样品做一维精密平动实现二维激光sls晶化的方法

文档序号:3083874阅读:237来源:国知局
样品做一维精密平动实现二维激光sls晶化的方法
【专利摘要】本发明公开了一种样品做一维精密平动实现二维激光SLS晶化的方法,包括以下步骤:1)提供一种多点激光掩膜,该激光掩膜具有a(h)×n个半径r为10~25μm的掩膜孔,配合单位速度为d的y轴一维精密平移台一同使用;2)设计掩膜的重叠率与大小,配合微平移的速度与激光脉冲频率,使脉冲每次平移的距离都小于侧向生长距离,达到超级横向生长,在薄膜样品中形成面积较大的晶岛。本发明通过设计巧妙的激光掩膜图案配合样品台的一维精密平动来实现SLS激光晶化过程,降低了SLS激光晶化装置对样品台精密平动的要求,大大降低了SLS激光晶化的成本。
【专利说明】样品做一维精密平动实现二维激光SLS晶化的方法
【技术领域】[0001]本发明涉及一种薄膜进行激光晶化处理的工艺,属于薄膜加工处理【技术领域】,尤其涉及一种样品做一维精密平动实现二维激光SLS晶化的方法。
【背景技术】
[0002]随着太阳电池技术的迅速发展,人们提出了多晶硅薄膜太阳电池的构想,其中能否制备出晶粒尺寸较大、晶化范围较广的多晶硅籽晶层对最终电池的效率有着重要影响。顺序侧向固化(SLS !Sequential Lateral Solidification)是一种可用于操控玻璃和塑料上的薄膜的微结构的脉冲激光晶化过程,是一种以反复进行控制超级侧向生长(CSLG:Controlled-Super-Lateral-Growth)和微平移为基础的方法,制备出各种不同的非随机性微结构,譬如大晶粒、高均匀性多晶薄膜,定向固化的微结构和位置可控的单晶区等。
[0003]一般地,SLS必须满足两个最基本的条件:1)局部完全熔化预先确定好的薄膜区,从而导致CSLG现象的发生;2)精确重新定位光束相对于样品在侧向生长方向的位置,以确保前一过程生长出的材料作为下一过程外延侧向生长的籽晶。即:将前一个晶化区域的连接侧向位置作为下一个晶化区域。
[0004]通常使用二维精密(电脑程序控制)平动以实现高效快速的生长,但是存在技术成本高等问题,目前,尚未有方法可以在样品只做一维精密(电脑程序控制)平动下即实现SLS的方法,既保证高效快速的同时又实现降低成本。

【发明内容】

[0005]本发明的目的在于提供一种样品做一维精密平动实现二维激光SLS晶化的方法,实现高效快速地在一维精密(电脑程序控制)平移中形成二维晶化图样。
[0006]本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种样品做一维精密平动实现二维激光SLS晶化的方法,包括以下步骤:
[0007]I)提供一种多点激光掩膜,该激光掩膜具有a(h) Xn个半径r为10~25 μ m的掩膜孔,配合单位速度为d的y轴一维精密平移台一同使用;
[0008]其中,a为列数,h为列间距,表示一次性形成a列花样,h ^ 4r,a根据掩膜大小及激光光斑大小任意调整;n为行数,表示最终形成η点花样,η可取2,3,4,5或6 ;
[0009]2)设计掩膜的重叠率与大小,配合微平移的速度与激光脉冲频率,使脉冲每次平移的距离都小于侧向生长距离,达到超级横向生长,在薄膜样品中形成面积较大的晶岛。
[0010]本发明的方法,当a=l,n=5时;掩膜孔圆心位置位于:第一行(x=0,y=0),第二行(x=-r, y=d),第三行(x=-2r, y=2d),第四行(x=_r,y=3d-r),第五行(x=_r,y=4d+r)。
[0011]本发明的方法,当a>l时,h≥4r,掩膜孔圆心位置位于:第一行(x=(a_l)h, y=0),第二行(x=(a-l)h-r, y=d),第三行(x=(a-l)h-2r, y=2d),第四行(x= (a_l) h-r, y=3d_r),第五行(x= (a-1) h-r, y=4d+r);
[0012]以上是使用与点重叠率为50%的掩膜设计,若重叠率为m,则将上述r替换为(l-m)r,其中 m〈l。
[0013]本发明的方法,当a=5, n=5, d=80 μ m, r=10 μ m时,该方法包括以下步骤:
[0014]a)激光器输出第I个激光脉冲过后,激光透过激光掩膜打在待晶化样品上的图样与掩膜形状完全相同;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ;
[0015]b)激光器输出第2个激光脉冲过后,以第五行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第五行与第I个激光脉冲打下的第四行相靠近,并保持在同一水平线上,新点在旧点的左边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ;
[0016]c)激光器输出第3个激光脉冲过后,以第五行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第五行与第2个激光脉冲打下的第四行相靠近,并保持在同一水平线上,新点在旧点的左边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ;
[0017]d)激光器输出第4个激光脉冲过后,以第五行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第五行与第3个激光脉冲打下的第四行相靠近,并保持在同一直线上,新点在旧点的下边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ;
[0018]e)激光器输出第5个激光脉冲过后,以第五行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第五行与第4个激光脉冲打下的第四行相靠近,并保持在同一直线上,新点在旧点的上边;至此,以形成一个完整的五点图样;随即,由于移动I轴一维精密平移台的作用,样品向下移动距离d ;
[0019]f)以此类推,形成五点阵列;
[0020]g) N次激光脉冲过后,在样品上留下了五点花样阵列。
[0021]本发明的方法,当a=l,n=4时;掩膜孔圆心位置位于:第一行(x=0,y=0),第二行(x=-r, y=d),第三行(x=_r,y=2d),第四行(x=0, y=3d-r)。
[0022]本发明的方法,当a>l时,h≥4r,掩膜孔圆心位置位于:第一行(x=(a_l)h, y=0),第二行(x=(a-l)h-r, y=d),第三行(x=(a-l)h-r,y=2d),第四行(x= (a-l)h, y=3d-r);
[0023]以上是使用与点重叠率为50%的掩膜设计,若重叠率为m,则将上述r替换为(l-m)r,其中 m〈l。
[0024]本发明的方法,当a=5, n=4, d=80 μ m, r=10 μ m时,该方法包括以下步骤:
[0025]a)激光器输出第I个激光脉冲过后,激光透过激光掩膜打在待晶化样品上的图样与掩膜形状完全相同;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ;
[0026]b)激光器输出第2个激光脉冲过后,以第四行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第四行与第I个激光脉冲打下的第三行相靠近,并保持在同一水平线上,新点在旧点的左边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ;
[0027]C)激光器输出第3个激光脉冲过后,以第四行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第四行与第2个激光脉冲打下的第三行相靠近,并保持在同一直线上,新点在旧点的上边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ;[0028]d)激光器输出第4个激光脉冲过后,以第四行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第四行与第3个激光脉冲打下的第三行相靠近,并保持在同一水平线上,新点在旧点的右边;至此,以形成一个完整的四点图样;随即,由于移动I轴一维精密平移台的作用,样品向下移动距离d ;
[0029]e)以此类推,形成四点阵列。
[0030]f) N次激光脉冲过后,在样品上留下了四点花样阵列。
[0031]借由上述技术方案,本发明具有的优点和有益效果是:
[0032]本发明通过设计巧妙的激光掩膜图案配合样品台的一维精密平动来实现SLS激光晶化过程,使样品台二维精密平动才能获得的激光晶化图案在样品只需一维精密平动条件下即可获得。原本需要样品台做二维精密平动转化为只需做一维精细平动,降低了 SLS激光晶化装置对样品台的要求,大大降低了 SLS激光晶化的成本。
[0033]本发明不限定样品台二维精密平动的简化,同样也适用于激光头的二维精密平动的简化。
【专利附图】

【附图说明】
[0034]图1是本发明的样品台的一维精密平动来实现SLS激光晶化工艺的装置结构图。
[0035]图2是本发明形成五点花样的设计方案图。
[0036]图3是光斑的合成五点花样的机理图。
[0037]图4是光斑的合成五点花样的步骤(b)形成示意图。
[0038]图5是光斑的合成五点花样的步骤(C)形成示意图。
[0039]图6是光斑的合成五点花样的步骤(d)形成示意图。
[0040]图7是光斑的合成五点花样的步骤(e)形成示意图。
[0041]图8是光斑的合成五点花样的步骤(f)形成示意图。
[0042]图9是光斑的合成五点花样的阵列形成示意图。
[0043]图10是很多次晶化后形成五点阵列花样金相显微镜照片。
[0044]图11是五点花样金相显微镜照片,可看出形成了完美的五点晶化图案,由五个圆形区域上下左右中排列,其外观基本符合既定设想。
[0045]图12是激光晶化情况的SEM图,分别是放大3000倍和10000倍,图中球状物为形成的晶化颗粒,晶界明显。
[0046]图13是本发明形成四点花样的设计方案图。
[0047]图14是光斑的合成四点花样的机理图。
[0048]图15是光斑的合成四点花样的步骤(b)形成示意图。
[0049]图16是光斑的合成四点花样的步骤(C)形成示意图。
[0050]图17是光斑的合成四点花样的步骤(d)形成示意图。
[0051]图18是光斑的合成四点花样的步骤(e)形成示意图。
[0052]图19是光斑的合成四点花样的阵列形成示意图。
【具体实施方式】
[0053]请参阅图1所示,本发明是样品台的一维精密平动来实现SLS激光晶化工艺的装置,其结构主要包括:激光器1、X轴手动(扩大激光SLS晶化的工作范围)y轴一维精密(电脑程序控制)平移台2、激光掩膜3、待晶化样品4。
[0054]本发明提出了一种多点激光掩膜(不锈钢掩膜片)3,该激光掩膜3具有a(h) Xn(其中a为列数,h为列间距,表示一次性形成a列花样,h ^ 4r, a可根据掩膜大小及激光光斑大小任意调整;n为行数,表示最终形成η点花样,η可取2,3,4,5,6等)个半径r为10~25 μ m的掩膜孔,需配合单位速度(两个激光脉冲间隔平移台移动距离,Wym为单位)为d的X轴手动(扩大激光SLS晶化的工作范围)y轴一维精密(电脑程序控制)平移台2 —同使用。
[0055]以下通过具体较佳实施例对本发明作进一步详细说明,但本发明并不极限于以下的实施例。
[0056]实施例1
[0057]以形成五点阵列为例,结合图2-12,可表述如下:
[0058]以a=l,n=5为例。掩膜孔圆心位置位于:第一行(x=0, y=0),第二行(x=_r, y=d),第三行(x=-2r, y=2d),第四行(x=_r,y=3d_r),第五行(x=_r,y=4d+r)。
[0059]当a>l时,h ^ 4r,掩膜孔圆心位置位于:第一行(x= (a-1) h, y=0),第二行(X= (a-1) h-r, y=d),第三行(x= (a-1) h~2r, y=2d),第四行(x= (a-1) h-r, y=3d-r),第五行(x= (a~l)h-r, y=4d+r)0
[0060]以上是使用与点重叠率为50%的掩膜设计,若重叠率为m,则将上述r替换为(l-m)r,其中 m〈l。
[0061]基于此,设计掩膜 的重叠率与大小,配合微平移的速度与激光脉冲频率,使脉冲每次平移的距离都小于侧向生长距离,从而达到超级横向生长的目的,在薄膜样品中形成面积较大的晶岛。
[0062]以a=5, n=5, d=80 μ m, r=10 μ m为例,设计方案如图2所示,其形成机理可表述为包括如下步骤:
[0063](a)总图3说明光斑的合成五点图的机理。下面是分步解释。
[0064](b)如图4所示,激光器I输出第I个激光脉冲过后,激光透过激光掩膜3打在待晶化样品4上的图样。与掩膜形状完全相同。随即,由于移动y轴一维精密平移台2的作用,样品向下移动距离d。
[0065](c)如图5所示,激光器I输出第2个激光脉冲过后,以第五行为例:激光透过激光掩膜3打在待晶化样品4上的图样所形成的光斑的第五行与第I个激光脉冲打下的第四行相靠近,并保持在同一水平线上,新点在旧点的左边。随即,由于移动y轴一维精密平移台2的作用,样品向下移动距离d。
[0066](d)如图6所示激光器I输出第3个激光脉冲过后,以第五行为例:激光透过激光掩膜3打在待晶化样品4上的图样所形成的光斑的第五行与第2个激光脉冲打下的第四行相靠近,并保持在同一水平线上,新点在旧点的左边。随即,由于移动y轴一维精密平移台2的作用,样品向下移动距离d。
[0067](e)如图7所示激光器I输出第4个激光脉冲过后,以第五行为例:激光透过激光掩膜3打在待晶化样品4上的图样所形成的光斑的第五行与第3个激光脉冲打下的第四行相靠近,并保持在同一直线上,新点在旧点的下边。随即,由于移动y轴一维精密平移台2的作用,样品向下移动距离d。
[0068](f)如图8所示激光器I输出第5个激光脉冲过后,以第五行为例:激光透过激光掩膜3打在待晶化样品4上的图样所形成的光斑的第五行与第4个激光脉冲打下的第四行相靠近,并保持在同一直线上,新点在旧点的上边。至此,以形成一个完整的五点图样。随即,由于移动I轴一维精密平移台2的作用,样品向下移动距离d。
[0069](g)以此类推,形成如图9所示的五点阵列。
[0070](h)N次激光脉冲过后,在样品上留下了五点花样阵列。图10和图11显示的是五点花样金相显微镜照片,可看出形成了完美的五点晶化图案。实验所得花样由五个圆形区域上下左右中排列,其外观基本符合既定设想。
[0071]图12显示为激光晶化情况的SEM图,分别为放大3000倍和10000倍。在放大3000倍的图中,可以看到标准的五点花样;在放大到10000倍的SEM图中,可以清楚的看到多晶娃晶粒的晶界,证明可行。
[0072]实施例2
[0073]以形成四点阵列为例,结合图13-19,可表述如下:
[0074]以a=l, n=4为例。掩膜孔圆心位置位于:第一行(x=0, y=0),第二行(x=_r, y=d),第三行(x=-r, y=2d+r),第四行(x=_r,y=3d+r)。
[0075]当a>l时,h ^ 4r,掩膜孔圆心位置位于:第一行(x= (a-1) h, y=0),第二行(x=(a-l)h-r, y=d),第三行(x=(a-l)h-r,y=2d),第四行(x= (a_l) h, y=3d_r)。
[0076]以上是使用与点重叠率为50%的掩膜设计,若重叠率为m,则将上述r替换为(l-m)r,其中 m〈l。
[0077]基于此,设计掩膜的重叠率与大小,配合微平移的速度与激光脉冲频率,使脉冲每次平移的距离都小于侧向生长距离,从而达到超级横向生长的目的,在薄膜样品中形成面积较大的晶岛。
[0078]以a=5, n=4, d=80 μ m, r=10 μ m为例,设计方案如图13所示,其形成机理可表述为包括如下步骤:
[0079](a)总图14说明光斑的合成四点花样图的机理。下面是分步解释。
[0080](b)如图15所示,激光器I输出第I个激光脉冲过后,激光透过激光掩膜3打在待晶化样品4上的图样。与掩膜形状完全相同。随即,由于移动y轴一维精密平移台2的作用,样品向下移动距离d。
[0081](c)如图16所示激光器I输出第2个激光脉冲过后,以第四行为例:激光透过激光掩膜3打在待晶化样品4上的图样所形成的光斑的第四行与第I个激光脉冲打下的第三行相靠近,并保持在同一水平线上,新点在旧点的左边。随即,由于移动y轴一维精密平移台2的作用,样品向下移动距离d。
[0082](d)如图17所示,激光器I输出第3个激光脉冲过后,以第四行为例:激光透过激光掩膜3打在待晶化样品4上的图样所形成的光斑的第四行与第2个激光脉冲打下的第三行相靠近,并保持在同一直线上,新点在旧点的上边。随即,由于移动y轴一维精密平移台2的作用,样品向下移动距离d。
[0083](e)如图18所示激光器I输出第4个激光脉冲过后,以第四行为例:激光透过激光掩膜3打在待晶化样品4上的图样所形成的光斑的第四行与第3个激光脉冲打下的第三行相靠近,并保持在同一水平线上,新点在旧点的右边。至此,以形成一个完整的四点图样。随即,由于移动I轴一维精密平移台2的作用,样品向下移动距离d。
[0084](f)如图19所示,以此类推,形成四点阵列。
[0085](g) N次激光脉冲过后,在样品上留下了四点花样阵列。
[0086]以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,故凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
【权利要求】
1.一种样品做一维精密平动实现二维激光SLS晶化的方法,其特征在于包括以下步骤: O提供一种多点激光掩膜,该激光掩膜具有a (h) Xn个半径r为10~25 μ m的掩膜孔,配合单位速度为d的y轴一维精密平移台一同使用; 其中,a为列数,h为列间距,表示一次性形成a列间距为h的花样,h ≥4r,a根据掩膜大小及激光光斑大小任意调整;n为行数,表示最终形成η点花样,η可取2,3,4,5或6 ; 2)设计掩膜的重叠率与大小,配合微平移的速度与激光脉冲频率,使脉冲每次平移的距离都小于侧向生长距离,达到超级横向生长,在薄膜样品中形成面积较大的晶岛。
2.根据权利要求1所述的样品做一维精密平动实现二维激光SLS晶化的方法,其特征在于:当a=l,n=5时;掩膜孔圆心位置位于:第一行(x=0, y=0),第二行(x=_r, y=d),第三行(x=-2r, y=2d),第四行(x=_r,y=3d-r),第五行(x=_r,y=4d+r)。
3.根据权利要求1所述的样品做一维精密平动实现二维激光SLS晶化的方法,其特征在于:当a>l时,h≥4r,掩膜孔圆心位置位于:第一行(x= (a_l) h, y=0),第二行(x=(a_l)h_r,y=d),第三行(x= (a_l) h_2r,y=2d),第四行(x= (a_l) h-r, y=3d_r),第五行(x=(a_l)h_r, y=4d+r); 以上是使用与点重叠率为50%的掩膜设计,若重叠率为m,则将上述r替换为(l-m)r,其中m〈l。
4.根据权利要求3所述的样品做一维精密平动实现二维激光SLS晶化的方法,其特征在于:当a=5, n=5, d=80 μ m, r=10 μ m时,该方法包括以下步骤: a)激光器输出第I个激光脉冲过后,激光透过激光掩膜打在待晶化样品上的图样与掩膜形状完全相同;随即,由于移动I轴一维精密平移台的作用,样品向下移动距离d ; b)激光器输出第2个激光脉冲过后,以第五行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第五行与第I个激光脉冲打下的第四行相靠近,并保持在同一水平线上,新点在旧点的左边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d; c)激光器输出第3个激光脉冲过后,以第五行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第五行与第2个激光脉冲打下的第四行相靠近,并保持在同一水平线上,新点在旧点的左边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d; d)激光器输出第4个激光脉冲过后,以第五行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第五行与第3个激光脉冲打下的第四行相靠近,并保持在同一直线上,新点在旧点的下边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ; e)激光器输出第5个激光脉冲过后,以第五行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第五行与第4个激光脉冲打下的第四行相靠近,并保持在同一直线上,新点在旧点的上边;至此,以形成一个完整的五点图样;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ; f)以此类推,形成五点阵列; g)N次激光脉冲过后,在样品上留下了五点花样阵列。
5.根据权利要求1所述的样品做一维精密平动实现二维激光SLS晶化的方法,其特征在于:当a=l,n=4时;掩膜孔圆心位置位于:第一行(x=0, y=0),第二行(x=_r, y=d),第三行(x=-r, y=2d),第四行(x=0, y=3d-r)。
6.根据权利要求1所述的样品做一维精密平动实现二维激光SLS晶化的方法,其特征在于:当a>l时,h≥4r,掩膜孔圆心位置位于:第一行(x= (a_l) h, y=0),第二行(x=(a_l)h_r,y=d),第三行(x=(a-l)h-r,y=2d),第四行(x= (a-l)h, y=3d-r); 以上是使用与点重叠率为50%的掩膜设计,若重叠率为m,则将上述r替换为(l-m)r,其中m〈l。
7.根据权利要求6所述的样品做一维精密平动实现二维激光SLS晶化的方法,其特征在于: 当a=5, n=4, d=80 μ m, r=10 μ m时,该方法包括以下步骤: a)激光器输出第I个激光脉冲过后,激光透过激光掩膜打在待晶化样品上的图样与掩膜形状完全相同;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ; b)激光器输出第2个激光脉冲过后,以第四行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第四行与第I个激光脉冲打下的第三行相靠近,并保持在同一水平线上,新点在旧点的左边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d; c)激光器输出第3个激光脉冲过后,以第四行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第四行与第2个激光脉冲打下的第三行相靠近,并保持在同一直线上,新点在旧点的上边;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ; d)激光器输出第4个激光脉冲过后,以第四行为例:激光透过激光掩膜打在待晶化样品上的图样所形成的光斑的第四行与第3个激光脉冲打下的第三行相靠近,并保持在同一水平线上,新点在旧点的右边;至此,以形成一个完整的四点图样;随即,由于移动y轴一维精密平移台的作用,样品向下移动距离d ; e)以此类推,形成四点阵列。 f)N次激光脉冲过后,在样品上留下了四点花样阵列。
【文档编号】B23K26/00GK103537794SQ201310498635
【公开日】2014年1月29日 申请日期:2013年10月22日 优先权日:2013年10月22日
【发明者】贾晓洁, 刘超, 艾斌, 邓幼俊, 沈辉 申请人:中山大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1