且其他成分可以为pet、pen、或copen等其他聚酯或聚碳酸酯。

pen作为红外光截止膜60的聚合物膜所包含的材料是优选的,从约155℃至约230℃是热稳定的。除了pen以外,作为优选的材料,例如可以列举出聚萘二甲酸丁二醇酯以及其他晶质萘二羧酸聚酯。

在红外光截止膜60的聚合物膜中,在实质上不变更其折射率的范围内,少量的共聚单体可以取代到萘二羧酸聚酯中。作为优选的单体,可以列举出基于间苯二甲酸、壬二酸、己二酸、癸二酸、二苯甲酸、对苯二甲酸、2,7-萘二羧酸、2,6-萘二羧酸、或环己烷二羧酸的物质。需要说明的是,当少量的共聚单体取代到萘二羧酸聚酯中时,有时折射率降低。但是,即使折射率降低,也能通过粘接至规定的聚合物层、降低膜制作时的挤出温度、优化溶融粘度的匹配、以及优化用于膜制作时的膜拉伸的玻璃化转变温度的匹配中的任意一种来进行补偿。

从多层聚合物膜的厚度、可挠性、以及经济性等理由考虑,多层聚合物膜所包含的层的数量以通过最小数量的层实现所期望的光学性质的方式选择。层的数量优选小于约10000,更优选小于约5000,进一步优选小于约2000。

对于红外光截止膜60而言,在其制作工序中,在单层以及多层聚合物膜的双方中,可以同时挤出各自的膜所包含的聚合物材料而形成。在膜的制作工序中,接着,在规定的温度下通过拉伸进行膜的取向处理,能形成具有所期望的厚度的膜。根据需要,有时也在规定的温度下进行热固化处理。挤出处理以及取向处理可以同时进行。

此外,作为层叠聚合物膜的方法,可以使用粘接剂来固定地层叠各膜。具体而言,例如,可以使用压敏粘接剂、热熔粘接剂、活性能量线固化型粘接剂、湿气固化型粘接剂、热固化型粘接剂、厌氧型粘接剂等,其种类可以根据各聚合物膜的材质等适当决定。例如,可以使用丙烯酸系、乙烯醇系、硅酮(silicone)系、聚酯系、聚氨酯系、聚醚系等粘接剂,可以使用透明性高的粘接剂。这些粘接剂例如可以直接涂布于各聚合物膜的表面,也可以将由粘接剂构成的胶带或片材等的层粘贴于聚合物膜表面的整个面或一部分。此外,作为层叠聚合物膜的方法,也可以准备能至少部分地包围各聚合物膜的端部的框架,利用该框架重叠固定地配置多个聚合物膜。

如图5所示,红外光截止部20根据需要进一步具备红外光减少层23。红外光减少层23通过反射以及吸收的至少一种来使红外光的透射量减少。红外光截止层22具有上表面22a和下表面22b,红外光减少层23例如设于红外光截止层22的上表面22a上。红外光截止层22可以位于红外光减少层23与基板21之间。在红外光截止部20中,红外光减少层23根据需要例如也可以设于红外光截止层22的下表面22b上。红外光减少层23根据需要例如也可以设于红外光截止层22的上表面22a上以及下表面22b上的双方。无论为哪一种构成,红外光减少层23都能使红外光的透射量减少。

红外光减少层23例如包含金属、金属合金、或氧化物半导体,主要反射波长1μm以上的近红外区域以及红外区域的光。作为金属,例如可以列举出银、金、铜、或铝。银容易制成薄膜形状,此外,容易反射近红外区域以及红外区域的光,因此是特别优选的金属。金属合金包含银合金、不锈钢、或因科镍合金(inconel)。在金属合金中,至少含有30重量%的银的银合金容易进行薄膜的制作,此外,容易反射近红外区域以及红外区域的光,因此是特别优选的材料。含有银、小于50质量%的金和/或小于20质量%的铜的银合金的耐久性也优异,因此是优选的材料。氧化物半导体例如优选包含二氧化锡(sno2)、氧化锌(zno)、氧化铟锡(ito)、或氧化锡锑(ato)。金属、金属合金、或氧化物半导体可以形成单一的层,也可以形成多个层。

红外光减少层23的形成例如通过热分解、粉末涂布、蒸镀、阴极溅射、离子镀等来进行,金属、氧化物半导体、或金属合金形成于聚合物膜上。从获得均匀的膜结构、厚度的观点考虑,阴极溅射以及离子镀是优选的制作方法。红外光减少层23也可以是使用粘接剂层压于多层聚合物膜的其他金属化聚合物或玻璃片材。粘接剂例如包含热熔粘接剂或压敏粘接剂。热熔粘接剂例如为壳牌化学公司(美国,俄亥俄州)制的vitel3300粘接剂,压敏粘接剂例如为3m公司(美国,明尼苏达州)制的90/10ioa/aa以及95/5ioa/丙烯酸酰胺的丙烯酸系粘接剂。

金属以及金属合金可以涂布为约10nm~约40nm的厚度,优选涂布为约12nm~约30nm的厚度。氧化物半导体层可以涂布为约20nm~约200nm的厚度,优选涂布为约80nm~约120nm的厚度。在红外光减少层23为层压于多层聚合物膜的金属化聚合物或玻璃片材时,片材上的金属或金属合金的涂层厚度例如为约10nm~约40nm,片材上的氧化物半导体涂层厚度例如为约20nm~约200nm。

本实施方式的红外光截止部20可以具备红外光减少层23,因此能进一步减少红外光向显示部10的入射量。另一方面,红外光截止部20使具有显示信息的可见光透射,因此会保持显示信息的亮度。

如图5所示,红外光截止部20根据需要进一步具备紫外光截止层24。紫外光截止层24使紫外光的透射量减少。紫外光截止层24例如设于红外光截止层22的下表面22b的下方,可以位于红外光减少层23与基板21之间。在红外光截止部20中,紫外光截止层24例如可以设于红外光截止层22的上表面21a上。紫外光截止层24根据需要例如也可以设于红外光截止层22的上表面22a上以及下表面22b上的双方。无论为哪一种构成,紫外光截止层24都能使紫外光的透射量减少。

紫外光截止层24可以具有可见光区域的透射性。根据该显示装置1,红外光截止部20进一步包含紫外光截止层24,因此会防止太阳光等所包含的紫外光照射至显示部10。此外,紫外光截止层具有可见光区域的透射性,因此会保持穿过红外光截止部20的可见光所具有的显示信息的亮度。在显示装置1中,透射性可以在可见光区域中具有60%以上的透射率。根据该显示装置1,会进一步保持穿过红外光截止部20的可见光所具有的显示信息的亮度。

在显示装置1中,紫外光截止层24可以为粘合剂层。根据该显示装置1,紫外光截止层可以为粘合剂层,因此,能有效地截止紫外光,并且紫外光截止层24能通过其粘接性层叠于例如红外光截止层22。

粘合剂层例如包含二苯甲酮系紫外线吸收剂、水杨酸系紫外线吸收剂、氰基丙烯酸酯系紫外线吸收剂、或苯并三唑系紫外线吸收剂。作为二苯甲酮系紫外线吸收剂,例如可以列举出:2,4-二羟基二苯甲酮、2-羟基-4-甲氧基二苯甲酮、2-羟基-4-十二烷氧基二苯甲酮、2-羟基-4-甲氧基二苯甲酮、2,2’-二羟基-4-甲氧基二苯甲酮、2,2’-二羟基-4,4’-甲氧基二苯甲酮、2-羟基-4-甲氧基-5-砜二苯甲酮、或双(2-甲氧基-4-羟基-5-苯甲酰基苯基甲烷)。作为水杨酸系紫外线吸收剂,例如可以列举出:水杨酸苯酯、水杨酸对叔丁基苯酯、或水杨酸对辛基苯酯。作为氰基丙烯酸酯系紫外线吸收剂,例如可以列举出:2-乙基己基-2-氰基-3,3’-二苯基丙烯酸酯、乙基-2-氰基-3,3’-二苯基丙烯酸酯。作为苯并三唑系紫外线吸收剂,可以列举出:2-(2’-羟基-5’-甲基苯基)苯并三唑、2-(2’-羟基-5’-叔丁基苯基)苯并三唑、2-(2’-羟基3’,5’-二叔丁基苯基)苯并三唑、2-(2’-羟基-3’-叔丁基-5’-甲基苯基)-5-氯苯并三唑、2-(2’-羟基-3’,5’二叔丁基苯基)-5-氯苯并三唑、2-(2’-羟基-3’,5’-二叔氨基苯基)苯并三唑、2-{2’-羟基-3’-(3”,4”,5”,6”-四氢邻苯二甲酰亚胺甲基)-5’-甲基苯基}苯并三唑、或2,2-亚甲基双{4-(1,1,3,3-四甲基丁基)-6-(2h-苯并三唑-2-基)苯酚}。在这些紫外线吸收剂中,优选使用苯并三唑系紫外线吸收剂。

这些紫外线吸收剂例如以相对于丙烯酸系粘合剂100质量份为0.5质量份以上且30质量份以下的范围的量的方式含有。紫外线吸收剂的含量为0.5质量份以上,由此,能提高抑制紫外线的透射的效果。紫外线吸收剂的含量为30质量份以下,由此,能均匀地分散至丙烯酸系粘合剂中,能进一步提高可见光区域的透明性。这些紫外线吸收剂更优选例如以相对于丙烯酸系粘合剂100质量份为1质量份以上且10质量份以下的范围的量的方式含有。

粘合剂层的厚度例如为1μm以上且500μm以下,优选为5μm以上且50μm以下。通过具有该范围的厚度,粘合剂层能更可靠地获得需要的粘接力,并且能抑制成本的增加。

如图5所示,红外光截止部20根据需要进一步具备硬涂层25。红外光减少层23可以具备硬涂功能。硬涂层25例如设于基板21的下表面21b之下。硬涂层25根据需要例如也可以设于红外光减少层23的上表面23a上。硬涂层25根据需要例如也可以设于红外光减少层23的上表面23a之上以及基板21的下表面21b之下的双方。硬涂层25能构成红外光截止部20的最上层以及最下层的至少一层。无论为哪一种构成,硬涂层25都能保护红外光截止部20。此外,硬涂层25能使红外光截止部20的机械强度增大。

硬涂层25例如包含结合剂和分散至结合剂中的纳米粒子。结合剂例如为甲基丙烯酸低聚物和/或单体,结合剂的含有料例如为5质量%~60质量%。结合剂中的纳米粒子的含量例如为40质量%~95质量%。在结合剂中的纳米粒子中,10质量%~50质量%的纳米粒子(第一纳米粒子)例如具有2nm~200nm的粒径。此外,50质量%~90质量%的纳米粒子(第二纳米粒子)例如具有60nm~400nm的粒径。第纳米粒子的粒径相对于第一纳米粒子的粒径的比例为2~200。

硬涂层25的形成可以通过线棒法(wirebar)、凹口棒法(notchbar)、以及丝网印刷法(screenprinting)等计量涂布方法来进行。

根据该显示装置1,在红外光截止部20可以包含硬涂层25,因此红外光截止部20的机械强度增大,此外,对划伤等的耐损伤性增大。

接着,参照图6,对本实施方式的显示装置1的红外光截止部20与射入至红外光截止部20的直线偏振波的可见光l2的关系进行说明。图6的(a)是示出了射入至红外光截止部20的可见光l2的振动方向pl1的朝向的说明图。此外,图6的(b)是示出了可见光l2的振动方向pl1与红外光截止部20的滞相轴sa1的关系的放大图。

红外光截止部20包含由红外光截止膜60构成的红外光截止层22,红外光截止层22具有滞相轴sa1。可见光l2是来自显示部10的具有显示信息的直线偏振波,可见光l2的直线偏振波具有振动方向pl1。射入至红外光截止部20的可见光l2的振动方向pl1与滞相轴sa1成一定角度、即角th1。

在不可以说可见光l2的振动方向pl1与滞相轴sa1大致平行的情况下,例如,在角th1为45度左右的情况下,可见光l2的直线偏振波的振动方向pl1接受变化。这是由于,在红外光截止膜60中,由于其内含的聚合物的一维分子结构,沿着滞相轴sa1的方向的折射率和与滞相轴sa1垂直的方向的折射率大不相同,直线偏振波的可见光l2感受到滞相轴sa1方向的折射率和与滞相轴sa1垂直的方向的折射率双方。由于这相互不同的两种折射率,在包含红外光截止膜60的红外光截止部20产生双折射,其结果是,在直线偏振波的可见光l2从红外光截止部20透射时,有时可见光l2的直线偏振波变为椭圆偏振波。

与之相对,在可见光l2的振动方向pl1与滞相轴sa1大致平行的情况下,即,在角th1为0度或其附近的情况下,可见光l2的直线偏振波的振动方向pl1不接受变化,能维持直线偏振波。这是由于,直线偏振波的可见光l2仅感受到大致沿着滞相轴sa1的方向的折射率。需要说明的是,在角th1为大致90度或其附近时,即在大致垂直时,可见光l2的直线偏振波的振动方向pl1也不接受变化。这是由于,直线偏振波的可见光l2仅能感受到大致与滞相轴sa1垂直的方向的折射率。

在此,例如假定:以与振动方向pl1同轴的旋转中心线rt1为中心轴,使红外光截止部20旋转,使可见光l2相对于红外光截止部20的入射角变化的情况。在该情况下,如果红外光截止部20的滞相轴sa1与可见光l2的直线偏振波的振动方向大致平行,则能维持可见光l2的直线偏振波。这是由于,即使在入射角发生了变化的情况下,可见光l2的直线偏振波也能持续感受到沿着红外光截止部20内的聚合物的一维轴向、即滞相轴sa1的大致相同的折射率。

若进一步补充,则在可见光l2的直线偏振波的振动方向pl1与红外光截止部20的滞相轴sa1大致垂直时,若使可见光l2相对于红外光截止部20的入射角变化,则无法维持可见光l2的直线偏振波。这是由于,在入射角发生了变化的情况下,红外光截止部20内的聚合物的一维轴向相对于可见光l2的振动方向pl1变为不同,因此,可见光l2的直线偏振波因聚合物的一维分子结构而发生旋光。

接着,参照图7,对可见光l2射入至红外光截止部20时的入射角和其影响进行说明。图7的(a)是表示以可见光l2的入射角na1为0度、即垂直射入的方式配置有红外光截止部20的方案的说明图。此外,图7的(b)是表示以可见光l2的入射角na1大于0度、小于90度的方式配置有红外光截止部20的方案,即相对于可见光l2倾斜配置有红外光截止部20的方案的说明图。然后,图7的(a)假定了参考方式,图7的(b)假定了本实施方式。

来自显示部10的可见光l2射入至红外光截止部20,该射入后的可见光l2的一部分从红外光截止部20透射而成为可见光l3。此外,太阳光这样的外部的光sl1射入至红外光截止部20,该射入的光sl1的一部分被红外光截止部20反射而成为反射光sl2。需要说明的是,在图7的(a)以及图7的(b)中,假定了外部的光sl1和可见光l2成为相同光路上的定时。

如图7的(a)所示,在可见光l2垂直射入至红外光截止部20的情况下,太阳光等的反射光sl2、即外部的光sl1被红外光截止部20反射而产生的反射光sl2具有与从红外光截止部20透射后的可见光l3大致相同的光路。其结果是,外部的光sl1的反射光sl2与可见光l3一起朝向驾驶员等视觉确认者d1的眼睛前进。

另一方面,如图7的(b)所示,本实施方式的红外光截止部20相对于可见光l2倾斜地配置,太阳光等的反射光sl3具有与从红外光截止部20透射后的可见光l3不同的光路。即,根据本实施方式的显示装置1,容易调整红外光截止部20相对于可见光l2的光路的朝向,以使外部的光sl1的一部分被红外光截止部20反射后不朝向驾驶员等视觉确认者d1的眼睛前进。

如上所述,根据本实施方式的显示装置1,红外光截止部20所包含的红外光截止层22具有滞相轴sa1,滞相轴sa1与直线偏振波的振动方向pl1大致平行。因此,直线偏振波的可见光l2从红外光截止部20透射后变为椭圆偏振波的比例和滞相轴sa1与直线偏振波的振动方向pl1不大致平行的方案相比变小。其结果是,车辆的驾驶员等视觉确认者d1容易如上所述地识别从显示部10射出的可见光l2所具有的显示信息,会维持显示信息的视觉确认性。

在本实施方式中,滞相轴sa1与可见光l2的直线偏振波的振动方向pl1大致平行可以定义为:滞相轴sa1与直线偏振波的振动方向pl1所成的角th1为0度以上、10度以下的角度范围。作为补充,该“大致平行”的概念也包含角th1为0度、就是说平行,还包含例如角th1的角度范围为0度以上、5度以下的实质平行。

根据该显示装置1,来自显示部10的可见光从包含红外光截止层22的红外光截止部20透射后,可见光l2的直线偏振波变为椭圆偏振波的比例进一步减少。其结果是,识别被反射部30反射的可见光l2的视觉确认者能通过从显示部射出的可见光的显示信息来识别近似的显示信息。

在本实施方式中,在滞相轴sa1与直线偏振波的振动方向pl1所成的角th1为0度以上、10度以下时,例如,对于具有大致长方形的二维形状的红外光截止膜60而言,作为长方形的一边的最大长度,可以允许至50cm。

实施例

以下,通过本实用新型的实施例以及比较例对显示装置1进一步进行说明。本实用新型不限制于下述例子。

(实施例1)

(多层红外光截止膜的制作)

准备包含聚酯膜的多层拉伸聚合物膜,对该多层拉伸聚合物膜(3m日本株式会社制,3mtmscotchtinttmwindowfilmmulti-layernano80s)测定了滞相轴的方向。在滞相轴的方向的测定中,使用了相位差测定装置kobra(王子计测机器公司制)。基于滞相轴的方向的测定结果,从多层拉伸聚合物膜的中央区域切下了多层红外光截止膜。多层红外光截止膜的二维形状具有长边和与长边大致垂直的短边,多层红外光截止膜的长边与多层拉伸聚合物膜的cd方向、即第一轴的方向大致平行。在本实施例中,将长边的长度设为110mm,将短边的长度设为100mm。此外,滞相轴的方向与切取的膜的长边的方向所成的角为3.1度以下。

(红外光截止部的制作)

在本实施例中,制作了按顺序具备具有粘接功能的紫外光截止层、红外光截止层、以及具有硬涂功能的红外光减少层的红外光截止部。对于硬涂层,使用三维交联的丙烯酸树脂,将其经由紫外光截止层粘贴至窗部。对于窗部,使用了具有光学性面内各向同性的聚碳酸酯。窗部的厚度设为0.2mm。对于紫外光截止层,使用了丙烯酸压敏粘接胶带(psa)。对于红外光截止层,使用了多层红外光截止膜。多层红外光截止膜的厚度设为50μm。红外光减少层是使用氧化锡锑(ato)粉末来制作的。红外光减少层的厚度设为2μm。

(偏振波状态的测定)

图8的(a)以及图8的(b)是表示调查穿过红外光截止部的直线偏振波的可见光的偏振波状态的测定系统的概略图。在该测定系统中,在图8的(a)以及图8的(b)中,作为显示部10p,使用射出直线偏振波的白色显示的液晶显示器,作为反射部30p,使用浮法平板玻璃fg。来自显示部10p的可见光l2p包含显示信息。浮法平板玻璃fg在可见光区域中大致透明,其厚度为约5mm。可见光l2p向反射部30p的入射角agp为约45度。在图8的(a)以及图8的(b)所示的构成中,在相当于驾驶员的位置中,测定者d1p能在其正面通过目测对反射部30p进行观测。

在本实施例中,从显示部10p朝向红外光截止部20p射出了直线偏振波的可见光l2p。所射出的可见光l2p的偏振波方向大致沿着红外光截止部20p的长边,红外光截止部20p的滞相轴设定为与可见光l2p的直线偏振波的振动方向大致平行。具体而言,红外光截止部20p的滞相轴与可见光l2p的直线偏振波的振动方向所成的角th1p以整个红外光截止部20p的平均计为0度。

图8的(a)是表示可见光垂直射入至红外光截止部20p的测定系统的图,图8的(b)是表示可见光成入射角na1p射入至红外光截止部20p的测定系统的图。在本实施例中,使用图8的(a)以及图8的(b)两方的测定系统测定了偏振波状态。在图8的(b)的测定系统中,入射角na1p设为17度。图8的(a)的测定系统与在图7的(b)的测定系统中可见光l2p的入射角na1p为0度时的测定系统对应。

在本实施例中,使用图8的(a)以及图8的(b)所示的测定系统,对穿过红外光截止部20p的直线偏振波的可见光l4p的偏振波状态进行了观察。在由测定者d1p观察到被浮法平板玻璃fg反射的可见光l4p包含无法确认着色的程度的显示信息时,评价为“a(良好)”。在由测定者d1p观察到可见光l4包含彩虹色的虹彩图案这样的着色的显示信息时,评价为“b(不良)”。

图9的(a)是示出了本实施例中红外光截止膜60p的滞相轴sa1p与可见光l2的振动方向pl1p的关系的放大图。本实施例的红外光截止膜60p从拉伸聚合物膜的中央区域切下,其长边62p与拉伸聚合物膜50的cd方向大致平行。在本实施例中,滞相轴sa1p的方向与所射入的可见光l2的振动方向pl1p所成的角th1p的平均值为0度。

(比较例1)

(多层红外光截止膜的制作)

在本比较例中,与实施例1同样地准备多层拉伸聚合物膜,从该多层拉伸聚合物膜的中央区域切下多层红外光截止膜。本比较例的多层红外光截止膜的二维形状具有长边和与长边大致垂直的短边,多层红外光截止膜的长边设为与多层拉伸聚合物膜的md方向大致平行。

(偏振波状态的测定)

在本比较例中,与实施例1同样地观察了穿过红外光截止部20p的直线偏振波的可见光l4p的偏振波状态。在本比较例中,从显示部10p朝向红外光截止部20p射出了直线偏振波的可见光l2p。所射出的可见光l2p的偏振波方向与红外光截止部20p的长边大致平行,红外光截止部20p的滞相轴设定为与可见光l2p的直线偏振波的振动方向大致垂直。具体而言,红外光截止部20p的滞相轴与可见光l2p的直线偏振波的振动方向所成的角以整个红外光截止部20p的平均计为90度。

图9的(b)是示出了本比较例中红外光截止膜60q的滞相轴sa1q与可见光l2的振动方向pl1q的关系的放大图。在本比较例中,滞相轴sa1q的方向与射入后的可见光l2的振动方向pl1q所成的角th1q的平均值为90度。

(比较例2)

(红外光截止膜的制作)

准备了包含聚酯膜的多层拉伸聚合物膜。在本比较例中,从该多层拉伸聚合物膜的周边区域切下红外光截止膜,将红外光截止膜的二维形状设为具有长边和与长边大致垂直的短边的大致长方形。在本比较例中,将长边的长度设为110mm,将短边的长度设为100mm。

在本比较例中,以红外光截止膜的长边沿着md方向的方式切下。本比较例的红外光截止膜的短边与cd方向、即第一轴的方向大致平行。滞相轴的方向与切取的膜的长边的方向所成的角为70度。

(红外光截止部的制作)

除了使用了在本比较例中制作出的多层红外光截止膜之外,与实施例1同样地制作了红外光截止部。多层红外光截止膜的厚度设为50μm。

(偏振波状态的测定)

在本比较例中,与实施例1同样地观察了穿过红外光截止部20p的直线偏振波的可见光l4p的偏振波状态。

在本比较例中,从显示部10p朝向红外光截止部20p射出了直线偏振波的可见光l2p。所射出的可见光l2p的偏振波方向与红外光截止部20p的长边大致平行,红外光截止部20p的滞相轴与可见光l2p的直线偏振波的振动方向所成的角以整个红外光截止部20p的平均计为70度。

图9的(c)是示出了本比较例中红外光截止膜70r的滞相轴sa1r与可见光l2的振动方向pl1r的关系的放大图。在本比较例中,滞相轴sa1r的方向与射入后的可见光l2的振动方向pl1r所成的角th1r的平均值为70度。

表1是归纳表示实施例1、比较例1以及比较例2的红外光截止层、滞相轴的方向、以及偏振波状态的测定结果的表。在表1的实施例1以及比较例1中,“拉伸膜”表示它们的红外光截止部包含由拉伸聚合物膜制作出的红外光截止层。在表1的比较例2中,“拉伸膜/非拉伸膜”表示比较例2的红外光截止部包含由将比较例2的红外光截止部准备体重叠于实施例1的红外光截止部之上的层叠体构成的红外光截止层。在表1中,“所成的角(平均)”表示红外光截止部的滞相轴与可见光的直线偏振波的振动方向所成的角的平均。在表1中,“垂直射入”表示使用了图8的(a)的测定系统的偏振波状态的测定结果,“倾斜射入”表示使用了图8的(b)的测定系统的偏振波状态的测定结果。

[表1]

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1