应用于照明的蓝-绿色和绿色磷光体的制作方法

文档序号:2855919阅读:149来源:国知局
专利名称:应用于照明的蓝-绿色和绿色磷光体的制作方法
技术领域
本发明涉及应用于照明的蓝-绿色和绿色磷光体(phorphor)。

背景技术
本发明总的说来涉及新的磷光组合物。更特别地,本发明描述了在升高的温度下保留其大部分室温量子效率的磷光体。该磷光体可被用于发光二极管、Hg-基荧光灯、气体放电灯,用于UV、紫色和/或蓝色激光,以及其它用于不同用途的白色或彩色光源。
磷光体是吸收电磁光谱中的一个区的辐射能量并发射出电磁光谱另一个区的能量的发光材料。非常重要的一类磷光体包括具有非常高化学纯度和组成受控的晶体无机化合物,为了发射对其加入少量其它元素,称为“活化剂”。使用活化剂和无机化合物的适当组合,可控制这些晶体磷光体的发射颜色。大部分有用的磷光体发射电磁光谱的可见光部分的辐射来响应由可见区域之外的电磁能的激发。例如,磷光体已被用于汞蒸气放电灯以将由激发的汞发射的紫外(UV)辐射转换为可见光。此外,磷光体可被用于发光二极管(LED)以产生通常不能从LED芯片自身获得的颜色。
发光二极管(LED)为半导体光发射器件,其可被用来代替其它光源,如白炽灯。其作为显示器灯、警示灯和指示灯或其它需要彩色灯的应用是特别有用的。由LED产生的光的颜色取决于在其生产中所用半导体材料的类型。
彩色半导体发光设备,包括发光二极管和半导体激光器(其在这里通常均称为LED),已经由III-V族合金如氮化镓(GaN)生产。为了形成LED,合金的各层典型地外延沉积在基底,如碳化硅或蓝宝石上,且可用多种n-和p-型掺杂剂掺杂以改善性能,如发光效率。对于GaN-基LED,光通常在电磁光谱的UV至绿色区中发射。由于由LED产生的光的固有颜色,直到最近为止,LED还不适合用于需要亮的白光的地方。
然而,已经发展了用于将从LED发出的光转换成用于照明或其它目的的有用光的技术。在一种技术中,LED可用磷光体层涂覆或覆盖。通过插入由LED产生的辐射所激发的磷光体,可以产生不同波长,如在光谱的可见范围的光。彩色的LED经常用于玩具、指示灯和其它设备。生产商正不断地寻找用于这类LED的新的彩色磷光体以产生自定义颜色(custom color)和更高的发光度。
从LED和其它光源产生光以产生热量作为副产品。磷光体可能响应该热量从而降低量子效率,所述量子效率为由磷光体发射的光子数对由磷光体吸收的光子数。因此,由于不同磷光体的量子效率可随着温度的升高以不同的速率变化,由该设备发出的光可能变暗或颜色可能随着设备进入稳态运行而改变。
因此,在LED和其它光源的生产中,对可被单独用作组分或作为磷光体共混物一部分的磷光体组合物有连续的要求。这类磷光体组合物应允许具有所需性质的较宽范围的光源,所述性质包括良好的颜色质量(CRI>80)、大范围的色温和对温度变化相对敏感。


发明内容
本发明的一种实施方式提供了照明设备,其包括光源和被配置为辐射地耦合至光源的磷光体组合物,所述光源发射在约250nm-约550nm具有峰的辐射。所述磷光体组合物含有通式为((Sr1-zMz)1-(x+w)AwCex)3(Al1-ySiy)O4+y+3(x-w)F1-y-3(x-w)的磷光体,其中0<x≤0.10且0≤y≤0.5,0≤z≤0.5,0≤w≤x,A为Li、Na、K、Rb或其任何组合,且M是Ca、Ba、Mg、Zn或其任何组合。
另一实施方式提供通式为((Sr1-zMz)1-(x+w)AwCex)3(Al1-ySiy)O4+y+3(x-w)F1-y-3(x-w)的磷光体,其中0<x≤0.10且0≤y≤0.5,0≤z≤0.5,0≤w≤x,A为Li、Na、K、Rb或其任何组合,且M为Ca、Ba、Mg、Zn或其任何组合。
第三实施方式提供了第一磷光体的共混物,其第一磷光体具有通式((Sr1-zMz)1-(x+w)AwCex)3(Al1-ySiy)O4+y+3(x-w)F1-y-3(x-w),其中0<x≤0.10且0≤y≤0.5,0≤z≤0.5,0≤w≤x,A为Li、Na、K、Rb或其任何组合,且M为Ca、Ba、Mg、Zn或其任何组合。至少一种另外的磷光体与所述第一磷光体共混,所得到的磷光体共混物能够发光,所述光适合单独使用,或者与辐射地耦合至磷光体的光源发射的辐射相结合使用。
最后的实施方式提供了用于生产磷光体的方法,该方法包括提供一定量铈硅的含氧化合物和至少一种选自Sr,Ba,Ca及其组合的碱土金属。将含氧化合物混合在一起并与含氟化合物一起形成混合物。该混合物减压下被固定在约600℃-约1400℃的温度足够长的时间以将混合物转化为磷光体,该磷光体包含通式((Sr1-zMz)1-(x+w)AwCex)3(Al1-ySiy)O4+y+3(x-w)F1-y-3(x-w),其中0<x≤0.10且0≤y≤0.5,0≤z≤0.5,0≤w≤x,A为Li,Na,K,Rb或其任何组合,且M为Ca,Ba,Mg,Zn或其任何组合。



当参照附图阅读下面的详细说明时,本发明的这些和其它特征、情况和优点将变得更好理解,在整个附图中相同的标记代表相同的部件,其中 图1为依照一实施方式的照明系统的示意性横截面图; 图2为依照一实施方式的另一照明系统的示意性横截面图; 图3为依照一实施方式的第三照明系统的示意性横截面图; 图4为依照一实施方式的第四照明系统的示意性横截面图; 图5为依照一实施方式的第五照明系统的示意性横截面图; 图6为依照一实施方式,使用405nm激发波长的五种磷光体的发射光谱图; 图7为本发明的含有磷光体SECA、“橙色”和磷光体C的磷光体共混物的计算出的发射光谱图; 图8是对于发射源和本发明的含有磷光体PFS和磷光体D的磷光体共混物的计算出的发射光谱图; 图9是对于发射源和本发明的含有磷光体SASI、PFS和磷光体D的磷光体共混物的计算出的发射光谱图。
元件列表

具体实施例方式 本发明的实施方式提供可被用于发光系统以产生蓝色或蓝-绿色光的磷光体。该磷光体包括具有通式为((Sr1-zMz)1-(x+w)AwCex)3(Al1-ySiy)O4+y+3(x-w)F1-y-3(x-w)(I)的体系,其中0<x≤0.10且0≤y≤0.5,0≤z≤0.5,0≤w≤x,A为Li,Na,K,Rb或其任何组合,且M为Ca,Ba,Mg,Zn或其任何组合。有利地,依照这些通式制备的磷光体可横跨宽的温度范围保持发射强度(量子效率)。该磷光体可被用于发光系统,如LED和荧光管等等,以产生蓝色和蓝/绿色光。此外,其它实施方式提供可被用于产生其它颜色,如适合用于常规照明和其它目的的白光的磷光体共混物。
在如上所示的通式I中,Ce3+和Si4+离子的加入是电荷平衡的,通过不仅使用碱金属的加入而且修正配方中氧化物和氟化物离子的量,从而产生零电荷体系。然而,如果Ce3+离子的加入仅仅通过所含碱金属,如Li,Na,K,或Rb,Ag,Cu来平衡电荷,则上式简化为通式((Sr1-yMy)1-2xAxCex)3AlO4F(II),其中0<x≤0.10,0≤y≤0.5,A为Li,Na,K,Rb,或其任何组合,且M为Ca,Ba,Mg,Zn或其任何组合。作为选择,如果Ce3+离子的加入通过调节式中的氧化物和氟化物离子的量来平衡电荷,则所得到的式为((Sr1-zMz)1-xCex)3(Al1-ySiy)O4+y+3xF1-y-3x(III),其中0<x≤0.10且0≤y≤0.5,0≤z≤0.5,且M为Ca,Ba,Mg,Zn或其任何组合。
在通式I-III的任何磷光体中,部分或全部的Al3+可以用其它等效载荷的离子替代。例如,Al3+可部分或全部用B3+,Ga3+,Sc3+或Y3+等等,或其任何组合替代。这可被允许用来调整由磷光体得到的频谱。此外,除Ce3+以外,上述磷光体可另外用其它活化剂离子掺杂。这类离子可包括Pr,Sm,Eu,Tb,Dy,Tm,Er,Ho,Nd,Bi,Yb,Pb,Yb,Mn,Ag或Cu,或其任何组合。
本发明的磷光体具有在高温下减少荧光淬灭的优点,例如,在约150℃所具有的量子效率至少为在室温下,如约15℃-约25℃所测量子效率的约80%。相比之下,许多现有的磷光体在150℃所具有的量子效率仅仅是室温下量子效率的约60%。因此,本磷光体跨越大的温度范围保持其发光强度,这可在使用过程中随发光系统温度的升高减轻强度的损失或灯颜色的变化。
本发明磷光体的制造 上面所披露的磷光体和其它用于制备具有这些磷光体的共混物的磷光体可通过混合相应金属的含氧化合物和氟化物物类的粉末,并然后在减压下烧制该混合物来生产。例如,在下面实施例中进一步描述的示例性磷光体(Sr0.75Ca0.23Na0.01Ce0.01)(Al0.75Si0.25)O4.25F0.75,可通过混合适当量的锶、钙、钠、铈、铝和硅的含氧化合物与适当量的含有氟化物的化合物,并然后在减压下烧制混合物来生产。烧制之后,磷光体可被球磨或其它方式研磨,以破坏任何在烧制步骤过程中可能已形成的聚结。研磨可以在所有烧制步骤完成之后进行,或可以间隔有另外的烧制步骤。
适合的含氧化合物的非限制性的例子包括氧化物、氢氧化物、醇盐、碳酸盐、硝酸盐、铝酸盐、硅酸盐、柠檬酸盐、草酸盐、羧酸盐、酒石酸盐、硬脂酸盐、亚硝酸盐、过氧化物和这些化合物的组合。在含有羧酸盐的实施方式中,所使用的羧酸盐可通常具有1-5个碳原子,如甲酸盐、乙酸盐、丙酸盐、丁酸盐和戊酸盐,但是可以使用具有更大数目碳原子的羧酸盐。
用于制造所述磷光体的起始原料的混合物还可以含有助熔剂(flux),如硼酸、四硼酸锂、碱金属碳酸盐、碱金属磷酸盐或这些化合物的混合物。氟化物和其它卤化物化合物也可以充当助熔剂。助熔剂可降低对磷光体烧制的温度和/或时间。如果使用助熔剂,用适当的溶剂冲洗最终的磷光体产物以去除任何残留的可能源自助熔剂的可溶性杂质是值得考虑的。
含氧化合物可通过任何机械方法混合在一起。这些方法可包括在高速混合器或带状混合器搅拌或共混,或在球磨、锤片式粉碎机或气流磨中合并并研磨粉末。任意的其它方法可同样适合用于制备粉末的良好共混的混合物。如果混合物是湿的,在被烧制之前其可以首先被干燥。干燥可在环境氛围或在真空下进行。
通常,氧化物和氟化物粉末的混合物在约600℃-约1400℃,或约750℃-约1300℃的还原氛围下烧制足够的时间以将混合物转化为磷光体。烧制可以间歇或连续方法来操作。所需的烧制时间为约1-20个小时,取决于所烧制的混合物的量、固体和气氛气体之间接触的程度和在混合物被烧制或加热过程中混合的程度。混合物可快速地被升至并保持在最终温度,或者混合物可以较低的速率如约2℃/分-约200℃/分被加热至最终温度。通常,温度可以约2℃/分-约100℃/分的速率升至最终温度。
烧制在还原气氛中进行,其可包括的试剂为例如氢、一氧化碳、氨、肼或这些试剂与惰性气体如氮气、氦气、氩气等的混合物。例如,氢气和氮气的混合物可被用作还原气体,所含氢气的量为约0.5体积%-约10体积%,或约0.75体积%-约2体积%。替代性地,还原气体可以是一氧化碳,通过残留氧气与放在烧制腔室中的碳颗粒之间反应在烧制腔室中原位产生。还原气氛也可以通过烧制腔室中氨或肼的分解来产生。烧制之后,磷光体可在有机溶剂浆料中研磨以使在烧制过程中可能形成的聚结破裂。
尽管上面所述的方法中使用单个烧制步骤,但烧制步骤可以与研磨步骤交替进行以有助于小颗粒的形成。本领域技术人员将认识到对于特定磷光体组合物所需的精确条件将取决于所选磷光体并且包含在上述条件之内。
此外,上述磷光体可与基于相似结构组合物的磷光体一起制成固溶体。制作该固溶体的一种方法可以是通过分别制备每种磷光体,然后一起烧制两种或更多种磷光体的原料混合物。例如,用具有通式为(Ba,Sr,Ca)3SiO5,Sr2(Gd,La,Y)AlO5,(La,Gd,Y)3SiO4N或其任何组合的组合物可以制备含有具有通式I-III的磷光体的固溶体。任何上述的掺杂剂可被用于这些磷光体中以获得所需发射光谱。
除了上述的合成工艺以外,可被用于下面所述的共混物中的许多磷光体是可商购的。例如,与本发明所披露的磷光体一起用于共混物计算的磷光体(Ba,Sr,Ca)5(PO4)3(Cl,F,Br,OH):Eu2+(SECA),是可商购的。
应该注意的是,不同的磷光体在这里以包含在括号中并用逗号分开的不同的元素来描述,如(Ba,Sr,Ca)2SiO4:Eu2+的情形。如本领域技术人员所理解的,这类符号表示该磷光体可包括任何比率的式中指定的任何或所有元素。也就是说,用于上面磷光体的这类符号,例如,具有与(BaaSrbCa1-a-b)2SiO4:Eu2+(其中a和b可在0-1之间变化,包括值0和1)相同的含义。
磷光体共混物 本发明的磷光体可与其它磷光体共混在一起以产生其它颜色,如用于照明应用的白光。其他共混物可被用于产生不同的颜色,如黄色、绿色、红色等。使用本发明的磷光体以产生蓝色或蓝/绿光的发光体系可与使用产生红光的其它磷光体相结合以形成白色光源。例如,在预期的实施方式中,发射红光的用Mn4+掺杂的复合氟化物(例如(Na,K,Rb,Cs,NH4)2[(Ti,Ge,Sn,Si,Zr,Hf)F6]:Mn4+等)可与本发明的磷光体相共混以获得白光。用于下面某些示例性共混物实施例的用Mn4+掺杂的复合氟化物非限制性的例子为K2[SiF6]:Mn4+(PFS)。可以与本发明的磷光体一起用于共混物中的磷光体的其它非限制性例子包括 黄色(Ba,Sr,Ca)5(PO4)3(Cl,F,Br,OH):Eu2+,Mn2+;(Ba,Sr,Ca)BPO5:Eu2+,Mn2+;(Sr,Ca)10(PO4)6*xB2O3:Eu2+(其中0<x≤1);Sr2Si3O8*2SrCl2:Eu2+;(Ca,Sr,Ba)3MgSi2O8:Eu2+,Mn2+;BaAl8O13:Eu2+;2SrO*0.84P2O5*0.16B2O3:Eu2+;(Ba,Sr,Ca)MgAl10O17:Eu2+,Mn2+;(Ba,Sr,Ca)Al2O4:Eu2+;(Y,Gd,Lu,Sc,La)BO3:Ce3+,Tb3+;(Ba,Sr,Ca)2Si1-xO4-2x:Eu2+(其中0≤x≤0.2)(SASI);(Ba,Sr,Ca)2(Mg,Zn)Si2O7:Eu2+;(Sr,Ca,Ba)(Al,Ga,In)2S4:Eu2+;(Y,Gd,Tb,La,Sm,Pr,Lu)3(Sc,Al,Ga)5-aO12-3/2a:Ce3+(其中0≤a≤0.5);(Lu,Sc,Y,Tb)2-x-yCeyCa1+xLizMg2-zPz(Si,Ge)3-zO12-x/2(其中0.5≤x≤1,0<y≤0.1,且0≤z≤0.2);(Ca,Ba,Sr)Si2O2N2:Eu2+,Ce3+;(Ca,Sr)8(Mg,Zn)(SiO4)4Cl2:Eu2+,Mn2+;Na2Gd2B2O7:Ce3+,Tb3+;(Sr,Ca,Ba,Mg,Zn)2P2O7:Eu2+,Mn2+;(Gd,Y,Lu,La)2O3:Eu3+,Bi3+;(Gd,Y,Lu,La)2O2S:Eu3+,Bi3+;(Gd,Y,Lu,La)VO4:Eu3+,Bi3+;(Ca,Sr)S:Eu2+,Ce3+;ZnS:Cu+,Cl-;ZnS:Cu+,Al3+;ZnS:Ag+,Cl-;ZnS:Ag+,Al3+;SrY2S4:Eu2+;CaLa2S4:Ce3+;(Ba,Sr,Ca)MgP2O7:Eu2+,Mn2+;(Y,Lu)2WO6:Eu3+,Mo6+;(Ba,Sr,Ca)xSiyNz:Eu2+,Ce3+(其中2x+4y=3z);Ca3(SiO4)Cl2:Eu2+;(Y,Lu,Gd)2-xCaxSi4N6+xC1-x:Ce3+,(其中0≤x≤0.5);(Lu,Ca,Li,Mg,Y)α-SiAlON:Eu2+,Ce3+;3.5MgO*0.5MgF2*GeO2:Mn4+(Mg-氟锗酸盐);Ca1-x-yCexEuyAl1+xSi1-xN3,(其中0<x≤0.2,0≤y≤0.2);Ca1-x-yCexEuyAl1-x(Mg,Zn)xSiN3,(其中0<x≤0.2,0≤y≤0.2);Ca1-2x-yCex(Li,Na)xEuyAlSiN3,(其中0≤x≤0.2,0≤y≤0.2,x+y>0);Ca1-x-y-zCex(Li,Na)yEuzAl1+x-ySi1-x+yN3(其中0≤x≤0.2,0<y≤0.4,0≤z≤0.2);或其任何混合物。此处所列的每个通式是独立于每个其它所列通式的。特别地,式中的x,y,z和可被用作数字占位符的其它变量不与可在其它式或组合物中找到的x,y,z和其它变量的任何用法相关联。
上面所列磷光体并非意欲进行限制。任何与本发明的磷光体形成非反应性共混物的其它磷光体,可商购的或非商购的,可被用于共混物中并被认为是包含在本发明的范围之内。
为了本发明的目的,应该理解的是当磷光体配方表示两种或更多种掺杂离子的存在时(即在上面的组合物中,这些离子在冒号之后),这表明在材料中磷光体具有那些掺杂离子中的至少一种(并非必须全部)。因此,如本领域技术人员所理解的,这类符号表示在配方中磷光体可以包括那些指定离子的任何或全部作为掺杂剂。
除磷光体共混物外,来自光源的光和来自磷光体或磷光体共混物的光合并可被用来产生白光。例如,白色LED可基于发射蓝光的InGaN芯片。发射蓝光的芯片可用磷光体或磷光体共混物涂覆以将一些蓝色辐射转换为互补色,例如黄-绿射线。
从发光体系发射的光可使用任何数目的标准测量法来表征。该表征可归一化数据并使从不同发光体系发出的光的比较更加容易测定。例如,来自磷光体和来自LED芯片的光的总和提供在CIE 1931色度图中具有相应色坐标(x和y)的色点和相关的色温(CCT),且其光谱分布提供显色性能力,由显色指数(CRI)来衡量。CRI通常定义为8种标准色样(R1-8)的平均值,通常被称为综合显色指数或Ra。对于CRI,较高的值对被照物体产生更“自然”的外观。通过定义,白炽灯所具有的CRI为100,而典型的紧凑型(compact)荧光灯可具有的CRI为约82。此外,光源的发光度或表观亮度也可以从所发光的光谱来确定。发光度以lm/W-opt来衡量,其代表1瓦特具有特定光谱分布的光所代表的流明数。较高的lm/W-opt值表明特定光源对观察者看来更亮。
由于从组合的发光体系组分发射的光通常是累加的,磷光体共混物和/或发光体系的最终光谱是可以预知的。例如,从共混物中每种磷光体发射的光的量可正比于在混合物中该磷光体的量。因此,从该共混物得到的发射光谱可以模拟,且光谱的性质,例如,CCT、CRI、色轴(x和y)和lm/W-opt可以从预知的发射光谱计算。可使用本发明的磷光体制备的不同共混物在下面的实施例中进行描述。
使用本发明的磷光体的发光系统 现在转到附图,图1为LED基灯10的示意图,其可引入本发明的磷光体和磷光体共混物。LED基灯10包括半导体UV或可见光辐射源,如发光二极管(LED)芯片12。电源引线14电连接至LED芯片12,提供引起LED芯片12发射辐射的电流。引线14可包括由较厚外壳引线16支撑的细导线。作为选择,外壳引线16可直接连接至LED芯片12。
LED基灯10可包括能够产生可见光或UV光的任何LED芯片12,当其发射的辐射与磷光体组合物发射的光相混合时,其可产生彩色的或白色的光。LED芯片12的峰辐射可至少部分依据对共混物中的磷光体的鉴别来选择,例如,选择与磷光体的最大吸光率相符合。例如,从芯片12发射的光可在约250nm-约550nm具有峰值。然而,通常LED的辐射将处于接近UV至蓝光区并在波长约350nm-约500nm范围内具有峰值。
LED芯片12典型地为已用不同杂质掺杂的半导体且可包括基于任何适合的III-V,II-VI或IV-IV半导体层的半导体二极管。在某些实施方式中,LED芯片12可含有至少一个包括GaN,ZnO或SiC的半导体层。在其它实施方式中,LED芯片12可含有由式InjGakAllN(其中0≤j;0≤k;0≤l且j+k+l=1)代表的氮化物化合物半导体,所具有的峰值辐射波长大于约250nm且小于约550nm。这种LED芯片12是本领域公知的。尽管辐射源被描述为LED,但该术语是指涵盖所有半导体辐射源,包括半导体激光二极管,等等。
除无机半导体外,LED芯片12可由有机光发射结构或其它辐射源所代替。其它类型的光源可被用作辐射源来代替LED,如下文参照图5描述的气体放电管。
LED芯片12可被封装在壳体18中,壳体18封有LED芯片和密封材料20。壳体18可以是玻璃或塑料的。密封剂20可以是环氧树脂、塑料、低温玻璃、聚合物、热塑性塑料、热固性材料、树脂、硅酮、环氧有机硅或任何其它类型的LED密封材料。此外,密封剂20可以是旋涂玻璃或某些其它高折射率的折射材料。典型地,密封材料20为环氧树脂或聚合物材料,如硅酮。壳体18和密封剂20是透明的,即,对于由LED芯片12和磷光体材料22,例如本发明的磷光体和磷光体共混物产生的光的波长来说基本上是光学透射的。然而,如果LED芯片12发射的光在UV光谱之内,密封剂20可仅仅对来自磷光体材料22的光来说是透明的。LED基灯10可包括没有外壳18的密封剂20。在该应用中,LED芯片12可由外壳引线16,或由安装至外壳引线16的基座(未示出)支撑。
发光体系的结构进一步包括辐射地耦合至LED芯片12的磷光体材料22。辐射地耦合是指元件之间彼此相关联,使得来自一元件的辐射传送至另一元件。因此,辐射地耦合至LED芯片12的磷光体可吸收由LED芯片12发射的辐射,如蓝光或紫外光,并发出更长的波长,如蓝、蓝-绿、红或其它颜色的光。
该磷光体材料22可通过任何适合的方法沉积到LED芯片12上。例如,可以形成一种磷光体或多种磷光体的溶剂基悬浮液,并作为层涂覆到LED芯片12的表面上。在一个预期的实施方式中,其中磷光体颗粒随机悬浮的硅酮浆料可被置于LED芯片12上。因此,磷光体材料22可通过涂覆并干燥LED芯片12上方的磷光体悬浮液而在LED芯片12的上方或直接在LED芯片12的发光表面涂覆。由于壳体18和密封剂20通常是透明的,从LED芯片12和磷光体材料22发出的光24将透射过那些元件。
可引入本发明的磷光体和磷光体共混物的第二结构在图2的截面图进行了说明。除磷光体材料22被散布在密封剂20中,代替直接形成在LED芯片12上以外,图2的结构与图1的类似。磷光体材料22可被散布在密封剂20的单个区域内或遍及密封剂20的整个体积。由LED芯片12发射的辐射26与由磷光体材料22发射的光相混合,且混合后的光通过透明密封剂20是可见的,表现为发光24。
具有散布的磷光体材料22的密封剂20可通过任何数量的适合的塑料加工工艺来形成。例如,磷光体材料22可与聚合物前驱体相结合,在LED芯片12周围模塑,并然后固化以形成具有散布的磷光体材料22的固体密封剂20。在另一方法中,磷光体材料22可共混入熔化的密封剂20,如聚碳酸酯中,形成在LED芯片12周围,并使其冷却。可使用的用于模塑的加工工艺是本领域公知的。
图3为可引入本发明的磷光体材料22的另一结构的截面图。除磷光体材料22可被涂覆在壳体18的表面上,代替形成在LED芯片12之上以外,图3所示的结构与图1的类似。通常,磷光体材料22被涂覆在壳体18的内表面上,但如果需要,磷光体材料22可被涂覆在壳体18的外表面上。磷光体材料22可被涂覆在壳体18的整个表面上或仅仅壳体18表面的顶部部分。由LED芯片12发射的辐射26与由磷光体材料22发射的光相混合,且混合后的光表现为发射光24。
参照图1-3描述的结构可就磷光体位于任何两个或所有三个位置或位于任何其它适合的位置,例如与壳体分离或整合至LED中来组合。此外,不同的磷光体可被用于结构的不同部件中。例如,依照式I的磷光体可被引入密封剂20中,而互补的磷光体,如前面所述磷光体列表中的可被涂覆到壳体18上。这对于组合互补色,例如,来形成白色光源提供了便利的方法。
在任何上面的结构中,LED基灯10还可以包括众多颗粒(未示出)以散射或漫射发出的光。这些颗粒将通常包含在密封剂20中。散射颗粒可包括,例如,由Al2O3(氧化铝)或TiO2制备的颗粒。该散射颗粒可有效散射由LED芯片12发射的光,且通常选择为具有可忽略量的吸收。
除上面的结构外,LED芯片12还可安装在反射杯28中,如附图4的横截面图所示。反射杯28可由反射材料制成或用反射材料涂覆,所述反射材料如氧化铝、二氧化钛或其它本领域公知的介电粉末。通常,反射表面可以由Al2O3制成。基于附图4灯10的LED的其它结构与前面图的相同,且包括两条引线16、用一条引线16电连接LED芯片12的导线30、和密封剂20。反射杯28可以导电以对LED芯片12通电,或者可以使用第二导线32。如前所述,磷光体材料22可散布在整个密封剂20中,或者可以散布在形成于发射杯28内部的较小的透明外套(casing)34中。通常,透明外套34可由与密封剂20相同的材料制成。在密封剂20之内使用透明外套34可以是有利的,因为与如果磷光体被散布在整个密封剂20相比需要较少量的磷光体材料22。密封剂20可含有光散射材料的颗粒(未示出),如先前所述的以传播发光24。
尽管上面所述的实施方式集中在LED基灯10,但本发明的磷光体和磷光体共混物可与其它辐射源一起使用。例如,辐射源可以是气体放电装置。气体放电装置的例子包括低-、中-和高压汞气体放电灯。
附图6为基于气体放电装置的光源36的透视图,气体放电装置例如为荧光灯,其可使用本发明的磷光体和磷光体共混物。光源36可包括抽空的密封室38,位于室38内部的用于产生UV辐射的激发系统42和布置在室38内部的磷光体材料22。端盖40连接至室30的任意端以密封室38。
在典型的荧光灯中,磷光体材料22,如本发明的磷光体和磷光体共混物可被布置在室38的内表面上。用于产生UV辐射的激发系统42可包括用于产生高能电子的电子发生器44和配置为吸收高能电子的能量并发射紫外光的填充气体46。例如,填充气体46可包括汞蒸气,其吸收高能电子的能量并发射紫外光。除汞蒸气以外,填充气体46还可包括稀有气体如氩气、氪气等等。电子发生器44可以是具有低逸出功(例如,小于4.5eV)的金属灯丝,如钨丝或用碱土金属氧化物涂覆的灯丝。引脚48可被提供以对电子发生器44提供电能。灯丝被耦合至高压源以从其表面产生电子。
对于LED基灯10,磷光体材料22辐射地耦合至来自激发系统42的紫外光。如前所述,辐射地耦合是指磷光体材料22与激发系统42相关联使得来自激发系统42的紫外光的辐射被传输至磷光体材料22。因此,辐射地耦合至激发系统42的磷光体可吸收辐射,例如由激发系统42发射的紫外光,而且,作为回应,发射较长的波长,如蓝、蓝-绿、绿、黄或红光。当发射的光24传输通过室38时较长波长的光可以是可见的。室38通常由透明材料如玻璃或石英制成。玻璃通常用作荧光灯中的室38,因为玻璃的透射光谱可阻挡大部分的“短波”紫外辐射,即,波长小于约300nm的光。
如前所述,磷光体材料22可以是配置为产生特定颜色的光,例如,产生白光的磷光体共混物。颗粒材料,如TiO2或Al2O3可被用来与磷光体材料22相联合来漫射由光源36产生的光。这种光散射材料可以与磷光体材料22一起包含在或作为层单独布置在室38的内表面和磷光体材料22之间。对于荧光管,具有在约10nm-约400nm范围内的中等大小颗粒的散射材料是有利的。
尽管如附图7所示的光源36具有直的室38,但也可以使用其它室形状。例如,紧凑型荧光灯可具有拥有一个或多个弯曲或螺旋型的室38,所具有的供电引脚48布置在光源36的一末端。
使用本发明所述磷光体的发光装置的应用并不限于特别优选的常规照明目的。其可包括,背光应用(如移动电话、PDA’s、电脑显示器和电视机),以及显示器、交通、汽车、标志和其它特定发光应用等。
实施例和共混物计算 上面所述方法被用来合成五种具有通式I的磷光体。用于生产各磷光体的化学组分如表1中所示。得到的化学式在表2中列出。
对于首先的四种磷光体A-D中的每一种,一定量的所列组分作为粉末混合并置于开口的高纯度氧化铝坩锅。含有粉末共混物的坩锅随后在N2气氛下烧制,在N2气氛中加入有约0.75体积%-约1.5体积%的H2。烧制以六个阶段进行,且在每个烧制阶段之间,磷光体被从炉子移出并经历研磨步骤。磷光体在750℃烧制约10小时,在850℃10小时,950℃10小时,1100℃10小时,1200℃10小时以及1300℃6小时。
表1用于合成的磷光体组分概要1 1所有值以克为单位。
2过量的氟化物化合物可被加作助熔剂,如前所述。
磷光体E使用更新的方法来生产以测定上述步骤是否可以简化。对于磷光体E,组分粉末使用ZrO2介质干混并随后置于高纯度氧化铝坩锅中。粉末混合物在含有约1体积%H2的N2气氛中在约850℃下烧制约10小时。第一次烧制之后,样品使用研钵和研棒再次研磨并随后在含有约1体积%H2的N2气氛中在1200℃下第二次烧制8小时。第二次烧制之后,将样品研磨并通过270目筛网。
表2实施例所生产的磷光体的化学式 对于上述五种磷光体的发射光谱如附图6中给出的图表50中所示。在图表50中,y-轴52图示以相对单位表示的发射强度且x-轴54图示以纳米(nm)表示的波长。对于所有五个光谱的激发波长为405nm。磷光体A的发射光谱以附图标记56表示,磷光体B以附图标记58表示,磷光体C以附图标记60表示,磷光体D以附图标记62表示且磷光体E以附图标记64表示。在所有情况下,射线通常为蓝-绿至绿-黄,例如,所具有的发射波长峰值在约485nm-约540nm。
五种磷光体中的每种在405nm波长处的量子效率相对于已知的磷光体Sr4Al14O25:Eu2+(SAE)进行了测定,结果如表2中标注为QE/Abs的栏中所示,其中第一个数字(斜线之前)是实施例磷光体对SAE的相对效率且第二个数字为激发波长(约405nm)处的吸光率。除磷光体A以外,实施例磷光体的量子效率至少在标准磷光体(SAE)的约10%之内。
相对于环境温度(约20℃-25℃)来说在150℃下的量子效率方面的降低也进行了测定,结果如表2中所示。可以看出,对于所有实施例磷光体的量子效率保持在环境量子效率的约20%之内。相反,SAE标准物的量子效率在150℃降低约40%。
表2实施例磷光体的光学特性 实施例磷光体的发射光谱如附图6所示,可被用来计算可从与其它磷光体的共混物获得的光谱特性。例如,具有在表3中所示化学式的磷光体的光谱被用于用实施例磷光体的发射光谱计算来预测共混物的发射光谱。此外,计算还包括由光源发射的任何可见光。预测的光谱的例子如附图7-9所示,其对应于表4的第3行(光谱56)、第24行(光谱58)和第30行(光谱60)的共混物。从对这些共混物和列于表3的磷光体与本发明的磷光体A-D的多种其它共混物的预测光谱计算的光谱特性列于表4中。应该注意到的是可被用于实际物理共混物的磷光体的准确浓度取决于不同磷光体的绝对量子效率。由于各自磷光体的效率可能变化很大,每种磷光体所需的量最好以经验为主来决定,如通过标准实验设计(DOE)技术或本领域公知的其它实验技术。
表3用于共混物计算的其它磷光体的化学式 如前所述,所发射光的CIE色坐标(x,y)是可被用于选择用于照明应用的磷光体和磷光体共混物的量度特性。此外,色温(CCT)的较低值表明该光在红色波长具有更高的强度,而较高值表明光在蓝色波长具有更高的强度。光谱分布也可以被用来测定CRI,以及发光度值。
从表4的值可以看出,本发明的磷光体可被用于获得产生具有低CCT的白光的共混物。计算还表明本发明的磷光体可被用于获得产生具有高CRI,例如,高于约80或高于约90的白光的共混物。因此,本发明的磷光体可作为共混物被用于形成在广泛照明系统如白光灯中有用的发光系统。此外,其弱的热降低可有助于防止随着照明系统中磷光体温度升高出现的变暗或颜色变化。
此外,如在23-32行所示的计算表明,通过来自光源,例如,具有450nm的波长峰值的蓝色LED芯片与本发明的磷光体或其共混物的发射相结合,也可以获得令人满意的结果。有利地,该结合可产生具有高CRI和可调CCT,例如2700K-6500K的白光。
由于仅仅本发明的某些特征已在此说明并描述,对于本领域技术人员将出现许多修正和变化。因此,可被理解的是附加的权利要求书意欲涵盖落于本发明真正精神实质之内的所有这类修正和变化。
表4实施例磷光体共混物的光谱特性


权利要求
1.发光装置,包括
光源(10),其配置为发射在约250nm-约550nm之间的波长处具有峰值强度的辐射;和
磷光体组合物(22),其被配置为辐射地耦合至所述光源,其中该磷光体组合物含有包括通式((Sr1-zMz)1-(x+w)AwCex)3(Al1-ySiy)O4+y+3(x-w)F1-y-3(x-w)的磷光体,其中0<x≤0.10且0≤y≤0.5,0≤z≤0.5,0≤w≤x,A为Li,Na,K,Rb或其任何组合,且M是Ca,Ba,Mg,Zn或Sn或其任何组合。
2.如权利要求1所述的发光装置,其中光源(10)为半导体发光二极管(LED)。
3.如权利要求2所述的发光装置,其中LED(10)含有由式IniGajAlkN代表的氮化物化合物半导体,其中0≤i;0≤j,0≤k,且i+j+k=1。
4.如权利要求1所述的发光装置,其中光源(10)包括发出在约250nm-约400nm之间的波长处具有峰值强度的光的气体蒸气(46)。
5.如权利要求1所述的发光装置,其中磷光体组合物(22)涂覆在光源的表面上。
6.如权利要求1所述的发光装置,其中磷光体组合物(22)散布在密封剂(20)中,所述密封剂(20)环绕光源和该磷光体组合物。
7.如权利要求1所述的发光装置,其中磷光体组合物(22)包括一种或多种另外的磷光体。
8.如权利要求7所述的发光装置,其中所述一种或多种另外的磷光体包括用Mn4+掺杂的复合氟化物;(Ba,Sr,Ca)5(PO4)3(Cl,F,OH):Eu2+;Ca2Si5N8:Ce3+,Eu2+;(Lu,Ca,Li,Mg,Y)1.5Al3Si9N16:Eu2+,Ce3+;或(Ba,Sr,Ca)2Si1-xO4-2x:Eu2+(其中0≤x≤0.2);或其任何组合。
9.如权利要求1所述的发光装置,其中至少部分的Al由B,Ga,Sc或Y,或其任何组合替换。
10.如权利要求1所述的发光装置,其中至少部分的F由Cl,Br或I,或其任何组合替换。
全文摘要
本发明涉及应用于照明的蓝-绿色和绿色磷光体。本发明的实施方式提供相关的可被用于发光系统以产生蓝色或蓝-绿光的磷光体(22)族系。磷光体(22)包括具有通式为((Sr1-zMz)1-(x+w)AwCex)3(Al1-ySiy)O4+y+3(x-w)F1-y-3(x-w)(I)的体系,其中0<x≤0.10,0≤y≤0.5,0≤z≤0.5,0≤w≤x,A为Li,Na,K,Rb或Ag,或任何其组合,且M为Ca,Ba,Mg,Zn或Sn,或任何其组合。有利地,依照这些配方制备的磷光体(22)经宽的温度范围保持发射强度。磷光体可被用于发光系统,如LED(10)和磷光管等,以产生蓝色和蓝/绿光。此外,该磷光体可被用于与其它磷光体的共混物,或用于组合的发光系统,以产生适合用于照明的白光。
文档编号F21S2/00GK101725847SQ20091016735
公开日2010年6月9日 申请日期2009年8月21日 优先权日2008年10月22日
发明者A·A·塞特卢尔, R·G·钱德兰, C·S·亨德森, P·K·纳马尔瓦, E·拉德科夫 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1