等离子处理装置的制作方法

文档序号:2899818阅读:173来源:国知局
专利名称:等离子处理装置的制作方法
技术领域
本发明涉及在真空容器内利用等离子体对基板进行处理的等离子处理装置。
背景技术
作为半导体制造工艺之一的、用于在真空气氛下利用反应气体在基板上形成薄 膜的装置,公知有在载置台上载置多张半导体晶圆等基板,使基板相对于反应气体供给部 件一边相对地公转一边进行成膜处理的成膜装置。例如,在美国专利公报7153542号、日 本专利3144664号公报和美国专利公报6634314号中记载有这种所谓的小批量方式的成 膜装置,这样的成膜装置例如从反应气体供给部件对基板供给多种反应气体,并且在分别 供给上述多种反应气体的处理区域彼此之间例如设有物理的分隔壁,或作为气帘喷射惰 性气体,从而以防止上述多种反应气体互相混合的方式进行成膜处理。然后,用该成膜装 置,进行交替地向基板供给第1反应气体和第2反应气体而层叠原子层或分子层的例如 ALD (Atomic Layer Deposition)禾口 MLD (Molecular Layer Deposition)等。另一方面,在利用上述的ALD(MLD)法进行薄膜的成膜时,在成膜温度较低的情况 下,例如有时反应气体所含有的有机物、水分等杂质被吸入薄膜中。为了从膜中向外部排出 这样的杂质而形成致密且杂质少的薄膜,需要对晶圆例如进行用等离子体等的改性处理, 但是若在层叠薄膜之后进行该改性处理,则由于工序增加而导致成本提高。因此,也考虑到 在真空容器内进行这样的等离子处理的方法,但是在该情况下,因为使产生等离子体的等 离子体产生部与反应气体供给部件一起相对于载置台相对地旋转,所以在载置台的径向上 晶圆与等离子体接触的时间产生时间差,例如有可能在载置台的中央侧和周缘侧,改性的 程度不一致。在该情况下,在晶圆的面内,膜质、膜厚产生偏差,或对晶圆造成部分损坏。此 外,在对等离子体产生部供给大的电力的情况下,也有可能该等离子体产生部会立刻劣化。

发明内容
根据本发明的一技术方案,提供一种等离子处理装置,利用等离子体对基板进行 处理,其特征在于,包括真空容器,在其内部利用上述等离子体对上述基板进行处理;旋 转台,设于上述真空容器内,形成用于载置基板的至少1个基板载置区域;旋转机构,使该 旋转台旋转;气体供给部,向上述基板载置区域供给等离子体产生用的气体;主等离子体 产生部,在与上述基板载置区域的通过区域相对的位置的、上述旋转台的中央部侧和外周 侧之间呈棒状延伸地设置,用于向上述气体供给能量而使其等离子化;辅助等离子体产生 部,在上述真空容器的周向上相对于该主等离子体产生部分开地设置,用于补偿由该主等 离子体产生部产生的等离子体的不足的部分;真空排气部件,将上述真空容器内排成真空。


图1是表示本发明的实施方式的成膜装置的纵截面的下述图3的1-1’纵剖视图。图2是表示本发明的实施方式的成膜装置的内部的概略构成的立体图。
4
图3是本发明的实施方式的成膜装置的横截俯视图。图4是表示本发明的实施方式的成膜装置的内部的一部分的概略构成的纵剖视 图。图5是表示本发明的实施方式的成膜装置的内部的一部分的概略构成的纵剖视 图。图6A 6B是表示本发明的实施方式的活化气体喷射器的一个例子的放大立体 图。图7是表示设于本发明的实施方式的成膜装置的活化气体喷射器的纵剖视图。图8是表示本发明的实施方式的活化气体喷射器的成膜装置的纵剖视图。图9是表示本发明的实施方式的活化气体喷射器的各尺寸的纵剖视图。图10是表示在本发明的实施方式的活化气体喷射器中产生的等离子体的浓度的 示意图。图11是表示在图1的上述成膜装置中通过改性生成的薄膜的状态的示意图。图12是表示本发明的实施方式的成膜装置中的气体的流动的示意图。图13是表示本发明的实施方式的成膜装置的其他的例子的立体图。图14是表示本发明的实施方式的成膜装置的其他的例子的立体图。图15是表示本发明的实施方式的成膜装置的其他的例子的俯视图。图16是表示本发明的实施方式的成膜装置的其他的例子的俯视图。图17是概略地表示本发明的实施方式的改性装置的俯视图。图18是表示本发明的实施方式的成膜装置的其他的例子的俯视图。图19是表示本发明的实施方式的成膜装置的其他的例子的立体图。图20是本发明的实施方式的其他的例子的成膜装置的剖视图。图21是本发明的实施方式的其他的例子的成膜装置的示意图。图22是表示本发明的实施方式的成膜装置的其他的例子的立体图。图23是本发明的实施方式的其他的例子的成膜装置的立体图。图M是表示本发明的实施方式的其他的例子的成膜装置的侧视图。图25是表示本发明的实施方式的其他的例子的成膜装置的主视图。图沈是表示本发明的实施方式的其他的例子的成膜装置的概略图。图27是表示本发明的实施方式的成膜装置的其他的例子的立体图。图观是表示本发明的实施方式的成膜装置的其他的例子的剖视图。图四是表示本发明的实施方式的成膜装置的其他的例子的剖视图。图30是在本发明的实施例中得到的特性图。图31是在本发明的实施例中得到的特性图。图32A 32G是在本发明的实施例中得到的特性图。图33A 3 是在本发明的实施例中得到的特性图。图34A 34B是在本发明的实施例中得到的特性图。图35A 35D是在本发明的实施例中得到的特性图。图36是在本发明的实施例中得到的特性图。图37是用于说明本发明的实施例的俯视图。
图38是在本发明的实施例中得到的特性图。图39是用于说明本发明的实施例的俯视图。图40是在本发明的实施例中得到的特性图。图41是用于说明在本发明的实施例中得到的结果的示意图。图42A 42C是用于说明本发明的实施例的俯视图。图43是在本发明的实施例中得到的特性图。图44是在本发明的实施例中得到的特性图。图45是在本发明的实施例中得到的特性图。
具体实施例方式实施例的说明图1 (下述的图3的1-1’剖视图)表示作为本发明的一实施方式的等离子处理装 置的一个例子的成膜装置1000的构成。成膜处理装置1000包括平面(俯视)形状是大 致圆形且扁平的真空容器1 ;设于该真空容器1内,在该真空容器1的中心具有旋转中心的 旋转台2。真空容器1构成为顶板11能从容器主体12分离。顶板11利用内部的减压状态 借助设于容器主体12的上端面的密封构件例如0型密封圈13被按压于容器主体12侧,维 持气密状态,而在将顶板11从容器主体12分离时,被未图示的驱动机构向上方抬起。旋转台2的中心部被固定在圆筒形状的芯部21,该芯部21固定在沿铅垂方向延伸 的旋转轴22的上端。旋转轴22贯穿真空容器1的底面部14,其下端安装在作为旋转机构 的驱动部23上,该驱动部23使该旋转轴22绕铅垂轴线在该例子中绕顺时针旋转。旋转轴 22和驱动部23被收纳在上表面开口的筒状的壳体20内。设于该壳体20的上表面的凸缘 部分气密地安装在真空容器1的底面部14的下表面,维持壳体20的内部气氛和外部气氛 的气密状态。如图2和图3所示,在旋转台2的表面部沿着旋转方向(周向)设有用于载置多 张例如5张作为基板的半导体晶圆(以下称为“晶圆”)W的圆形状的凹部M。另外,为了 便于图示,仅在图3中的1个凹部M中画出晶圆W。该凹部M被设定为其直径稍大于晶圆 W的直径例如大4mm,而且其深度与晶圆W的厚度同等的大小。因此,在晶圆W落入凹部M 时,晶圆W的表面和旋转台2的表面(未载置有晶圆W的区域)对齐。在凹部M的底面形 成有通孔(未图示),该通孔供用于支承晶圆W的背面地使该晶圆W升降的例如后述3根升 降销贯穿。凹部M为了对晶圆W进行定位,防止晶圆W由于随着旋转台2旋转而产生的离 心力飞出,相当于本发明的基板载置区域的部位。如图2和图3所示,在旋转台2的分别与凹部M的通过区域相对的位置,分别沿 着真空容器1的周向(旋转台2的旋转方向)互相隔有间隔地呈放射状配置有例如由石英 构成的第1反应气体喷嘴31和第2反应气体喷嘴32、2个分离气体喷嘴41、42、活化气体喷 射器220。在本例中,从后述的输送口 15起来看,按顺序顺时针(旋转台2的旋转方向)排 列有活化气体喷射器220、分离气体喷嘴41、第1反应气体喷嘴31、分离气体喷嘴42和第2 反应气体喷嘴32,上述活化气体喷射器220和喷嘴31、32、41、42例如以从真空容器1的外 周壁导入真空容器1内,且朝向旋转台2的旋转中心与晶圆W相对地水平延伸的方式安装。 作为各喷嘴31、32、41、42的基端部的气体导入件313、3加、413、4加贯穿真空容器1的外周壁。反应气体喷嘴31、32分别作为第1反应气体供给部件、第2反应气体供给部件,分离气 体喷嘴41、42分别作为分离气体供给部件。上述活化气体喷射器220在后详述。第1反应气体喷嘴31和第2反应气体喷嘴32分别经由未图示的流量调整阀等, 分别与作为含有Si (硅)的第1反应气体的双叔丁基氨基硅烷气体的气体供给源和作为第 2反应气体的O3 (臭氧)气体和O2 (氧)气体的混合气体的气体供给源(均未图示)连接, 分离气体喷嘴41、42均经由流量调整阀等与作为分离气体的N2气体(氮气)的气体供给 源(未图示)连接。另外,以下为了方便说明,将第2反应气体作为O3气体而说明。在反应气体喷嘴31、32上,气体喷出孔33朝向正下方并在喷嘴的长度方向上例如 隔有IOmm的间隔地等间隔排列。此外,反应气体喷嘴31、32的下方区域分别成为用于使含 Si气体吸附于晶圆W的第1处理区域Pl和用于使O3气体吸附于晶圆W的第2处理区域 P2。在上述的图1 图3中省略了图示,但是如图4所示,反应气体喷嘴31、32分别具 有喷嘴罩120,该喷嘴罩120分别与处理区域PI、P2的顶面45分开地设于晶圆W的附近, 沿着喷嘴31、32的长度方向从上方侧覆盖上述喷嘴31、32,并且下方侧开口。分离气体的大 部分在整流构件121和顶面45之间流动,而几乎不在旋转台2和反应气体喷嘴31 (32)之 间流动,由此,能够抑制在各处理区域P1、P2的、从反应气体喷嘴31 (32)向晶圆W供给的反 应气体浓度的降低,高效率地进行对晶圆W表面的成膜,该整流构件121从喷嘴罩120的下 端侧沿着长度方向向旋转台2的周向两侧延伸。分离气体喷嘴41、42用于形成用于分离上述第1处理区域Pl和第2处理区域P2 的分离区域D,如图2和图3所示,在该分离区域D的真空容器1的顶板11上设有以旋转 台2的旋转中心为中心且在周向上分割沿着真空容器1的内周壁的附近描画的圆而成的、 平面形状为扇型且向下方突出的凸状部4。分离气体喷嘴41、42收纳于槽部43内,该槽部 43在该凸状部4的上述圆的周向中央以沿着该圆的径向延伸的方式形成。在上述分离气体喷嘴41、42的上述周向两侧存在作为上述凸状部4的下表面的例 如平坦且低的顶面44(第1顶面),在该顶面44的上述周向两侧存在比顶面44高的顶面 45(第2顶面)。该凸状部4的作用在于形成作为狭窄空间的分离空间,该分离空间用于阻 止第1反应气体和第2反应气体进入该分离空间与旋转台2之间,从而阻止上述反应气体 混合。即,以分离气体喷嘴41为例,阻止O3气体从旋转台2的旋转方向上游侧进入,还阻 止含Si气体从旋转方向下游侧进入。另外,作为分离气体,不限于氮(N2)气体,也可以用 氩(Ar)气体等惰性气体等。另一方面,如图5所示,在顶板11的下表面,以与旋转台2的芯部21的外周侧的 部位相对的方式,且沿着该芯部21的外周设有突出部5。该突出部5与凸状部4的上述旋 转中心侧的部位连续地形成,其下表面和凸状部4的下表面(顶面44)形成为相同的高度。 图2和图3在比上述顶面45低且比分离气体喷嘴41、42高的位置水平地剖视顶板11而表示。真空容器1的顶板11的下表面、即从旋转台2的晶圆载置区域(凹部24)来看的 顶面,如上所述在周向上存在的第1顶面44和比第1顶面44高的第2顶面45,图1表示 设有高的顶面45的区域的纵截面,图5表示设有低的顶面44的区域的纵截面。如图2和 图5所示,扇型的凸状部4的周缘部(真空容器1的外缘侧的部位)以与旋转台2的外端面相对的方式弯曲成L字型,形成弯曲部46。扇型的凸状部4设于顶板11侧,能从容器主 体12卸下,所以上述弯曲部46的外周面和容器主体12之间有微小的间隙。弯曲部46也 和凸状部4相同,是以防止反应气体从两侧进入,防止两反应气体混合为目的而被设置的, 弯曲部46的内周面和旋转台2的外端面的间隙、以及弯曲部46的外周面和容器主体12的 间隙例如被设定为与顶面44相对于旋转台2表面的高度相同的尺寸。如图5所示,在分离区域D,容器主体12的内周壁与上述弯曲部46的外周面接近, 形成垂直面,然而在分离区域D以外的部位,如图1所示,例如从与旋转台2外端面相对的 部位起到底面部14(俯视看为围着底面部14)切掉纵断面形状为矩形的部分而形成向外方 侧凹陷的构造。该凹陷的部位的连通上述第1处理区域Pl和第2处理区域P2的区域分别 称为第1排气区域El和第2排气区域E2时,如图1和图3所示,在上述第1排气区域El 和第2排气区域E2的底部,分别形成有第1排气口 61和第2排气口 62。如图1所示,第 1排气口 61和第2排气口 62分别经由排气管63与作为真空排气部件的例如真空泵64连 接。另外,图1中附图标记65是压力调整部件。如图1和图5所示,在上述旋转台2和真空容器1的底面部14之间的空间设有作 为加热部件的加热单元7,隔着旋转台2将旋转台2上的晶圆W加热到由工艺制程程序决定 的温度例如300°C。在上述旋转台2的周缘附近的下方侧,为了划分从旋转台2的上方空间 到排气区域El、E2的气氛和载置有加热单元7的气氛,以沿着整周围绕加热单元7的方式 设有覆盖构件71。覆盖构件71的上缘向外侧弯曲,形成凸缘形状,通过减小该弯曲面和旋 转台2的下表面之间的间隙,抑制气体从外方进入覆盖构件71内。底面部14的比配置有加热单元7的空间靠旋转中心的部位接近旋转台2的下表 面的中心部附近、芯部21,在该底面部14的比配置有加热单元7的空间靠旋转中心的部位 的上表面与旋转台2的下表面的中心部附近之间、在该底面部14的比配置有加热单元7的 空间靠旋转中心的部位的上表面与芯部21之间形成狭窄空间,贯穿底面部14的旋转轴22 的通孔的内周面与旋转轴22之间的间隙也是狭窄的,上述狭窄空间连通到上述壳体20内。 而且,在上述壳体20上设有吹扫气体供给管72,该吹扫气体供给管72用于将作为吹扫气体 的N2气体供给到上述狭窄空间内而进行吹扫。此外,在真空容器1的底面部14,在加热单 元7下方侧位置的周向的多个部位,设有用于对加热单元7的配置空间进行吹扫的吹扫气 体供给管73。此外,在真空容器1的顶板11的中心部连接有分离气体供给管51,向顶板11和 芯部21之间的空间52供给作为分离气体的队气体。向该空间52供给的分离气体经由上 述突出部5和旋转台2之间的狭小的间隙50,沿着旋转台2的晶圆载置区域侧的表面朝向 周缘喷出。被该突出部5围绕的空间中充满分离气体,所以防止反应气体(含Si气体和O3 气体)经由旋转台2的中心部在第1处理区域Pl和第2处理区域P2之间混合。如图2、图3所示,在真空容器1的侧壁,还形成有用于在外部的输送臂10和旋转 台2之间进行作为基板的晶圆W的交接的输送口 15,该输送口 15由未图示的闸阀打开或关 闭。此外,在旋转台2的晶圆载置区域即凹部M的面对输送口 15的位置,与输送臂10之 间进行晶圆W的交接,所以在旋转台2下方侧的与交接位置相对应的部位,设有用于贯穿凹 部M并从背面顶起晶圆W的交接用的升降销及其升降机构(均未图示)。接着,详述上述的活化气体喷射器220。活化气体喷射器220遍及载置有晶圆W的
8基板载置区域的旋转台2的中心侧的内缘和旋转台2的外周侧的外缘之间产生等离子体, 在每次利用该等离子体进行例如成膜循环(旋转台2旋转)时,利用含Si气体和O3气体的 反应对在晶圆W上成膜的作为反应生成物的氧化硅膜(SiO2膜)进行改性。如图6A、6B所 示,该活化气体喷射器220包括气体导入喷嘴34,用于向真空容器1内供给等离子体产生 用的处理气体、例如作为由石英构成的气体供给部;等离子体产生部80,为了将从气体导 入喷嘴34导入的处理气体等离子化,配置在该气体导入喷嘴34的旋转台2的旋转方向下 游侧,由互相平行的1对棒状的鞘管35a、3^构成;罩体221,从上方侧覆盖上述气体导入 喷嘴34和等离子体产生部80,由绝缘体例如石英构成。等离子体产生部80设有多组例如 6组。另外,图6A表示卸下了罩体221的状态,图6B表示配置有罩体221的外观。气体导入喷嘴34和各等离子体产生部80以与旋转台2上的晶圆W分别平行的方 式或与该旋转台2的旋转方向正交的方式,从设在真空容器1的外周面的基端部80a朝向 旋转台2的中心部侧分别气密地插入该真空容器1内。此外,为了改变各等离子体产生部 80上的、在旋转台2的径向上产生的等离子体的长度,上述等离子体产生部80在旋转台2 外周部侧的从晶圆W的端部的上方位置到向中心部侧延伸的顶端部之间的长度尺寸R根据 各组等离子体产生部80互不相同。关于上述等离子体产生部80的长度尺寸(详细后述的 电极36a、36b的长度尺寸)R,列举其一个例子,从旋转台2的旋转方向上游侧起例如分别是 50、150、245、317、194、97mm。作为上述等离子体产生部80 (后述的辅助等离子体产生部82) 的长度尺寸R,也可以如后述的实施例所示那样,例如根据制程程序、成膜的膜种进行各种 改变。将从旋转台2的旋转方向上游侧起的第4组的等离子体产生部80称为主等离 子体产生部81,该主等离子体产生部81像上述那样被设定成长度尺寸R比晶圆W的直径 (300mm)长,所以构成为在载置有晶圆W的基板载置区域的旋转台2中心侧的内缘和旋转台 2外周侧的外缘之间产生等离子体。另一方面,将该主等离子体产生部81以外的5组等离 子体产生部80称为各辅助等离子体产生部82,如上述那样上述辅助等离子体产生部82的 长度尺寸R被设定成比主等离子体产生部81短,所以在各辅助等离子体产生部82的顶端 部(旋转台2的中心部侧)和中心部区域C之间,不存在等离子体或等离子体从外周部侧 稍微地扩散而来。因此,如后所述,各辅助等离子体产生部82补偿由主等离子体产生部81 产生的旋转台2的外周部侧的等离子体的不足部分,在活化气体喷射器220的下方区域,为 了使旋转台2的中心部侧和外周部侧的改性的程度一致,该各辅助等离子体产生部82被设 定成与该中心部侧相比外周部侧等离子体的浓度浓(量多)。各等离子体产生部80包括互相接近配置的1组鞘管35a、35b。上述鞘管35a、35b 例如由石英、矾土(氧化铝)或氧化钇(yttria、t03)构成。此外,如图7所示,在上述鞘 管35a、35b内,例如分别插入有由镍合金、钛等构成的电极36a、36b而形成平行电极,如图 3所示,例如13. 56MHz、例如500W以下的高频电力从真空容器1的外部的高频电源2M经 由匹配器225并列地供给上述电极36a、36b。上述鞘管35a、3 被配置成分别插入该鞘管 35a、35b的内部的电极36^1、3乩之间的分开距离为IOmm以下例如4. 0mm。另外,鞘管35a、 3 例如也可以在石英表面例如涂敷上述的氧化钇等。此外,上述等离子体产生部80以能调整与旋转台2上的晶圆W之间的分开距离的 方式自上述的基端部80a分别气密地安装在真空容器1的侧壁。图7中附图标记37是连
9接于鞘管35a、35b的基端侧(真空容器1的内壁侧)的保护管,在图6等中省略绘画。另 外,在图6以外的图中简略地表示鞘管35a、35b。如上述的图3所示,在气体导入喷嘴34上连接有供给等离子体产生用的处理气体 的等离子体气体导入通路251的一端侧,该等离子体气体导入通路251的另一端侧分支成 2支,分别经由阀252和流量调整部253分别与等离子体生成气体源2M和添加气体源255 连接,该等离子体生成气体源2M存储有用于产生等离子体的等离子体生成气体(放电气 体)例如Ar(氩)气体;该添加气体源255存储有用于抑制等离子体的产生(连锁)的、电 子亲和力比放电气体大的局部放电抑制用气体(添加气体)例如O2气体。而且,将这些放 电气体和添加气体作为处理气体对上述的气体导入喷嘴34供给。图6A中附图标记341是 沿着气体导入喷嘴;34的长度方向设于多个部位的气孔。作为该处理气体,除了 Ar气体、& 气体以外,也可以用例如He (氦)气体、H2气体和含0气体中的任一种。图6B中附图标记221是上述的罩体,配置成从上方侧和侧面(长边方向和短边方 向的两侧面)侧覆盖配置有气体导入喷嘴;34和鞘管35a、35b的区域。此外,图6B中附图 标记222是沿着活化气体喷射器220的长度方向从罩体221的两侧面的下端部朝向外侧, 呈凸缘状水平地延伸出的气流限制面,为了抑制从旋转台2上游侧流来的O3气体、队气体 进入罩体221的内部区域,以缩小该气流限制面222的下端面和旋转台2的上表面之间的 间隙的方式,且以越从旋转台2的中心部侧朝向气流变快的旋转台2的外周侧,其宽度尺寸 u越宽的方式形成。在旋转台2外周侧的罩体221的侧壁面上形成有导入口观0,上述的各 等离子体产生部80在该导入口观0内插入有基端侧的保护管37的状态下安装在真空容器 1的侧壁面上。在罩体221的长度方向的两侧面的上端部,例如为了利用顶板11支承罩体 221,以互相分开的方式例如在2个部分形成爪部300。图8中附图标记223是为了用爪部 300支承罩体221而设于该罩体221和真空容器1的顶板11之间的多个部位的支承构件 223,示意地表示其位置。如图7所示,上述气流限制面222的下端面和旋转台2的上表面之间的间隙尺寸t 例如被设定为Imm左右。此外,关于气流限制面222的宽度尺寸u列举一个例子,在晶圆W 位于罩体221的下方位置时,与旋转台2的旋转中心侧的晶圆W的外缘相对的部位的宽度 尺寸u例如为80mm,与真空容器1的内周壁侧的晶圆W的外缘相对的部位的宽度尺寸u例 如为130mm。另一方面,罩体221的上端面和真空容器1的顶板11的下表面之间的尺寸以 大于上述间隙t的方式设定为20mm以上例如30mm。因此,从旋转台2旋转方向上游侧流来 的气体即反应气体和分离气体的混合气体在罩体221和顶板11之间流动。此外,关于上述的电极36a(36b)、旋转台2上的晶圆W和罩体221之间的位置关系 进行说明,在该例子中,如图9所示,罩体221的上表面的厚度尺寸hi、旋转台2外周侧的罩 体221的侧壁面的宽度尺寸h2、罩体221内的上表面和电极36a(36b)之间的分开距离h3、 电极36a(36b)和旋转台2上的晶圆W之间的分开距离h4分别例如为4mm、8mm、9. 5mm、7mm。 此外,保护管37和旋转台2上的晶圆W之间的距离例如是2mm。此外,在该成膜装置1000中设有由用于进行装置整体的动作的控制的计算机构 成的控制部100,在该控制部100的存储器内收纳有用于进行后述的成膜处理和改性处理 的程序。该程序为了执行后述的装置的动作而装入有步骤群,从硬盘、光盘、光磁盘、存储 卡、软盘等存储部101安装到控制部100内。
接着,关于上述实施方式的成膜装置1000的作用进行说明。首先,打开未图示的 闸阀,利用输送臂10从外部经由输送口 15将晶圆W交接到旋转台2的凹部M内。在凹部 M停止在面对输送口 15的位置时,通过未图示的升降销经由凹部M的底面的通孔从真空 容器1的底部侧升降而进行该交接。使旋转台2间歇性地旋转而进行这样的晶圆W的交 接,分别将晶圆W载置于旋转台2的5个凹部M内。接着,关闭闸阀,利用真空泵64使真 空容器1内成为抽取状态,之后利用压力调整部件65将真空容器1内调整为预先设置的处 理压力,并且一边使旋转台2顺时针旋转一边利用加热单元7将晶圆W加热到例如300°C。 此外,从反应气体喷嘴31、32分别喷出含Si气体和O3气体,并且从气体导入喷嘴34以成 为100 2 200 20左右的流量比的方式例如分别以8. Oslm Jslm喷出Ar气体和O2气 体,向鞘管35a、3^之间施加13. 56MHz、电力为400W的高频。此外,从分离气体喷嘴41、42 以规定的流量喷出作为分离气体的N2气体,也从分离气体供给管51和吹扫气体供给管72、 72以规定的流量喷出队气体。此时,在活化气体喷射器220中,从气体导入喷嘴34经由各气孔341分别向鞘管 35a,35b喷出的Ar气体和O2气体被供给到鞘管35a、3^之间的区域的高频活化,例如生成 Ar离子、Ar自由基等的等离子体。关于该等离子体(活性种),因为像上述那样调整在各 等离子体产生部80中的自基端部侧(旋转台2的外周部侧)起的电极36a、36b的长度尺 寸R,所以如图10所示,在与旋转台2的中心部侧相比外周部侧的量多(浓度浓)地产生, 朝向在活化气体喷射器220的下方与旋转台2 —起移动(旋转)的晶圆W下降。此时,例 如由于旋转台2的旋转而造成等离子体不稳定,欲局部产生等离子体,但是因为在处理气 体中混合O2气体,所以Ar气体的等离子化的连锁被抑制,等离子体的状态稳定。另外,像 上述那样每组等离子体产生部80产生的等离子体的长度尺寸不同,但是图10概略地表示 在上述等离子体产生部80中产生的等离子体的量(密度)。另一方面,利用旋转台2的旋转,在晶圆W表面,含Si气体吸附在第1处理区域P1, 接着在第2处理区域P2,吸附在晶圆W上的含Si气体被氧化,氧化硅膜的分子层形成1层 或多层。在该氧化硅膜中,例如由于含Si气体中含有的残留基,有时含有水分(0H基)、有 机物等杂质。而且,在该晶圆W到达活化气体喷射器220的下方区域时,利用上述的等离子 体进行氧化硅膜的改性处理。具体而言,例如Ar离子与晶圆W表面碰撞,上述的杂质被从 氧化硅膜放出,或氧化硅膜内的元素再排列而谋求氧化硅膜的致密化(高密度化)。因此, 改性处理后的氧化硅膜通过致密化而提高相对于湿蚀刻的抗性。此时,因为旋转台2旋转,所以晶圆W通过活化气体喷射器220的下方区域时的 周向速度在该旋转台2的外周部侧比中心部侧快。因此,在旋转台2的外周部侧与中心部 侧相比,供给等离子体的时间变短,改性处理的程度例如欲变弱成1/3左右,但是像上述那 样,以在该外周部侧等离子体的量比中心部侧多的方式配置各等离子体产生部80,所以如 后述的实施例所示那样,从旋转台2的中心部侧遍及到外周部侧均勻地进行改性处理。因 此,氧化硅膜的膜厚(收缩量)和膜质在晶圆W的整个面内一致。这样,利用旋转台2的旋 转,在每个成膜循环中进行含Si气体的吸着、含Si气体的氧化和改性处理,依次层叠氧化 硅膜时,因为在上下方向(第N层和第(N+1)层)上层叠的反应生成物之间也产生上述的 元素的再排列,所以如图11所示,在膜厚方向上膜厚和膜质遍及面内和面间地形成均勻的 薄膜。
此外,在该真空容器1内,因为在活化气体喷射器220和第2反应气体喷嘴32之 间未设置分离区域D,所以O3气体、N2气体被旋转台2的旋转引导,从上游侧朝向活化气体 喷射器220流来。但是,因为如上所述以覆盖各等离子体产生部80和气体导入喷嘴34的 方式设置罩体221,所以罩体221的上方侧的区域比罩体221的下方侧(气流限制面部222 和旋转台2之间的间隙t)大。此外,因为从气体导入喷嘴34对罩体221的内部区域供给 处理气体,所以该内部区域与外部(真空容器1内)相比成为较小的正压。因此,从旋转台 2的旋转方向上游侧流来的气体难以进入罩体221的下方侧。此外,因为朝向活化气体喷射 器220流动的气体被旋转台2的旋转引导而从上游侧流来,所以从旋转台2的径向内周侧 越朝向外周侧去而流速越快,然而,旋转台2的外周侧的气流限制面部222的宽度u比内周 侧宽,所以能够抑制气体遍及活化气体喷射器220的长度方向进入罩体221的内部。因此, 如上述的图7所示,朝向活化气体喷射器220从上游侧流来的气体经由罩体221的上方区 域流到下游侧的排气口 62。因此,因为这些O3气体、队气体几乎不受由于高频而造成的活 化等影响,所以例如能够抑制而!£等的产生,抑制构成真空容器1的构件等的腐蚀。此外, 晶圆W也几乎不受这些气体的影响。另外,由于改性处理而从氧化硅膜排出的杂质在之后 气体化,与Ar气体、N2气体等一起朝向排气口 62被排出。此时,因为向第1处理区域Pl和第2处理区域P2之间供给N2气体,而且也向中 心部区域C供给作为分离气体的N2气体,所以如图12所示,以含Si气体和O3气体不混合 的方式排出各气体。此外,在该例子中,在沿着配置有反应气体喷嘴31、32和活化气体喷射器220的第 2顶面45的下方侧的空间的容器主体12的内周壁,像上述那样内周壁凹陷而空间变大,排 气口 61、62位于该大的空间的下方,所以第2顶面45的下方侧的空间的压力比第1顶面44 的下方侧的狭窄空间和上述中心部区域C的各压力低。另外,利用N2气体吹扫旋转台2的 下方侧,所以流入排气区域E的气体完全不可能通过旋转台2的下方侧,例如含Si气体完 全不可能流入O3气体的供给区域。在这里,记载了处理参数的一个例子,旋转台2的转速在以直径300mm的晶圆W为 被处理基板的情况下例如为Irpm 500rpm,工艺压力例如为10671 (8Torr)、含Si气体和 O3气体的流量例如分别以lOOsccm和lOOOOsccm、来自分离气体喷嘴41、42的N2气体的流 量例如为20000sCCm、来自真空容器1的中心部的分离气体供给管51的队气体的流量例如 为5000sCCm。此外,对1张晶圆W供给反应气体的循环数、即晶圆W分别通过处理区域P1、 P2的次数根据目标膜厚而变化,但是例如是1000次。根据上述的实施方式的成膜装置(等离子处理装置)1000,在使旋转台2旋转而使 含Si气体吸附在晶圆W上,接着向晶圆W表面供给O3气体与吸附在晶圆W表面的含Si气 体反应而形成氧化硅膜时,在形成氧化硅膜之后,从在旋转台2的周向上具有多组等离子 体产生部80的活化气体喷射器220对晶圆W上的氧化硅膜供给处理气体的等离子体,在每 个成膜循环中进行改性处理,因此,能获得致密且杂质少的薄膜。此时,因为能改变各等离 子体产生部80 (辅助等离子体产生部82)的长度尺寸R,所以例如能够根据工艺的种类等调 整从旋转台2的中心部侧到外周部侧的晶圆W的改性的程度(等离子体的量)。因此,如在上述的例子中说明的那样,根据通过活化气体喷射器220的下方区域 的速度,旋转台2的中心部侧与外周部侧相比等离子体的供给时间长,改性处理强的情况
12下,在旋转台2的中心部侧将不产生等离子体或等离子体的产生(扩散)量少的辅助等离 子体产生部82与主等离子体产生部81 —起配置,从而能够使该外周部的等离子体的量比 中心部侧多,所以能够进行改性处理使得在面内膜厚和膜质均勻。因此,如后述的实施例所 示那样,能够抑制由于进行过强的改性处理而产生损坏晶圆W、或产生改性处理不充分的部 位。即,在从旋转台2的中心部侧朝向外周部侧改性处理的程度变弱时,若在旋转台2外周 部侧进行良好的改性处理,则有时在中心部侧改性处理过强而对晶圆W造成损坏,若欲在 中心部侧进行良好的改性处理,则在外周部侧改性处理有可能不充分。因此,在这样的情况 下,若欲从旋转台2的中心部侧直到外周部侧进行良好的改性处理,则处理条件等参数的 设定范围变狭小。另一方面,在本发明中,因为在旋转台2的径向改性处理的程度一致,所 以能遍及晶圆W面内进行良好的改性处理。因此,在本发明中,因为能较宽地确保能进行良 好的改性处理的参数的设定范围,所以能得到自由度高的成膜装置。此外,在进行改性处理时,通过配置多组等离子体产生部80,使氧化硅膜的改性所 需的能量分散于这些多组等离子体产生部80上。因此,与利用1组等离子体产生部80进 行改性处理的情况相比,能够减少在各等离子体产生部80中所产生的等离子体的量,所以 通过大范围地形成所谓稳健状态的等离子体,花费较长时间缓慢地进行改性处理,因此能 降低对晶圆W的损坏。从另外的方面来看,为了以短时间完成这样的改性处理例如用1组 等离子体产生部80设定为稳健的等离子体条件并且使旋转台2以低速旋转、在稳健的条件 下花费较长时间进行,可以说需要采用较宽的供给等离子体的区域来使旋转台2以高速旋 转。因此,能够一边抑制由等离子体造成的损坏地进行良好的改性处理,一边迅速地进行薄 膜的成膜处理和改性处理。此外,通过配置多组等离子体产生部80,因为与用1组等离子体产生部80的情况 相比供给各等离子体产生部80的能量变少,所以能抑制各等离子体产生部80的例如由发 热、等离子体的溅射而产生的劣化。因此,例如能够抑制由鞘管35a、35b的溅射而产生的杂 质(石英)混入晶圆W。而且,因为在真空容器1的内部每次进行成膜循环时都进行改性处理,所谓在旋 转台2的周向上,晶圆W通过各处理区域PI、P2的路径的中途不与成膜处理产生干涉地 进行改性处理,所以例如能够以比在薄膜的成膜完成后进行改性处理短的时间进行改性处理。此外,因为利用罩体221能抑制从上游侧流来的气体进入该罩体221的内部,所以 能够抑制这些气体的影响,在成膜循环的中途进行改性处理。因此,例如也可以在第2反 应气体喷嘴32和活化气体喷射器220之间不设置专用的分离区域D,所以能抑制成膜装置 的成本地进行改性处理,还能抑制NOx等副生成气体的产生,抑制例如构成装置的构件的腐 蚀。此外,因为由绝缘体构成该罩体221,所以在罩体221和等离子体产生部80之间不形成 等离子体,因此,能够将该罩体221接近等离子体产生部80地配置,因而能使装置小型化。
而且,与Ar气体一起供给&气体,抑制Ar气体的等离子化的连锁,从而在活化气 体喷射器220的长度方向上且在进行改性处理(成膜处理)的整个时间内抑制等离子体的 局部产生,所以能在晶圆W的面内和面间均勻地进行改性处理。此外,因为像上述那样将电 极36a、36b的分开距离设定得狭小,所以即使不是气体电离最佳的高的压力范围(成膜处 理的压力范围),也能够以低输出将Ar气体活化(电离)成改性处理所需的程度。
在上述的例子中,每次进行成膜处理都进行了改性处理,但是也可以进行多次例 如20次的成膜处理(循环)而进行一次改性处理。在该情况下,进行改性处理时,具体而 言,停止供给含Si气体、O3气体和队气体,从气体导入喷嘴34向活化气体喷射器220供给 处理气体,并且向鞘管35a、3 供给高频。然后,使5张晶圆W依次通过活化气体喷射器220 的下方区域地使旋转台2例如旋转200次。这样进行了改性处理之后,再次恢复各气体的 供给,进行成膜处理,依次反复改性处理和成膜处理。在该例子中,也与上述的例子相同,获 得致密且杂质浓度低的薄膜。在该情况下,因为进行改性处理时停止供给O3气体、队气体, 所以如上述的图6A所示,也可以不设置罩体221。此外,在设有多组等离子体产生部80时,在上述的例子中将上述等离子体产生部 80中的1组设为主等离子体产生部81,对于其他的等离子体产生部80,配置了长度尺寸R 比该主等离子体产生部81的长度尺寸R短的辅助等离子体产生部82,然而有关这些长度尺 寸R,也能够如后述的实施例所示那样进行各种改变,例如也可以如图13所示那样,将6组 等离子体产生部80全部设为相同长度的主等离子体产生部81,不设置辅助等离子体产生 部82。此外,作为辅助等离子体产生部82,为了在与旋转台2外周部侧相比在中心部侧进 行较强的改性处理而在调整等离子体的量的情况下,例如也可以使辅助等离子体产生部82 的一端侧从中心部区域C沿旋转台2水平地向外周部侧延伸,使另一端侧呈L字型朝向上 方弯曲地与高频电源2M连接。此外,也可以使这样的辅助等离子体产生部82与从上述的 旋转台2的外周部侧延伸的辅助等离子体产生部82共同配置,对于主等离子体产生部81, 也可以使其从中心部区域C延伸。而且,在旋转台2的中心部侧和外周部侧之间以与旋转台 2的周向正交的方式配置了各等离子体产生部80,但是例如也可以使等离子体产生部80的 一端侧从真空容器1的内壁朝向中心部区域C延伸,并且使该一端侧例如在旋转台2的径 向中央部沿着旋转台2的周向,例如朝向上游侧呈圆弧状弯曲,在该中央部等离子体的产 生量较多。因此,所谓“棒状的”等离子体产生部80,不只是直线状,也包含圆弧状或圆形。而且,在上述的例子中用平行电极(电极36a、36b)产生电容耦合型等离子体,但 是也可以用线圈型的电极产生感应耦合型的等离子体。在该情况下,具体而言,如图14所 示,将多个从真空容器1的侧面朝向旋转台2的中心部侧平行地呈棒状延伸且在该中心部 侧连接成U字型的电极(天线)400平行地配置,这些电极400的长度尺寸R也可以互不相 同。在该例子中,配置3组电极400,并且这些电极400的长度尺寸R从旋转台2旋转方向 上游侧朝向下游侧依次变短(例如分别为310mm、220mm、170mm)。图14中附图标记401是 分别连接这些电极400的两端部的用于产生感应耦合型的等离子体的共用的电源。在该例 子中,因为能在旋转台2的径向上调整等离子体的量,所以能调整晶圆W面内的改性的程 度。在该图14中,也设有覆盖这些电极400和气体导入喷嘴34的罩体221,但是省略图示。而且,在设有多组等离子体产生部80时,将上述等离子体产生部80收纳在一个罩 体221内,并且共用气体导入喷嘴34,但是既可以对每组等离子体产生部80分别配置气体 导入喷嘴34,也可以例如如图15所示,进一步设有覆盖各等离子体产生部80和气体导入喷 嘴34的罩体221。另外,在该图15中,表示配置有多组例如2组等离子体产生部80的例 子,1组配置主等离子体产生部81,作为另一组等离子体产生部80,配置辅助等离子体产生 部82。此外,说明了用上述的成膜装置通过ALD法、MLD法等成膜方法进行成膜的例子,然而例如也可以通过改变成膜温度、反应气体,通过CVD法形成薄膜,在该情况下,如图16 所示,也可以将2种混合气体例如SiH4气体和&气体用作反应气体而形成由S^2构成的薄膜。而且,在真空容器1内,通过CVD法或ALD法等形成薄膜并且进行了改性处理,然 而例如也可以在外部的装置中,用上述的活化气体喷射器220对形成有薄膜的晶圆W进行 改性处理。在该情况下,代替上述的成膜装置1000,作为图17示意性地表示的等离子处理 装置的其他的例子,用改性装置1000’。在该改性装置1000’中进行薄膜的改性处理的情况 下,在真空容器1内的旋转台2上载置形成有薄膜的晶圆W,使旋转台2旋转,并且将真空容 器1内排成真空。然后,在活化气体喷射器220中产生等离子体而进行薄膜的改性。这样, 例如通过使旋转台2旋转多次,得到面内膜厚和膜质均勻的薄膜。另外,在该图17中,示意 表示改性装置1000’的各部,例如上述的输送口 15等省略记载。而且,在上述的例子中配置多组等离子体产生部80时,对于上述等离子体产生部 80中的至少1组,设置了从旋转台2的中心部侧延伸到外周部侧地产生等离子体的主等离 子体产生部81,但是也可以由多组等离子体产生部80中的多组例如2组构成主等离子体产 生部81。具体而言,如图18所示,使多组等离子体产生部80中的至少1组像上述那样从中 心部区域C朝向旋转台2外周部侧地延伸,使该等离子体产生部80 (辅助等离子体产生部 82)的一端侧延伸并且使其另一端侧例如弯曲成L字型,经由匹配器225与高频电源2M连 接。此外,为了使该辅助等离子体产生部82和该多组等离子体产生部80中的至少1组的 顶端部在旋转台2的旋转方向上互相重叠,即为了从旋转台2的中心部侧遍及到外周部侧 地产生等离子体,在偏向该辅助等离子体产生部82的旋转台2的旋转方向上游侧或下游侧 的位置,使等离子体产生部80 (辅助等离子体产生部82)从真空容器1的外周侧朝向旋转 台2的中心部侧延伸。这样地利用上述2组等离子体产生部80、80构成主等离子体产生部 81。在该情况下,也能调整旋转台2的中心部侧和外周部侧的改性的程度,并且与利用1组 等离子体产生部80进行改性处理的情况相比能降低对晶圆W的损坏。此外,也能降低各等 离子体产生部80的劣化(损坏)。作为用于形成上述的氧化硅膜的处理气体,作为第1反应气体也可以采用 BTBAS (双叔丁基氨基硅烷)、DCS [ 二氯硅烷]、HCD [六氯乙硅烷]、3DMAS [三(二甲氨基) 硅烷]、单氨基硅烷等,也可以将TMA [三甲基铝]、TEMAZ [四(二乙基氨基)锆]、TEMAH[四 (乙基甲基氨基)铪]、Sr (THD)2 [双(四甲基庚二酮酸)锶]、Ti (MPD) (THD)[(甲基戊二酮 酸)双(四甲基庚二酮酸)钛]等用作第1反应气体,形成氧化铝膜、氧化锆膜、氧化铪膜、 氧化锶膜、氧化钛膜等。作为氧化这些原料气体的氧化气体的第2反应气体,也可以采用水 蒸气等。此外,在作为第2反应气体而不用O3气体的工艺例如对TiN(氮化钛)膜等进行 该TiN膜的改性的情况下,作为从气体导入喷嘴34供给的等离子体产生用的处理气体,也 可以用NH3气体、含N(氮)气体。作为上述的各等离子体产生部80的配置的顺序,既可以随着长度尺寸R变长而从 旋转台2的旋转方向上游侧起向下游侧排列,或也可以随着长度尺寸R变短从旋转台2的 旋转方向上游侧起排列。作为该等离子体产生部80的数量,除了 6组以外,只要是2组以 上即可。而且,作为向活化气体喷射器220供给处理气体的气体导入喷嘴34,因为像上述 那样罩体221内的区域与该罩体221的外侧的区域相比成为正压,所以既可以配置在多组
15等离子体产生部80的下游侧,或也可以在罩体221的顶面、旋转台2的外周部侧的壁面形 成气体喷出孔,从该气体喷出孔供给处理气体。此外,作为等离子体产生部80,用棒状的电 极36a(400)产生等离子体,但是例如也可以是利用激光等光能或热能等产生等离子体的 部件。作为上述的等离子体产生部80,也可以构成为能够使该等离子体产生部80的长 度方向在旋转台2的中心侧和外周侧之间倾斜。具体而言,如图19和图20所示,各等离子 体产生部80从真空容器1的侧壁部插入该真空容器1内。在该等离子体产生部80(保护 管37)的插入部处的真空容器1的侧壁上,贯穿有第1套筒550,在该第1套筒550内插入 有保护管37。第1套筒550的真空容器1的内部区域侧的顶端部的内周面沿着保护管37 的外周面地形成,真空容器1的外部侧的基端部的内周面扩径。而且,在该第1套筒550的 扩径部和保护管37之间,以沿整个周向围绕该保护管37的方式,设有例如由树脂等构成的 密封构件(0型密封圈)500。在这些第1套筒550和保护管37之间的区域,配置有能够从 真空容器1的外侧相对于密封构件500进退地设置的环状的第2套筒551。利用该第2套 筒551向真空容器1侧按压密封构件500,保护管37借助密封构件500相对于真空容器1 被保持为气密状态。因此,保护管37 (等离子体产生部80)可以认为是以该密封构件500 为基点,真空容器1侧的顶端部能够移动(升降)地被支承。另外,在图19中,省略上述套 筒 550,551ο在等离子体产生部80的真空容器1的外侧,设有使从第2套筒551朝向该外侧延 伸出的保护管37的基端部上下位移的倾斜调整机构501。该倾斜调整机构501在保护管 37的上下2个部分具有沿着该保护管37的长度方向分别设置的主体部505、505。各主体 部505的基端侧(真空容器1侧)固定在上述的第1套筒550或真空容器1的外壁面,在另 一端侧在上下方向上贯穿该主体部505地形成有供螺纹部502螺纹配合的螺纹配合部503。 而且,通过从上方或下方使螺纹部502与主体部505的螺纹配合部503螺纹配合,在使保护 管37的基端部相对于真空容器1上升或下降的状态下能固定等离子体产生部80的姿势。而且,在利用倾斜调整机构501使保护管37的基端侧上下位移时,利用密封构件 500,真空容器1的内部区域被气密地保持,如图21所示,以该密封构件500对保护管37的 支承部为支点,真空容器1内的等离子体产生部80的顶端部侧上下位移。在该例子中,旋 转台2上的晶圆W的上表面和等离子体产生部80的下端之间的尺寸H在旋转台2外周侧 被设定为9mm,在旋转台2的中央侧能够在8 12mm之间进行调整。另外,在图21中示意 性地描绘等离子体产生部80。通过这样地使等离子体产生部80在长度方向上倾斜,因为能在旋转台2的径向 上调整晶圆W和等离子体产生部80之间的尺寸H,所以如后述的实施例所示,能调整旋 转台2的径向的改性的程度(等离子体的量)。即,在上述的真空容器1内的压力范围 (66. 66Pa(0. 5Torr)以上),由于真空度低(压力高),所以等离子体中的离子、自由基等的 活性种容易成为非活化(无效)状态。因此,等离子体产生部80和晶圆W之间的尺寸H越 长,到达旋转台2上的晶圆W的等离子体的量(浓度)越少。因此,能够通过使等离子体产 生部80倾斜而调整在旋转台2的径向上的到达晶圆W的活性种的量。因此,例如在旋转台2中心侧与外周侧相比改性的程度大的情况下,通过抬起等 离子体产生部80的顶端部而使该顶端部和旋转台2上的晶圆W分开,能遍及旋转台2的中
16心侧和外周侧地使改性的程度一致。此外,在旋转台2的中心侧与外周侧相比改性的程度 小的情况下,通过使等离子体产生部80的顶端部下降,使该等离子体产生部80的顶端部和 旋转台2上的晶圆W接近。此时,通过利用倾斜调整机构501调整等离子体产生部80的倾 斜角度,并且调整多组等离子体产生部80的长度尺寸R,能进一步使旋转台2的径向上的改 性的程度一致。作为该倾斜调整机构501,既可以设置在所有的等离子体产生部80上,也可以设 置在上述等离子体产生部80中的一组或多组上。此外,在真空容器1的外侧设有倾斜调整 机构501,但是,也可以使从该真空容器1的内周面朝向中心部区域C延伸的保护管37的下 端部能够升降地支承在真空容器1的内部区域。另外,在图19中,放大地剖切表示真空容 器1的一部分,以6组等离子体产生部80中的一组等离子体产生部80为例而表示。此外,如上述的图7所示,在互相相邻的等离子体产生部80、80中,沿着旋转台2 的旋转方向相对的电极36a、36b彼此之间的分开距离A为了抑制这些互相相邻的等离子体 产生部80、80彼此之间的放电而优选较长。该分开距离A例如有时根据从高频电源2M对 等离子体产生部80供给的高频电力值,优选的范围产生变动,但是列举其一个例子,例如 设有2组等离子体产生部80,并且在向上述等离子体产生部80、80供给的高频电源224的 电力值为800W的情况下为45mm以上,具体而言,大约80mm以上。而且,在调整活化气体喷射器220的旋转台2的径向上的改性的程度时,在上述的 图6A中,设有6组等离子体产生部80,并且根据每个上述等离子体产生部80 (辅助等离子 体产生部82)调整了等离子体产生部80的长度尺寸R,然而也可以如图22所示,使上述等 离子体产生部80的长度尺寸R互相相等,并且根据每个辅助等离子体产生部82设置扩散 抑制板(扩散抑制部)510,该扩散抑制板(扩散抑制部)510用于抑制等离子体从该辅助等 离子体产生部82向旋转台2上的晶圆W扩散。如图23 图25所示,扩散抑制板510是沿着辅助等离子体产生部82的长度方向 沿水平延伸的例如由石英等绝缘体构成的板状体,具有抑制等离子体向晶圆W侧(自由基、 离子等的活性种)的扩散的作用。该扩散抑制板510在各辅助等离子体产生部82的顶端部 侧(旋转台2的中心部侧),分别被设置成从该辅助等离子体产生部82的下方侧面对等离 子体产生的区域(电极36a、36b之间的区域)。而且,扩散抑制板510从以下的位置朝向辅 助等离子体产生部82的基端部分别延伸,该位置为比辅助等离子体产生部82的顶端部靠 旋转台2的中心稍微例如5mm左右的位置。从各扩散抑制板510的旋转台2的中心侧起的 长度尺寸G从旋转台2旋转方向上游侧朝向下游侧,分别例如是220、120、120、220、270mm。 因此,关于各辅助等离子体产生部82,将旋转台2外周侧的、从晶圆W的端部的上方位置到 扩散抑制板510的端部的上方位置的长度即辅助等离子体产生部82的有效长度称为J (参 照图22),该有效长度J分别设定成与上述图6的各辅助等离子体产生部82的尺寸R相同 的长度。因此,与上述的例子相同地,为了补偿由主等离子体产生部81产生的旋转台2的 外周部侧的等离子体的不足部分,各辅助等离子体产生部82被设定成与旋转台2的中心部 侧相比外周部侧的等离子体的浓度浓(量多)。又如图23所示,各扩散抑制板510沿着等离子体产生部80的长度方向在多个部 位例如2个部分利用固定部511自鞘管35a、3 悬挂。各固定部511由绝缘体例如石英等 构成,从旋转台2的旋转方向上的扩散抑制板510的两端部的上表面位置分别向上方侧延伸,并且以从上方侧覆盖鞘管35a、35b的方式水平地弯曲并互相连接。在该例子中,旋转台 2的旋转方向的扩散抑制板510的宽度尺寸B例如被设定为70mm左右。图25中附图标记 F是各等离子体产生部80的电极36a、36b的各中心线彼此之间的分开距离,该分开距离F 是IOmm以下例如7mm。另外,在图23 图25中省略罩体221。通过设有该扩散抑制板510,在各辅助等离子体产生部82中的旋转台2的中央侧 的区域与旋转台2的周缘部相比供给晶圆W的等离子体的量变少。即,如图沈示意性地所 示,在电极36a、36b之间产生处理气体的等离子体(离子和自由基)时,该等离子体欲朝向 在辅助等离子体产生部82下方侧移动(公转)的晶圆W下降。但是,因为在辅助等离子体 产生部82和旋转台2上的晶圆W之间设有扩散抑制板510,所以利用该扩散抑制板510抑 制等离子体向旋转台2侧扩散,等离子体沿着抑制板510的上表面朝向水平方向(旋转台2 的旋转方向上游侧、下游侧、旋转台2的中心侧和周缘侧)扩散。如上述那样,因为等离子 体中的活性种容易成为非活化状态,所以被扩散抑制板510抑制向下方扩散的等离子体随 着沿水平方向扩散,一部分成为非活化(气体化)状态。因此,即使该成为非活化状态的等 离子体(气体)与晶圆W接触,与活性的(扩散未被扩散抑制板510抑制)等离子体相比 改性的程度也小。因此,在扩散抑制板510下方侧,与未设有扩散抑制板510的基端部侧相 比,等离子体的改性的程度被抑制得较小。在此,如后述的实施例那样,因为等离子体中的 自由基寿命比离子长(难以成为非活化状态),所以也有时从侧方围绕扩散抑制板510地保 持活性的状态地到达晶圆W。即使在该情况下,也通过设有扩散抑制板510,能够抑制等离 子体中的离子带来的改性。利用该扩散抑制板510,得到与上述图6所示的活化气体喷射器220同样的效果。 此外,通过使各等离子体产生部80的长度尺寸R成为互相相同的长度,能够使供给到各等 离子体产生部80的高频电力一致。即,在各等离子体产生部80的长度尺寸R互不相同的 情况下,即使欲从共用的高频电源224向上述等离子体产生部80分别供给相等的电力,各 等离子体产生部80的静电容量值也不同,因此,有时在长度尺寸R长的等离子体产生部80 中与长度尺寸R短的等离子体产生部80相比,会供给有较多的电力。因此,在将以从晶圆 W的载置区域的通过区域的内缘(旋转台2的中心侧的端部)延伸到上述通过区域的外缘 (旋转台2的外周侧)的方式地设置的1组等离子体产生部80作为主等离子体产生部81 时,对于比该主等离子体产生部81短、相对于主等离子体产生部81的长度的寸法差大的辅 助等离子体产生部82而言,与主等离子体产生部81相比等离子体较弱(等离子体的密度 较薄)。因此,在欲适当地补偿由主等离子体产生部81产生的晶圆W的载置区域的靠外方 区域的等离子体的不足部分时,难以进行高频电源224的电力值的大小等的调整作业。因 此,辅助等离子体产生部82也与主等离子体产生部81设定为相同的长度,通过调整扩散抑 制板510的配置区域,在外观上使辅助等离子体产生部82的长度尺寸较短是上策。S卩,如图22所示,通过将各等离子体产生部80的长度尺寸R设定为互相相同的长 度,并且用扩散抑制板510,只要调整各辅助等离子体产生部82的有效长度J,就能够一边 根据每个辅助等离子体产生部82而调整旋转台2的径向上的等离子体的量,一边使供给到 这些等离子体产生部80的高频电力值一致。因此,能根据每组等离子体产生部80简便地 调整旋转台2的径向上的等离子体的量。而且,因为能用相同的长度尺寸R的等离子体产 生部80作为主等离子体产生部81和辅助等离子体产生部82,所以能够通过仅更换扩散抑制板510而简单地调整长度尺寸R,此外在成本上也是有利的。此外,也可以与该扩散抑制板510 —起设有上述的倾斜调整机构501。在该情况 下,因为在除了所谓能够数字式地调整等离子体的有无的扩散抑制板510之外,还设有沿 着旋转台2的径向逐渐地所谓能够模拟式地调整等离子体的量的倾斜调整机构501,所以 能进一步扩大旋转台2的径向上的等离子体的量(改性的程度)的调整宽度。在上述的图22 图26中,在等离子体产生部80下方侧设有扩散抑制板510,但是 如图27所示,也可以以覆盖等离子体产生部80的周围(下表面、两侧面、上表面和顶端侧) 的方式设置大致箱型的扩散抑制板510。此外,在真空容器1内设置扩散抑制板510时,既 可以从真空容器1的顶板11悬挂,也可以固定在真空容器1的内壁侧上。作为扩散抑制板 510的材质,除了石英以外还可以用例如氧化铝(Al2O3)等绝缘体。

此外,作为设于上述的加热单元7的周围的罩构件71,也可以像图28和图29那样 构成。即,罩构件71包括内侧构件71a,以从下方侧与旋转台2的外缘部和该外缘部的外 周侧面对的方式设置;外侧构件71b,设于该内侧构件71a和真空容器1的内壁面之间。为 了在上述的排气口 61、62的上方侧使这些排气口 61、62和旋转台2的上方区域连通,例如 呈圆弧状地对该外侧构件71b进行切削而形成排气区域El、E2,在弯曲部46下方侧,该外 侧构件71b的上端面接近该弯曲部46地配置。此外,在加热单元7和旋转台2之间,为了 抑制气体进入设有该加热单元7的区域,从外侧构件71b的内周壁到形成于真空容器1的 底面部14的中央的突出部12a的上端部之间设有沿整个周向连续的例如由石英构成的覆 盖构件7a。实施例接着,为了确认本发明的效果,以下说明实施例。(实施例1)首先,在上述的成膜装置中,与设有1组等离子体产生部80的情况相比较,通过设 有多组在该例子中为6组等离子体产生部80,进行了改性程度在旋转台2的径向上如何变 化的实验。在设有6组等离子体产生部80时,在将所有的等离子体产生部80的长度尺寸 R设定为相同的长度(300mm)的情况(作为6对记载)下和例如分别将各等离子体产生部 80的长度尺寸R从旋转台2上游侧起设定为50、150、245、317、194、97mm的情况下进行了 实验。此外,评价改性的程度时,不用活化气体喷射器220而预先在晶圆W上形成150nm的 氧化硅膜,之后对该晶圆W进行改性处理,算出处理前后的膜厚差,在旋转台2的径向上的 多个部位求出了收缩率(=(改性处理前的膜厚_改性处理后的膜厚)+改性处理前的膜 厚X100)。在以下的条件下进行了改性处理。(改性条件)处理气体He (氦)气体/O2气体=2. 7/0. 3升/分钟处理压力533Pa(4Torr)高频电力400W旋转台2的转速30rpm处理时间5分钟(实验结果)如图30所示,在等离子体产生部80为1组的情况下,在旋转台2的中心部侧进行较强地改性处理,随着向外周部侧去改性处理变弱。因此,在欲用1组等离子体产生部80 在旋转台2外周部侧进行良好的改性处理时,一般认为有可能像上述那样在中心部侧改性 处理变得过强,晶圆W受到损坏。另一方面,可知在用6组等离子体产生部80的情况下,改 性处理从旋转台2的中心部侧遍及到外周部侧地均勻地进行。一般认为这是由于像上述那 样利用6组等离子体产生部80分散了氧化硅膜的改性所需的能量。此外可知,通过改变等 离子体产生部80的长度尺寸R,能调整在旋转台2的径向上的改性的程度。
(实施例2)接着,在与实施例1相同的条件下,进行氧化硅膜的改性处理,同样地进行了评 价,如图31所示可知,通过改变各等离子体产生部80的长度尺寸R,同样能调整旋转台2的 径向上的改性处理的程度。在该例子中,与设置相同的长度尺寸R的等离子体产生部80的 情况相比,调整各等离子体产生部80的长度尺寸R均勻性良好。(实施例3)接着,如以下的表所示那样,通过对各等离子体产生部80的长度尺寸R进行各种 改变,进行了同样的实验和评价。在该实验中,将所得到的结果也一并表示于该表中。表 权利要求
1.一种等离子处理装置,利用等离子体对基板进行处理,其特征在于,包括真空容器,在其内部利用上述等离子体对上述基板进行处理;旋转台,设于上述真空容器内,形成用于载置基板的至少1个基板载置区域;旋转机构,使该旋转台旋转;气体供给部,向上述基板载置区域供给等离子体产生用的气体;主等离子体产生部,在与上述基板载置区域的通过区域相对的位置的、上述旋转台的 中央部侧和外周侧之间呈棒状延伸地设置,用于向上述气体供给能量而使其等离子化;辅助等离子体产生部,在上述真空容器的周向上相对于该主等离子体产生部分开地设 置,用于补偿由该主等离子体产生部产生的等离子体的不足的部分;真空排气部件,将上述真空容器内排成真空。
2.根据权利要求1所述的等离子处理装置,其特征在于,该等离子处理装置具有反应气体供给部件,该反应气体供给部件在周向上相对于上述 主等离子体产生部和上述辅助等离子体产生部分开地设置,用于对基板进行成膜。
3.根据权利要求2所述的等离子处理装置,其特征在于,上述真空容器具有分离区域,该分离区域设于在旋转台的周向上相互分开地形成的多 个处理区域以及上述多个处理区域之间,上述反应气体供给部件分别供给互不相同的反应气体,在上述多个处理区域之间供给有用于防止互不相同的反应气体混合的分离气体,上述 成膜通过依次向基板表面供给互不相同的反应气体而进行。
4.根据权利要求1所述的等离子处理装置,其特征在于,上述主等离子体产生部、上述辅助等离子体产生部和气体供给部被共用的罩体覆盖, 使得从旋转台的旋转方向上游侧流来的气体在上述主等离子体产生部和上述辅助等离子 体产生部与该主等离子体产生部和该辅助等离子体产生部的上方的顶部之间流动。
5.根据权利要求4所述的等离子处理装置,其特征在于,在上述罩体的上述旋转方向上游侧设有气流限制部,该气流限制部通过使沿长度方向 延伸的侧面部的下缘以向该上游侧延伸的方式呈凸缘状地弯曲而形成。
6.根据权利要求1所述的等离子处理装置,其特征在于,上述辅助等离子体产生部为了补偿由上述主等离子体产生部产生的基板载置区域的 外缘侧的等离子体的不足的部分而设置。
7.根据权利要求6所述的等离子处理装置,其特征在于,上述主等离子体产生部和上述辅助等离子体产生部共用作为用于产生等离子体的电 力供给源的高频电源,上述辅助等离子体产生部为了在上述旋转台的中央侧部位抑制等离 子体向基板载置区域扩散,在下方侧具有扩散抑制部。
8.根据权利要求1所述的等离子处理装置,其特征在于,上述主等离子体产生部和上述辅助等离子体产生部中的至少一个等离子体产生部从 上述旋转台外周侧的上述真空容器的侧壁气密地插入该真空容器内,为了使上述至少一个 等离子体产生部的长度方向相对于上述旋转台上的基板的表面倾斜,在上述至少一个等离 子体产生部的基端部侧设有倾斜调整机构。
9.根据权利要求1所述的等离子处理装置,其特征在于,上述主等离子体产生部和上述辅助等离子体产生部是互相沿长度方向平行地延伸、用 于产生电容耦合型等离子体的平行电极。
10.根据权利要求1所述的等离子处理装置,其特征在于,上述主等离子体产生部和上述辅助等离子体产生部相当于用于产生感应耦合型等离 子体的天线中的、棒状的天线部分。
全文摘要
本发明提供利用等离子体对基板进行处理的等离子处理装置,其特征在于,包括真空容器,在其内部利用上述等离子体对上述基板进行处理;旋转台,设于上述真空容器内,形成用于载置基板的至少1个基板载置区域;旋转机构,使该旋转台旋转;气体供给部,向上述基板载置区域供给等离子体产生用的气体;主等离子体产生部,在与上述基板载置区域的通过区域相对的位置的、上述旋转台的中央部侧和外周侧之间呈棒状延伸地设置,用于向上述气体供给能量而使其等离子化;辅助等离子体产生部,在上述真空容器的周向上相对于该主等离子体产生部分开地设置,用于补偿由该主等离子体产生部产生的等离子体的不足的部分;真空排气部件,将上述真空容器内排成真空。
文档编号H01J37/32GK102110572SQ201010621809
公开日2011年6月29日 申请日期2010年12月24日 优先权日2009年12月25日
发明者加藤寿, 牛窪繁博, 田村辰也, 菊地宏之 申请人:东京毅力科创株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1