有源矩阵基板和具备其的液晶显示装置的制作方法

文档序号:21965669发布日期:2020-08-25 18:51阅读:105来源:国知局
有源矩阵基板和具备其的液晶显示装置的制作方法

本发明涉及有源矩阵基板和具备其的液晶显示装置。



背景技术:

在特开2016-126336号公报中公开了一种显示器,上述显示器具备在显示区域显示图像的图像显示功能和检测使用者的手指等电介质在显示面上接触的位置的触摸检测功能。在该显示器中,在有源矩阵基板上设置有多个共用电极,该多个共用电极在图像显示功能中用于在其与像素电极之间产生横电场。这些共用电极也在触摸检测功能中检测由电介质的接触导致的静电电容的变化时使用,作为触摸检测电极发挥功能。也就是说,该显示器是在有源矩阵基板组装有触摸检测功能的元件的内嵌型触摸显示器。各共用电极与传导性线连接。传导性线在图像显示功能中被施加用于进行图像显示的共用电压,在触摸检测功能中,通过传导性线读出表示各共用电极中的静电电容的信号。



技术实现要素:

发明要解决的问题

在上述显示器中,在有源矩阵基板的最表面设置有连接共用电极和传导性线的接触配线。在有源矩阵基板的表面涂敷聚酰亚胺等树脂作为使液晶分子排列于规定方向的取向膜,并使其与具备彩色滤光片的相对基板粘合。如果如上述显示器那样在有源矩阵基板的最表面设置接触配线,则设置有接触配线的部分会凸起。在有源矩阵基板的表面,由于接触配线而凸起的部分(raisedarea)不能均匀地形成取向膜,从而成为显示不均的原因。因此,对于有源矩阵基板,在其表面凸起的部分越少越好。

用于解决问题的方案

鉴于上述问题而完成的有源矩阵基板具备:基板;栅极线,其配置在上述基板上;数据线,其配置为与上述栅极线交叉;开关元件,其连接到上述栅极线和上述数据线;像素电极,其与上述开关元件连接;相对电极,其以在俯视时与上述像素电极重叠的方式配置;平坦化膜,其覆盖上述开关元件;相对电极控制配线,其与上述相对电极连接;以及第1接触孔,其在俯视时与上述相对电极控制配线重叠,贯通上述平坦化膜,上述像素电极和上述相对电极各自以覆盖上述平坦化膜的一部分覆盖的方式配置,上述相对电极控制配线设置在上述开关元件与上述平坦化膜之间,在上述第1接触孔中与上述相对电极连接。

发明效果

根据上述构成,在使用了上述构成的有源矩阵基板的显示装置中不容易产生显示不均。

附图说明

图1是示出第1实施方式中的显示装置的概略构成的截面图。

图2是示意性地示出图1所示的有源矩阵基板的概略构成的俯视图。

图3是图2所示的有源矩阵基板的像素的等效电路图。

图4是示出设置于图1所示的有源矩阵基板的相对电极的配置例的示意图。

图5a是将图3所示的像素的一部分区域进行了放大的概略俯视图。

图5b是图5a中的a-a线的截面图。

图6是第2实施方式中的有源矩阵基板的像素的截面图。

图7a是将第4实施方式中的有源矩阵基板的像素的一部分区域进行了放大的概略俯视图。

图7b是图7a中的b-b线的截面图。

图8是将像素的一部分区域进行了放大的俯视图,是示出相对电极控制配线的配置与图7a不同的例子的概略俯视图。

附图标记说明

1…显示装置,10、10a…有源矩阵基板,20…相对基板,30…液晶层,110…栅极线,111…数据线,112…栅极驱动器,113…源极驱动器,120…tft(开关元件),130…像素电极,140…相对电极,142、1420…相对电极控制配线,210…控制器,154…有机绝缘膜(平坦化膜),1421…第1配线部,1422…第2配线部。

具体实施方式

[第1实施方式]

以下,参照附图详细地说明本发明的实施方式。对图中相同或相当的部分标注同一附图标记,且不重复其说明。此外,为了使说明容易理解,在以下参照的附图中,简化或示意性地示出构成,或者省略了一部分构成构件。另外,各图所示的构成构件间的尺寸比不一定是实际的尺寸比。

图1是本实施方式中的显示装置1的截面图。本实施方式中的显示装置1是液晶显示装置,具备有源矩阵基板10、相对基板20、以及夹持在有源矩阵基板10与相对基板20之间的液晶层30。

有源矩阵基板10和相对基板20分别具备基本上透明的(具有高的透光性的)玻璃基板。另外,在有源矩阵基板10与液晶层30之间、以及在相对基板20与液晶层30之间设置有包括聚酰亚胺等树脂的取向膜。而且,在图1中,显示装置1在与液晶层30相反一侧的有源矩阵基板10的面方向上具备背光源。

显示装置1具有显示图像的功能,并且具有检测使用者在其显示的图像上进行触摸的位置(触摸位置)的功能。显示装置1是有源矩阵基板10设置有用于检测触摸位置所需要的元件、所谓的内嵌型触摸显示器。

在显示装置1中,液晶层30所包含的液晶分子由横电场驱动方式驱动。为了实现横电场驱动方式,用于形成电场的像素电极和相对电极(共用电极)形成于有源矩阵基板10。

图2是示意性地表示有源矩阵基板10的概略构成的俯视图。如图2所示,有源矩阵基板10具有多条栅极线110、多条数据线111、栅极驱动器112以及源极驱动器113。

有源矩阵基板10具有包括由栅极线110和数据线111界定的像素的显示区域。

各栅极线110连接到栅极驱动器112,各数据线111与源极驱动器113连接。

栅极驱动器112将用于使栅极线110转移到选择状态或非选择状态的扫描信号依次供应到各栅极线110。源极驱动器113在各栅极线110变为选择状态时,将表示向具有该栅极线110的像素写入的图像的灰度值的数据信号供应到各数据线111。

图3是一个像素的等效电路图。如图3所示,像素p在栅极线110与数据线111交叉的位置具备作为开关元件的tft120(thinfilmtransistor;薄膜晶体管)、以及与tft120连接的像素电极130。tft120的栅极连接到栅极线110,源极连接到数据线111,漏极与像素电极130连接。虽然在图3中未图示,但像素p具备与像素电极130之间形成横电场的相对电极。

tft120在栅极线110是选择状态时变为导通状态,施加到数据线111的电压信号通过tft120的源极、漏极施加到像素电极130。从而,像素p中的液晶分子的排列发生变化,像素p的透射率发生变化。

接着,说明有源矩阵基板10上的相对电极的配置例。图4是示意性地表示相对电极的配置例的俯视图。

如图4所示,在有源矩阵基板10上以矩阵状配置有多个相对电极140。各相对电极140具有例如1个边为几mm左右的大致正方形形状。虽然在该图中省略了图示,但在相对电极140设置有用于与像素电极130之间产生横电场的狭缝(例如几μm宽)。

另外,在有源矩阵基板10上设置有控制器210。控制器210分时地切换为了进行图像显示而使相对电极140作为共用电极发挥功能的控制(图像显示控制(imagedisplaycontrol))和使相对电极140作为用于进行触摸检测的触摸电极发挥功能的控制(触摸检测控制(touchdetectioncontrol))。

控制器210与各相对电极140之间由沿y轴方向延伸的相对电极控制配线142连接。也就是说,在有源矩阵基板10上设置有与相对电极140相同数量的相对电极控制配线(counterelectrodecontrolline)142。

各相对电极140在其与相邻的其它相对电极140之间具有寄生电容。当人的手指等触摸显示画面时,由于在相对电极140与人的手指等之间形成的电容,该相对电极140中的静电电容会增加。控制器210在触摸检测控制中,通过相对电极控制配线142将用于触摸检测的电压信号(驱动信号)供应到各相对电极140,通过相对电极控制配线142取得与相对电极140中的静电电容相应的电压信号(检测信号)。另一方面,在图像显示控制中,控制器210通过相对电极控制配线142,将预先决定的固定电压供应到各相对电极140。

返回到图1,说明相对基板20。相对基板20在液晶层30侧的面上具备红色(r)、绿色(g)、蓝色(b)的三色的彩色滤光片(省略图示)。三色的彩色滤光片以使各像素p中的像素电极130(参照图3)与r、g、b中的任意一个颜色对应的方式排列。

接着,使用图5a和图5b来说明有源矩阵基板10中的一个像素p的具体构成。图5a是将一个像素p中的一部分区域进行了放大的俯视图,图5b是示出图5a中的a-a线的截面图。

如图5b所示,在玻璃基板150上设置有栅极绝缘膜151和tft120。tft120具有栅极电极120a、半导体膜120b、源极电极120c以及漏极电极120d。

在该例中,栅极电极120a包括钛(ti)和铜(cu)的层叠膜。栅极电极120a不限于两层结构,可以是单层结构,也可以是3层以上的层叠结构。另外,除了上述材料以外,栅极电极120a例如也可以使用铝(al)、钼(mo)、包含钼(mo)或铜(cu)的合金等金属材料来构成。此外,虽然在该例中栅极线110具有与栅极电极120a相同的结构,但栅极线110和栅极电极120a也可以具有不同的结构。

栅极绝缘膜151覆盖栅极电极120a。在该例中,栅极绝缘膜151包括氮化硅(sinx)或二氧化硅(sio2)。

在栅极绝缘膜151之上配置有半导体膜120b。在该例中,半导体膜120b包括包含in-ga-zn-o的氧化物半导体。此外,半导体膜120b可以是包括上述以外的材料的氧化物半导体,也可以是非晶半导体。

另外,在栅极绝缘膜151上,以在半导体膜120b之上分开的方式配置有源极电极120c和漏极电极120d。在该例中,源极电极120c和漏极电极120d包括钛(ti)和铜(cu)的层叠膜。源极电极120c和漏极电极120d不限于两层结构,可以是单层结构,也可以是3层以上的层叠结构。另外,除了上述材料以外,源极电极120c和漏极电极120d也可以使用例如铝(al)、钼(mo)、以及包含钼(mo)和铜(cu)中的任意一者的合金等金属材料来构成。

如图5a所示,在本实施方式中,数据线111与源极电极120c形成为一体,设置为与图5a中的y轴方向大致平行。虽然在该例中数据线111具有与源极电极120c和漏极电极120d相同的结构,但也可以是与源极电极120c和漏极电极120d不同的结构。

如图5b所示,以覆盖栅极绝缘膜151、半导体膜120b、源极电极120c以及漏极电极120d的方式配置有无机绝缘膜152。在设置有无机绝缘膜152的层中,在俯视时与漏极电极120d重叠的位置形成有贯通无机绝缘膜152的开口152b。虽然在该例中无机绝缘膜152具有由氮化硅(sinx)和二氧化硅(sio2)层叠而成的层叠结构,但例如也可以是由氮化硅(sinx)构成的单层结构。

在无机绝缘膜152上,在俯视时与源极电极120c和数据线111重叠的位置设置有相对电极控制配线142。也就是说,如图5a所示,相对电极控制配线142以在俯视时与数据线111重叠的方式沿y轴方向延伸。在该例中,相对电极控制配线142包括钛(ti)和铜(cu)的层叠膜。相对电极控制配线142不限于两层结构,可以是单层结构,也可以具有3层以上的层叠结构。另外,相对电极控制配线142例如也可以使用铝(al)、钼(mo)、以及包含钼(mo)和铜(cu)中的任意一者的合金等金属材料来构成。

另外,在无机绝缘膜152上设置有无机绝缘膜153,在设置有无机绝缘膜153的层中,在俯视时与相对电极控制配线142重叠的位置、以及俯视时与开口152b重叠的位置形成有贯通无机绝缘膜153的开口153a、153b。虽然在该例中无机绝缘膜153具有氮化硅(sinx)和二氧化硅(sio2)的层叠结构,但例如也可以是由氮化硅(sinx)构成的单层结构。

在无机绝缘膜153上设置有有机绝缘膜(平坦化膜)154,在设置有有机绝缘膜154的层中,在俯视时与开口153a重叠的位置、以及俯视时与开口153b重叠的位置形成有贯通有机绝缘膜154的开口154a、154b。也就是说,开口152b、153b、154b在俯视时重叠,由这些开口形成了接触孔ch2。在该例中有机绝缘膜154包括感光性树脂、聚甲基丙烯酸甲酯树脂(pmma)等丙烯酸系有机树脂材料等。

在有机绝缘膜154上,在俯视时与相对电极控制配线142不重叠的位置设置有像素电极130。像素电极130在接触孔ch2中与漏极电极120d连接。虽然在该例中像素电极130包括ito(indiumtinoxide;氧化铟锡),但像素电极130的材料不限于此。像素电极130例如也可以包括zno(zincoxide;氧化锌)、izo(indiumzincoxide;氧化铟锌)、igzo(indiumgalliumzincoxide;铟镓锌氧化物)以及itzo(indiumtinzincoxide;铟锡锌氧化物)等透明导电材料。

在有机绝缘膜154上以覆盖像素电极130的方式设置有无机绝缘膜155,在设置有无机绝缘膜155的层中,在俯视时与开口154a重叠的位置形成有贯通无机绝缘膜155的开口155a。也就是说,开口153a、154a、155a在俯视时重叠,由这些开口形成了接触孔ch1。虽然在该例中无机绝缘膜155包括氮化硅(sinx),但无机绝缘膜155的材料不限于此。

在无机绝缘膜155上设置有相对电极140。相对电极140在接触孔ch1中与相对电极控制配线142连接。相对电极140配置为隔着无机绝缘膜155在俯视时与像素电极130的一部分重叠。虽然在该例中相对电极140包括ito(indiumtinoxide),但相对电极140的材料不限于此。相对电极140例如也可以包括zno(zincoxide)、izo(indiumzincoxide)、igzo(indiumgalliumzincoxide)以及itzo(indiumtinzincoxide)等透明导电材料。

图5a、5b所示的有源矩阵基板10能够通过以下的方法来制作。

首先,在图5b所示的玻璃基板150上使用已知的方法形成栅极绝缘膜151和tft120。此外,在该例中,在形成tft120的栅极电极120a的同时形成栅极线110,在形成源极电极120c和漏极电极120d的同时形成数据线111。

之后,例如使用cvd(chemicalvapordeposition;化学气相沉积)法,以覆盖源极电极120c和漏极电极120d的方式按顺序使作为无机绝缘膜152的氮化硅(sinx)和二氧化硅(sio2)成膜。

接下来,例如使用溅射法在无机绝缘膜152上按顺序使作为相对电极控制配线142的铜(cu)和钛(ti)成膜。然后,进行光刻法和湿式蚀刻,将铜(cu)和钛(ti)的层叠膜图案化。从而,在俯视时与源极电极120c重叠的位置形成相对电极控制配线142。

之后,例如使用cvd法,以覆盖相对电极控制配线142的方式在无机绝缘膜152上按顺序使作为无机绝缘膜153的氮化硅(sinx)和二氧化硅(sio2)成膜。

接着,例如使用狭缝涂布法在无机绝缘膜153上涂敷作为有机绝缘膜154的感光性树脂,然后进行曝光和显影,除去在俯视时与相对电极控制配线142重叠的位置、以及俯视时与漏极电极120d重叠的位置处的感光性树脂。从而,形成有机绝缘膜154和开口154a、154b。

接下来,将有机绝缘膜154作为掩模来对无机绝缘膜152和无机绝缘膜153进行干式蚀刻。通过该工序,在俯视时与开口154a重叠的位置形成无机绝缘膜153的开口153a,在俯视时与开口154b重叠的位置形成无机绝缘膜152的开口152b和无机绝缘膜153的开口153b。其结果是,形成贯通无机绝缘膜152、153以及有机绝缘膜154的接触孔ch2。

之后,例如使用溅射法在有机绝缘膜154上使作为像素电极130的ito成膜,进行光刻法和湿式蚀刻,将ito膜图案化。从而,形成设置在有机绝缘膜154上并且在接触孔ch2中与漏极电极120d连接的像素电极130。

接下来,例如使用cvd法以覆盖有机绝缘膜154和像素电极130覆盖的方式,使作为无机绝缘膜153的氮化硅(sinx)成膜。然后,进行光刻法和干式蚀刻,将无机绝缘膜155图案化。从而,在俯视时与开口153a、154a重叠的位置形成无机绝缘膜155的开口155a,形成包括开口153a、154a、155a的接触孔ch1。

接着,例如使用溅射法在无机绝缘膜155上使作为相对电极140的ito成膜,并进行光刻法和湿式蚀刻,将ito膜图案化。从而,在无机绝缘膜155上形成在接触孔ch1中与相对电极控制配线142连接的相对电极140,制作出有源矩阵基板10。

之后,使有源矩阵基板10与相对基板20粘合,在有源矩阵基板10与相对基板20之间封入液晶层30。在与相对基板20粘合之前,在有源矩阵基板10的z轴正方向侧的表面涂敷聚酰亚胺等树脂膜,作为用于使液晶分子排列在规定方向的取向膜(省略图示)。

在本实施方式中,如图5b所示,相对电极控制配线142设置在比有机绝缘膜154靠下层(z轴负方向侧),设置在有机绝缘膜154上的无机绝缘膜155和相对电极140的表面成为有源矩阵基板10的最表面。假如是相对电极控制配线142设置于有机绝缘膜154的上层且与相对电极140连接的情况,则在有源矩阵基板10的表面中,设置有相对电极控制配线142的部分会凸起。在将有源矩阵基板用作液晶显示面板的情况下,在有源矩阵基板的表面涂敷聚酰亚胺等树脂膜作为取向膜。此时,有源矩阵基板的表面的凸起的部分难以均匀地形成树脂膜,从而成为显示不均的原因。如上所述,在本实施方式中,相对电极控制配线142设置在比有机绝缘膜154靠下层,其表面不会露出。因而,相比于相对电极控制配线142设置在比有机绝缘膜154靠上层的情况,不容易在有源矩阵基板10的表面形成隆起的部分,容易均匀地形成取向膜。其结果是,不容易产生由于没有均匀地形成取向膜而导致的显示不均。

[第2实施方式]

虽然在上述的第1实施方式中说明了相对电极控制配线142为钛(ti)和铜(cu)层叠而成的两层结构的例子,但相对电极控制配线142也可以如以下这样构成。

相对电极控制配线142例如也可以是在层叠有钛(ti)和铜(cu)的层叠膜上进一步层叠包括铝(al)的金属膜而成的结构。在这种情况下,以从相对电极140侧依次配置钛(ti)、铜(cu)、铝(al)的各金属膜的方式层叠。此外,也可以代替钛(ti)而使用氮化钛(tin)。

通过使相对电极控制配线142包含铝(al),从而与第1实施方式相比,容易通过在形成相对电极控制配线142时进行的湿式蚀刻来进行加工。

[第3实施方式]

虽然在上述的第1实施方式中,在有源矩阵基板10的最上层配置有相对电极140,像素电极130配置在比相对电极140靠下层,但像素电极130和相对电极140的配置不限于此。

图6是本实施方式中的有源矩阵基板的一个像素的截面图。在图6中,对与第1实施方式相同的构成标注与第1实施方式同样的附图标记。以下,主要说明与第1实施方式不同的构成。

如图6所示,本实施方式中的有源矩阵基板10a在有机绝缘膜154上配置有相对电极140,在无机绝缘膜155上配置有像素电极130。

在无机绝缘膜153和有机绝缘膜154中,在俯视时与相对电极控制配线142重叠的位置形成有开口153a、154a,由这些开口153a、154a构成了接触孔ch11。相对电极控制配线142在接触孔ch11中与相对电极140连接。

另外,在无机绝缘膜152、无机绝缘膜153、有机绝缘膜154以及无机绝缘膜155中,在俯视时与漏极电极120d重叠的位置形成有开口152b、153b、154b以及155b。由这些开口152b、153b、154b以及155b构成了接触孔ch12。像素电极130在接触孔ch12中与漏极电极120d连接。

在这种情况下,也是与第1实施方式同样,相对电极控制配线142设置在比有机绝缘膜154靠下层。因此,相比于相对电极控制配线142设置在有机绝缘膜154的上层的情况,在有源矩阵基板10a的最表面隆起的部分少,容易在有源矩阵基板10a的表面均匀地形成取向膜。

此外,本实施方式中的相对电极控制配线142与第2实施方式同样,也可以是从相对电极140侧依次层叠钛(ti)或氮化钛(tin)、铜(cu)、铝(al)而成的层叠膜。

[第4实施方式]

虽然在上述的第1实施方式中说明了相对电极控制配线142配置为在俯视时与数据线111重叠的例子,但相对电极控制配线的配置不限于此,也可以是以下这样的配置。

图7a是示出本实施方式中的有源矩阵基板的像素的一部分区域的俯视图,图7b是图7a所示的b-b线处的截面图。在图7a和图7b中,对与第1实施方式相同的构成标注与第1实施方式同样的附图标记。

如图7a和图7b所示,在本实施方式中,代替相对电极控制配线142而设置有相对电极控制配线1420。相对电极控制配线1420具有:与数据线111大致平行的配线部分1421(以下,称为第1配线部)、以及从第1配线部1421向数据线111的方向突出的部分1422(以下,称为第2配线部)。第1配线部1421在俯视时与数据线111不重叠,第2配线部1422在俯视时与数据线111重叠。在俯视时与第2配线部1422重叠的位置配置有接触孔ch1,在接触孔ch1中第2配线部1422与相对电极140连接。

此外,虽然在图7a和图7b中,是以使第1配线部1421相对于数据线111配置在与tft120的源极电极120c相反的一侧的方式配置相对电极控制配线1420,但相对电极控制配线1420的配置不限于此。例如,也可以如图8所示,以使第1配线部1421相对于数据线111配置在tft120的源极电极120c侧,并且第2配线部1422在俯视时与数据线111重叠的方式配置相对电极控制配线1420。

另外,虽然在上述的例子中,相对电极控制配线1420具有第2配线部1422,以使第2配线部1422在俯视时与数据线111重叠的方式配置相对电极控制配线1420,但相对电极控制配线的构成不限于此。例如也可以是,仅包括第1配线部1421的相对电极控制配线配置于俯视时与数据线111不重叠的位置。在这种情况下,为了将第1配线部1421与相对电极140连接而形成第1接触孔ch1。

相比于上述构成,数据线111与相对电极控制配线配置为在俯视时重叠的方式能够提高像素的开口率。然而,即使是上述构成,也与第1实施方式同样,在有源矩阵基板10的最表面隆起的部分少,容易在有源矩阵基板10的表面均匀地形成取向膜。

以上,说明了发明的实施方式,但本发明不限于上述的实施方式的构成,能够设为各种变形构成。

(1)虽然在上述的实施方式中说明了在tft120的上层设置无机绝缘膜152、153的例子,但也可以仅设置无机绝缘膜152。此外,这样构成的情况与设置无机绝缘膜153的情况相比,水分容易从有机绝缘膜154进入,配线1420容易腐蚀而产生断线等。因此,优选在配线1420上设置无机绝缘膜153。

上述的有源矩阵基板和具备上述有源矩阵基板的液晶显示面板能够说明如下。

一种有源矩阵基板,具备:基板;栅极线,其配置在上述基板上;数据线,其配置为与上述栅极线交叉;开关元件,其连接到上述栅极线和上述数据线;像素电极,其与上述开关元件连接;相对电极,其以在俯视时与上述像素电极重叠的方式配置;平坦化膜,其覆盖上述开关元件;相对电极控制配线,其与上述相对电极连接;以及第1接触孔,其在俯视时与上述相对电极控制配线重叠,贯通上述平坦化膜,上述像素电极和上述相对电极各自以覆盖上述平坦化膜的一部分覆盖的方式配置,上述相对电极控制配线设置在上述开关元件与上述平坦化膜之间,在上述第1接触孔中与上述相对电极连接。(第1构成)。

根据第1构成,有源矩阵基板在基板上具备栅极线、数据线、开关元件、像素电极、相对电极、平坦化膜、配线以及第1接触孔。连接到栅极线和数据线的开关元件由平坦化膜覆盖,在开关元件与平坦化膜之间设置有相对电极控制配线。像素电极和相对电极覆盖平坦化膜的一部分,像素电极与相对电极以在俯视时重叠的方式配置。像素电极与开关元件连接。第1接触孔贯通平坦化膜,配线与相对电极在第1接触孔中连接。

也就是说,相对电极控制配线配置在比平坦化膜靠基板侧,因此相对电极控制配线的表面不会露出。因此,相比于以使相对电极控制配线的表面成为有源矩阵基板的最表面的方式配置的情况,不容易在有源矩阵基板的最表面形成隆起的部分。其结果是,在有源矩阵基板用于液晶显示面板的情况下,容易在有源矩阵基板的最表面均匀地形成取向膜,不容易产生显示不均。

也可以是,在第1构成中,上述相对电极控制配线以在俯视时与上述数据线重叠的方式配置(第2构成)。

根据第2构成,相比于相对电极控制配线在俯视时与数据线不重叠的情况,能够提高设置有像素电极的像素的开口率。

也可以是,在第1或第2构成中,还具备:第1无机绝缘膜,其配置在上述开关元件与上述相对电极控制配线之间;以及第2接触孔,其在俯视时与上述像素电极重叠,贯通上述第1无机绝缘膜和上述平坦化膜,上述像素电极与上述开关元件在上述第2接触孔中连接(第3构成)。

根据第3构成,开关元件由第1无机绝缘膜和平坦膜覆盖,因此,能够保护开关元件免受水分等的影响。

也可以是,在第3构成中,还具备覆盖上述相对电极控制配线和上述第1无机绝缘膜的表面的第2无机绝缘膜,上述第1接触孔贯通上述平坦化膜和上述第2无机绝缘膜,上述第2接触孔贯通上述平坦化膜、上述第2无机绝缘膜以及上述第1无机绝缘膜(第4构成)。

根据第4构成,开关元件由第1无机绝缘膜和第2无机绝缘膜覆盖,因此,与未设置第2无机绝缘膜的情况相比,能够进一步保护开关元件免受水分等的影响。

也可以是,在第1至第4构成中的任意一个构成中,上述相对电极包括透明导电膜,上述相对电极控制配线由多个金属膜层叠而构成,上述多个金属膜包含包括铝的金属膜(第5构成)。

根据第5构成,相对电极控制配线中包含包括铝的金属膜,因此,例如容易在形成相对电极控制配线时通过湿式蚀刻进行图案化的加工。

也可以是,在第5构成中,还具备配置在上述平坦化膜上的第3无机绝缘膜,上述第1接触孔在俯视时与上述相对电极控制配线重叠的位置上贯通上述平坦化膜、上述第2无机绝缘膜以及上述第3无机绝缘膜,上述像素电极配置在上述平坦化膜与上述第3无机绝缘膜之间,上述相对电极配置在上述第3无机绝缘膜上(第6构成)。

根据第6构成,平坦化膜由第3无机绝缘膜覆盖,因此水分不容易进入到有源矩阵基板中,与未设置第3无机绝缘膜的情况相比,能够提高有源矩阵基板的可靠性。另外,相对电极配置在第3无机绝缘膜上,因而相对电极的表面被露出,但相对电极控制配线配置在比平坦化膜靠基板侧,因而相对电极控制配线的表面不会露出。因此,不容易在有源矩阵基板的最表面形成隆起的部分,即使是在有源矩阵基板的最表面形成取向膜的情况下,也容易均匀地形成取向膜,不容易产生显示不均。

液晶显示面板具备:第1至第6构成中的任意一个构成的有源矩阵基板;相对基板,其与上述有源矩阵基板相对配置;液晶层,其夹持在上述有源矩阵基板与上述相对基板之间;第1取向膜,其在上述有源矩阵基板中形成在上述液晶层侧的表面;以及第2取向膜,其在上述相对基板中形成在上述液晶层侧的表面(第7构成)。

根据第7构成,在有源矩阵基板中,相对电极控制配线配置在比平坦化膜靠基板侧,因而相对电极控制配线的表面不会露出。因此,相比于以使相对电极控制配线的表面成为有源矩阵基板的最表面的方式配置的情况,不容易在有源矩阵基板的最表面形成隆起的部分,容易均匀地形成第1取向膜。因此,不容易产生显示不均。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1