柔性片材、导热、导电、防静电部件、加热元件、电磁波屏蔽件以及产生柔性片材的方法与流程

文档序号:18851354发布日期:2019-10-13 00:58阅读:181来源:国知局
柔性片材、导热、导电、防静电部件、加热元件、电磁波屏蔽件以及产生柔性片材的方法与流程

已经进行了使用碳纳米管簇产生含有碳纳米管的片材的方法(例如,参考日本专利号5350635)。在所述方法中,例如,首先通过化学气相沉积方法(CVD)在基底表面上生长碳纳米管簇,并且然后可通过使用夹具以片材形式拉出生长在基底表面上的碳纳米管簇的边缘来形成碳纳米管片材。

概述

本发明涉及一种柔性片材、导热部件、导电部件、防静电部件、加热元件、电磁波屏蔽件,以及一种产生柔性片材的方法。

由碳纳米管片材代表的碳纳米管聚集体可应用于由导热部件、导电部件、防静电部件、加热元件和电磁波屏蔽件代表的各种片材成形产品。当这种片材成形产品例如应用于可穿戴式装置时,可能需要能够进行弯曲、拉伸等的柔性。然而,当片材成形产品被弯曲或拉伸时,碳纳米管的聚集体可能被破坏,或者碳纳米管可能彼此分离。当这种现象发生时,片材成形产品的性能将受损。

因此并且根据本公开的各种实施方案,公开了一种利用碳纳米管聚集体的柔性片材,其中碳纳米管聚集体的断裂和碳纳米管的彼此分离得以抑制。

以下示例性实施方案描述了本公开的一些实施方案,从所述实施方案中许多排列和构造将是清楚的。

示例性实施方案1是一种包括复合片材的柔性片材,所述复合片材包括粘合剂和聚集体,所述聚集体含有设置在所述粘合剂中的多个碳纳米管,其中所述聚集体形成为在所述复合片材的平面中沿着单一方向行进的波形结构。

示例性实施方案2包括示例性实施方案1的主题,并且还包括支撑所述复合片材的支撑片材。

示例性实施方案3包括示例性实施方案2的主题,其中所述支撑片材是弹性片材。

示例性实施方案4包括示例性实施方案1-3中任一项的主题,其中所述粘合剂包含硅氧烷组分。

示例性实施方案5包括示例性实施方案1-4中任一项的主题,其中所述碳纳米管是金属化的碳纳米管。

示例性实施方案6是包括示例性实施方案1-5中任一项的柔性片材的导热部件。

示例性实施方案7是包括示例性实施方案1-5中任一项的柔性片材的导电部件。

示例性实施方案8是包括示例性实施方案1-5中任一项的柔性片材的防静电部件。

示例性实施方案9是包括示例性实施方案1-5中任一项的柔性片材的电磁波屏蔽件。

示例性实施方案10是包括示例性实施方案1-5中任一项的柔性片材的加热元件。

示例性实施方案11是一种产生柔性片材的方法,所述方法包括拉伸弹性片材,在拉伸状态下在所述弹性片材的表面上涂覆未固化的粘合剂,放置碳纳米管片材,其中将多个碳纳米管在未固化的粘合剂中优先在一个方向上对齐,以使得所述多个碳纳米管的所述优先对齐方向沿着所述弹性片材的拉伸方向取向,释放所述弹性片材的所述拉伸状态,以及使所述未固化的粘合剂固化。

根据一些公开的实施方案,提供了一种利用碳纳米管聚集体的柔性片材,其中即使当所述柔性片材被弯曲或拉伸时,也能抑制碳纳米管聚集体的断裂和碳纳米管的彼此分离。

根据一些公开的实施方案,提供了一种导热部件、导电部件、防静电部件、电磁波屏蔽件和加热元件,所述导热部件、导电部件、防静电部件、电磁波屏蔽件和加热元件可在保持柔性的同时抑制由于弯曲或拉伸所致的性能损害。

根据一些公开的实施方案,提供一种使用碳纳米管聚集体产生柔性片材的方法,其中即使当所述柔性片材被弯曲或拉伸时,也能抑制碳纳米管聚集体的断裂和碳纳米管的彼此分离。

附图简述

图1是示出示例性实施方案的柔性片材的示意性结构视图。

图2是示出处于拉伸状态的示例性实施方案的柔性片材的示意性结构视图。

图3是示出处于弯曲状态的示例性实施方案的柔性片材的示意性结构视图。

图4是示出示例性实施方案的另一种柔性片材的示意性结构视图。

图5A是示出产生示例性实施方案的柔性片材的方法的工艺过程图。

图5B是示出产生示例性实施方案的柔性片材的方法的工艺过程图。

图5C是示出产生示例性实施方案的柔性片材的方法的工艺过程图。

图5D是示出产生示例性实施方案的柔性片材的方法的工艺过程图。

图5E是示出产生示例性实施方案的柔性片材的方法的工艺过程图。

图5F是示出产生示例性实施方案的柔性片材的方法的工艺过程图。

详述

将在下文详细描述示例性实施方案。通过“从x至y”在本文表达的数值范围包括在所述范围中分别作为最小值和最大值的x和y的值。

柔性片材

根据示例性实施方案的柔性片材10是具有可弯曲的或可拉伸的柔性的片材成形部件。更具体地说,如图1中所示,柔性片材10包括例如复合片材20,在所述复合片材中含有多个碳纳米管的聚集体22(下文还称为“碳纳米管聚集体”)被设置在粘合剂24中;以及支撑复合片材20的支撑片材30。换句话说,柔性片材10例如由层叠体构成,其中复合片材20层叠在支撑片材30上。在此方面,柔性片材10可由复合片材20的单层体构成。

复合片材

示例性复合片材20包括碳纳米管聚集体22和粘合剂24。碳纳米管聚集体22形成为在复合片材20的平面中沿着单一方向行进的波形结构。具体地说,例如,碳纳米管聚集体22可被折叠以形成波形结构,以便沿着复合片材20的表面(与片材厚度方向正交的平面)在单一方向上取向波行进方向。形成波形结构的碳纳米管聚集体22在下文还称为“波形碳纳米管聚集体”)。

换句话说,在碳纳米管聚集体22中,多个碳纳米管单向对齐,从而彼此接触以整体上形成设置在复合片材20中的片材成形聚集体。碳纳米管聚集体22具有在复合片材20的平面中沿着单一方向行进的波的形式。在碳纳米管聚集体22中,碳纳米管不是在与波行进方向正交的方向上而是在沿着波形的方向上对齐。在此方面,碳纳米管聚集体22可包括在与沿着波形的方向不同的方向上对齐的碳纳米管。此外,碳纳米管聚集体22可具有除波形结构以外的结构,如线性结构和/或翘曲结构。如本文所论述,表达“碳纳米管聚集体22形成波形结构”是指碳纳米管聚集体22呈现波形,其中具有不同或相同尺寸的峰和谷不规则地或周期性地出现。

在碳纳米管聚集体22中,碳纳米管可呈束形式(例如,碳纳米管可组装以形成纤维状结构)。也就是说,碳纳米管聚集体22可包括碳纳米管束。在碳纳米管聚集体22包括碳纳米管束的情况下,与不包括碳纳米管束的情况相比,可减小多个碳纳米管的表面积。因此,从在下文所述的产生柔性片材10的方法的放置步骤将碳纳米管片材快速浸渍在未固化的粘合剂的涂覆薄膜上的可能性的观点来看,碳纳米管聚集体22中碳纳米管束的存在是优选的。在此方面,碳纳米管束不仅包括以束形式聚集的碳纳米管的聚集体,而且包括由纤维状形式或带状形式的碳纳米管形成的线性体。

碳纳米管束的平均直径可介于1μm与300μm之间,并且在一些实施方案中介于3μm与150μm之间或介于5μm与50μm之间。在此方面,碳纳米管束的平均直径是指在束随机处取样的10个外圆周的平均直径。

在碳纳米管聚集体22中,碳纳米管可以是金属化的碳纳米管。当碳纳米管被金属化时,例如,复合片材20的电阻值可被减小至约1/100。通过这种方式,复合片材20将具有保持低电阻的柔性。在碳纳米管呈束形式并且碳纳米管被金属化的情况下,表面被金属化的碳纳米管可形成束,或者碳纳米管束的表面可以被金属化。此外,可另外地金属化具有金属化表面的碳纳米管束的表面。

碳纳米管例如通过形成由厚度为5nm至500nm的薄膜制成的一个或两个或更多个金属层来进行金属化。金属化可例如通过气相沉积、溅镀或湿式电镀进行。用于金属化的金属的实例包括元素金属,如金(Au)、银(Ag)、铜(Cu)、铝(Al)、锌(Zn)、镁(Mg)和铁(Fe),以及含有至少一种元素金属的合金。

为了金属化碳纳米管,可形成诸如钛(Ti)层的缓冲层。

金属化碳纳米管的具体实例包括碳纳米管,在所述碳纳米管的表面上钛层和金层或银层以所提及的顺序彼此层叠。

至少部分呈波形的碳纳米管聚集体22例如如下制得。也就是说,对于其中多个碳纳米管在碳纳米管片材的平面中优先在一个方向上对齐的碳纳米管片材,可从优先对齐方向的两端向中心部分施加压缩力,以使得碳纳米管聚集体22至少部分地变形为波形。

碳纳米管聚集体22的含量(例如相对于复合片材20)可介于10质量-%与80质量-%之间或介于15质量-%与65质量-%之间。

作为粘合剂24,例如可使用赋予复合片材20柔软性的材料。作为这种材料,例如可使用弹性材料。弹性材料的实例包括橡胶材料,如硅橡胶、氨基甲酸酯橡胶、氟碳橡胶、丁基橡胶、丁二烯橡胶、异戊二烯橡胶、氯丁二烯橡胶、丙烯酸橡胶、丁腈橡胶、表氯醇橡胶、苯乙烯-丁二烯橡胶、乙烯-丙烯橡胶和天然橡胶。弹性材料的另外实例包括树脂材料(例如,热塑性弹性体),如硅氧烷树脂、氟碳树脂、聚氨酯树脂、聚苯乙烯树脂、聚烯烃树脂和聚酰胺树脂。

此外,作为粘合剂24,可使用通过用溶剂使可交联聚合物溶胀而制备的凝胶。这种溶剂应优选具有低溶解度参数,并且可交联聚合物应优选是脂溶性的。

粘合剂24可根据目的适当选择,并且可单独使用或以其2种或更多种的组合使用。

除了别的之外,粘合剂24可含有硅氧烷组分,如硅橡胶和硅氧烷树脂。硅氧烷组分可提供柔性,并且还提供对碳纳米管的亲和性。因此,当使用含有硅氧烷组分的粘合剂时,它可容易地填充碳纳米管聚集体22中的碳纳米管(或其束)之间的间隙,可增强粘合剂24对碳纳米管(或其束)的保持性。因此,可提高复合片材20的耐久性。

粘合剂24可使用具有固化反应性的材料(例如,可冷固化或可热固化的材料,或可通过辐射如紫外线和电子束固化的材料)、热塑性材料和可溶于溶剂中的材料中的任一种而形成。

粘合剂24的含量可(例如相对于复合片材20)介于20质量-%与90质量-%之间或介于35质量-%与85质量-%之间。

复合片材20除了碳纳米管聚集体和粘合剂24之外还可含有广泛已知的添加剂(如抗氧化剂、UV吸收剂、着色剂、填充剂、抗菌剂和阻燃剂)。

复合片材20的厚度可例如介于3μm与500μm之间,或介于10μm与300μm之间。

支撑片材

作为支撑片30,例如可使用具有柔性的片材。因此,支撑片材30可以是例如由被指定为复合片材20的粘合剂24的实例的材料形成的片材成形部件。其中,使用弹性材料形成的弹性片材30A可用作支撑片材30。

特别地,从与复合片材20的粘附(抑制从复合片材20的剥离)的角度来看,使用与复合片材20的粘合剂24相同的材料的弹性片材30A可用作支撑片材30。具体地说,在复合片材20的粘合剂24含有硅氧烷组分的情况下,使用含有硅氧烷组分(例如硅橡胶和硅氧烷树脂)的材料形成的弹性片材30A可用作支撑片材30。

此外,支撑片材30可以是单层体,或具有由各自不同的材料形成的多个片材的层叠体。在此方面,支撑片材30可含有添加剂(例如抗氧化剂、UV吸收剂、着色剂、填充剂、抗菌剂和阻燃剂)。支撑片材30的厚度可例如介于10μm与3,000μm之间,或介于50μm与2,000μm之间。

支撑片材30不仅可在复合片材20的一个表面上层叠,而且可在两个表面上层叠。

以上所述的本实施方案的柔性片材10可包括复合片材20,其中碳纳米管聚集体22被设置在粘合剂24中,并且碳纳米管聚集体22形成为在复合片材的平面内沿着单一方向行进的波形结构。由于碳纳米管聚集体22可被设置在处于以波形形式折叠的状态的复合片材20中,所以当柔性片材10被弯曲或拉伸时,波形碳纳米管聚集体22可通过变形而扩展为线性或几乎线性状态(参见图3和图4)。因此,即使在柔性片材10被弯曲或拉伸时,也抑制碳纳米管聚集体22的断裂和碳纳米管的彼此分离。也就是说,在碳纳米管聚集体22中,抑制了碳纳米管之间的连接状况的变化。

因此,相对于利用柔性片材10的各种功能部件,可在维持柔性的同时抑制弯曲或拉伸对性能的损害。

在柔性片材10另外包含用于支撑复合片材20的支撑片材30的实例中,与使用复合片材20的单层体构成柔性片材10的情况相比,针对反复弯曲和拉伸的耐久性得到改善。在这种情况下,如果施加弹性片材作为支撑片材30,则可增强柔性片材10的柔性。此外,在以下描述的产生柔性片材10的方法中的拉伸步骤待使用的弹性片材可如其用作柔性片材10一样使用,并且在这种情况下,存在以下优点:可省略从弹性片材剥离复合片材20的步骤。

本实施方案的柔性片材10可具有如图4所示的粘合剂层32。粘合剂层32可层叠在复合片材20和支撑片材30中任一个的表面(与彼此面向的片材的表面相对的表面)上。当柔性片材10具有粘合剂层32时,将柔性片材10放置到表面上变得更容易。

在粘合剂层32的表面(与面向复合片材20或支撑片材30的表面相对的表面)上,可层叠释放片材34。

产生柔性片材的方法

本实施方案的产生柔性片材10的方法可以是例如如图5A至图5F所示的产生方法,所述方法包括拉伸弹性片材30A(拉伸),在拉伸状态下在弹性片材30A的表面上涂覆未固化的粘合剂24A(涂覆),放置碳纳米管片材22A,其中多个碳纳米管在未固化的粘合剂24A中优先在一个方向上对齐,以使得所述多个碳纳米管的优先对齐方向沿着弹性片材30A的拉伸方向取向(放置,释放弹性片材30A的拉伸状态(拉伸状态释放),以及使未固化的粘合剂24A(固化)。将参考附图详细描述所公开的产生柔性片材10的示例性方法的具体细节。

在所公开的方法中,可拉伸弹性片材30A。具体地说,例如,制备处于未拉伸状态的弹性片材30A(参考图5A)。然后,处于未拉伸状态的弹性片材30A的平面中的一个方向上的两端可被固持并在所述平面内向外拉制,以便拉伸弹性片材30A(参考图5B)。在弹性片材30A为矩形的情况下,弹性片材30A在纵向方向上的两端可被固持并分别在纵向方向上拉制,以拉伸弹性片材30A。可通过拉制弹性片材30A的两个边缘来拉伸弹性片材30A,或者可通过固定弹性片材30A的两端中的一个并拉制另一端来拉伸弹性片材30A。在此方面,作为弹性片材30A,可应用与作为支撑片材30例示的弹性片材相同的片材。

弹性片材30A可例如以150%至1000%的拉伸率(在拉伸之后在拉伸方向上的弹性片材的长度/在拉伸之前在拉伸方向上的弹性片材的长度)拉伸。

在此方面,随着下文所述的碳纳米管片材22A在多个碳纳米管沿其优先对齐的方向上的拉伸,弹性片材30A也可在与优先对齐方向正交的方向上拉伸。在当弹性片材30A在与优先对齐方向正交的方向上处于拉伸状态时将碳纳米管片材22A浸渍在未固化的粘合剂24A中并且然后释放所述拉伸状态的情况下,在与碳纳米管片材22A的优先对齐方向正交的方向上碳纳米管的密度可增加。

然后可在处于拉伸状态时将未固化的粘合剂24A涂覆在弹性片材30A的表面上。具体地说,未固化粘合剂24A的层可通过在拉伸状态下使用例如广泛已知的涂覆方法,如模涂法、刮刀涂覆法、辊涂法、喷涂法、喷墨法和流延涂覆法在弹性片材30A的表面上涂覆未固化的粘合剂24A而形成(参考图5C)。

在此方面,未固化的粘合剂24A是指在硬化后变成粘合剂24的液体物质。具体地,未固化的粘合剂24A是例如含有具有固化反应性的材料(例如可冷固化或可热固化材料,或可通过辐射如紫外线和电子束固化的材料)的液体物质,熔融热塑性材料的液体物质,以及可溶性材料溶解在溶剂中的液体物质。

然后可将其中多个碳纳米管在一个方向上优先对齐的碳纳米管片材22A设置在未固化的粘合剂24A中,以使得所述多个碳纳米管的优先对齐方向沿着弹性片材30A的拉伸方向取向。具体地说,例如可将碳纳米管片材22A浸渍于在处于拉伸状态的弹性片材30A上形成的未固化粘合剂24A的涂覆薄膜中(参考图5D)。

碳纳米管片材22A的浸渍可进行多次(例如2至300次)。换句话说,可将多个碳纳米管片材22A(例如2至300个片材)浸渍在未固化的粘合剂24A的层中以彼此层叠。在此方面,“碳纳米管在片材的平面中的一个方向上对齐的状态”是其中碳纳米管的纵向轴线平行于在碳纳米管片材的平面中的一个方向取向的状态。此外,“优先对齐状态”是指所述对齐状态是主要的。也就是说,在主要部分处于所述对齐状态的范围内,碳纳米管的一部分的纵向轴线可能不处于在碳纳米管片材的平面中沿一个方向对齐的状态。

可例如通过从碳纳米管簇(从基底在垂直方向上对齐生长的多个碳纳米管的生长体,其有时也被称为“阵列”)的边缘拉出呈片材形式的碳纳米管来形成碳纳米管片材22A。

在碳纳米管片材22A中,碳纳米管也可采取束形式(例如,以纤维状形式组装的碳纳米管的结构)。

碳纳米管片材22A可以是已经接受了致密化处理的片材。“致密化处理”是指例如将碳纳米管片材22A中的碳纳米管捆扎在一起的处理(以使多个相邻的碳纳米管聚集体成为束形式),或者增加碳纳米管在厚度方向上的现有密度。

通过对碳纳米管片材22A施加致密化处理(优选,捆扎处理),可形成碳纳米管束(例如,以纤维状形式组装的碳纳米管的结构)。致密化处理的实例包括:(1)使碳纳米管片材暴露于在常温下为液体的物质如水、醇(例如乙醇、甲醇和异丙醇)、酮(例如丙酮和甲基乙基酮)和酯(例如乙酸乙酯)的蒸汽的处理,和(2)使碳纳米管片材暴露于在常温下为液体的物质的颗粒(气溶胶)的处理。

在进行使用在常温下为液体的物质的颗粒的致密化处理的情况下,在常温下为液体的物质的粒度优选为5nm至200μm,更优选为7.5nm至100μm,且进一步优选为10nm至50μm。

碳纳米管片材22A可以是通过将纤维状形式或带状形式的碳纳米管片材的大量线性体对齐成片材形式而形成的片材。换句话说,对于碳纳米管片材22A,可将纤维状形式或带状形式的碳纳米管片材的大量线性体对齐成片材形式,以便形成碳纳米管束(以纤维状形式组装的结构碳纳米管)。

碳纳米管片材22A可以是例如通过从簇拉出而产生的层叠多个材的层叠体。当碳纳米管片材22A是层叠体时,可获得具有低电阻的复合片材20。在这种情况下,碳纳米管片材22A可以是已经接受了致密化处理的多个碳纳米管片材的层叠体,或者是通过对经由从簇拉出而产生的层叠多个片材的层叠体进行致密化处理获得的层叠体。碳纳米管片材22A可以是通过对已经接受了致密化处理的多个碳纳米管片材的层叠体进行另外致密化处理而获得的层叠体。此类层叠体可在如上所述的未固化粘合剂24A的涂氟薄膜中多次浸渍。

碳纳米管片材22A可包括一个或多个金属化碳纳米管。在这种情况下,可获得包括具有金属化管表面的碳纳米管聚集体22的复合片材20。

关于碳纳米管片材22A的碳纳米管的表面的金属化,例如在通过从碳纳米管簇的边缘以片材形式拉出碳纳米管产生碳纳米管片材22A的方法中将簇和碳纳米管的片材进行金属化。在形成碳纳米管束的情况下,可对碳纳米管束进行金属化。

碳纳米管片材22A的厚度可例如介于0.01μm与100μm之间,或介于0.05μm与75μm之间。

在拉伸状态释放步骤期间,弹性片材30A中的拉伸状态可被释放。具体地说,例如从处于拉伸状态的弹性片材30A在其平面中的一个方向上的两端(其已经在所述平面中向外拉制)被固持的状态下,拉制的幅度逐渐降低以最终释放弹性片材30A的拉伸状态(图5E)。通过这种方式,来自碳纳米管的优先对齐方向上的两端朝向中心部分的压缩力被施加至设置在未固化的粘合剂24A中的碳纳米管片材22A。由于压缩力,碳纳米管片材22A的至少一部分变形为波形。即,可形成至少一部分呈波形的碳纳米管聚集体22。

然后可使未固化的粘合剂24A固化。具体地说,例如,可使碳纳米管聚集体22至少部分地以波形设置于其中的未固化的粘合剂24A的涂覆薄膜硬化(图5F)。在此方面,关于未固化的粘合剂24A的硬化:1)在未固化的粘合剂24A是含有具有固化反应性的材料(例如可冷固化或可热固化的材料,或可通过辐射如紫外线和电子束固化的材料)的液体物质的情况下,可通过在施加所述液体物质之后通过使具有固化反应性的材料的固化反应经由将材料置于常温下或对材料施加热或辐射来进展而进行硬化;2)在未固化的粘合剂24A为“熔融热塑性材料的液体物质”的情况下,可通过冷却所述熔融热塑性材料来行硬化,以及3)在未固化的粘合剂24A为“将可溶性材料溶解在溶剂中的液体物质”的情况下,通过从将可溶性材料溶解在溶剂中的液体物质蒸发溶剂来进行硬化。

未固化的粘合剂24A可如上所述硬化以形成粘合剂24,并且粘合剂24保持至少部分地波形的碳纳米管聚集体22。因此,可维持波形碳纳米管的形状。

通过上述步骤,可在弹性片材30A上形成复合片材20(图5F)。

此后,可根据需要从弹性片材30A释放复合片材20,并且可将支撑片材30层叠在复合片材20的一个表面上以产生柔性片材10。在此方面,可将支撑片材30层叠在复合片材20的两侧上以产生柔性片材10。

或者,在不从弹性片材30A释放复合片材20的情况下,可制备利用弹性片材30A作为支撑片材30的柔性片材10。

此外,通过从弹性片材30A释放复合片材20,可制备由复合片材20的单层体构成的柔性片材10。在这种情况下,具有弹性片材30A和复合片材20的层叠体是用于产生柔性片材10的中间产品,并且弹性片材30A可用作用于产生复合片材20的工艺薄膜。

根据本公开的柔性片材10可用于各种应用中。例如,柔性片材10可用作导热部件、导电部件、防静电部件、加热元件和/或电磁波屏蔽件。具体地说,由于碳纳米管具有高导热性,因此柔性片才10可用作导热不见。由于碳纳米管具有低电阻,因此柔性片材10可用作导电部件、防静电部件和/或电磁波屏蔽材料。特别地,当碳纳米管的表面被金属化并且复合片材20的电阻被降低时,它可适用于导电部件。

有可能在确保导电性的同时使碳纳米管具有预定电阻,以使得它可通过供电来产生热量。因此,柔性片材10可用作加热元件。

由于碳纳米管的聚集体的断裂和碳纳米管的彼此分离得以抑制,所以即使当柔性片材10被弯曲或拉伸时,也可抑制弯曲或拉伸对包括柔性片材10的功能部件(导热部件、导电部件、防静电部件、电磁波屏蔽件和/或加热元件)的性能的损害,同时维持柔性。

因此,包括柔性片材10的这类装置可用于需要柔性的装置中,诸如可穿戴式装置。此外,柔性片材10可用于其他装置中,例如,其中片材被设置在不平坦的表面如弯曲表面或凹凸表面上。

实施例

将通过实施例在下文更具体地描述一些示例性实施方案。应理解,以下实施例不以任何方式限制本发明的范围。

实施例1

在实施例1中,将厚度为1.6mm的硅橡胶片材(WESLASTOMER,由Western Rubber&Supply,Inc.生产)制备为弹性片材。将未固化的和可冷固化的硅橡胶(SOLARIS,由Smooth-On,Inc.生产)制备为未固化的粘合剂。

接着,拉伸弹性片材,以使得将长度为7.5cm的弹性片材的一部分拉伸至长达初始长度的350%的长度。将未固化的硅橡胶涂覆在处于拉伸状态的弹性片材上至80μm的厚度。将从碳纳米管簇拉出的碳纳米管片材浸渍在未固化硅橡胶的涂覆薄膜中。将碳纳米管片材的浸渍重复100次以将100片碳纳米管片材浸渍在未固化硅橡胶的涂覆薄膜中。此后释放弹性片材的拉伸状态。然后,将具有其中浸渍有碳纳米管片材的未固化硅橡胶的涂覆薄膜的弹性片材在室温下储存12小时以使硅橡胶固化。

通过这方法,获得包括由复合片材构成的层叠体和弹性片材(支撑片材)的柔性片材,其中碳纳米管聚集体被设置在硅橡胶中。

实施例2

对从碳纳米管簇拉出的碳纳米管片材进行金属气相沉积处理以在碳纳米管的表面上形成厚度为4nm的Ti层(Ti缓冲层),并且之后在Ti层上形成厚度为60nm的Au层。

除了使用已经接受了金属化处理的碳纳米管片材代替实施例1中的碳纳米管片材以外,与实施例1相同地获得柔性片材,条件是碳纳米管片材的浸渍进行两次以将2片碳纳米管片材浸渍在未固化硅橡胶的涂覆薄膜中。

对比实施例1

除了在未如实施例1中对弹性片材进行拉伸和拉伸状态的释放的情况下涂覆未固体化硅橡胶之外,与实施例1相同地获得柔性片材。

评价

关于在相应实施例中获得的柔性片材进行以下评价。在比较实施例1中,在拉伸状态下测量表面电阻中,复合片材中的碳纳米管片材的断裂在大约10%的拉伸率下发生,并且拉伸状态中的表面电阻导致非常高的值。结果在表1中示出。

(关于复合片材的观察结果)

在光学显微镜下观察柔性片材的复合片材以确认是否以波形结构形成碳纳米管。

(在拉伸前和在拉伸状态下复合片材的表面电阻)

测量了在拉伸柔性片材之前复合片材的表面电阻。同时,将柔性片材以250%的拉伸速率(在拉伸之后在拉伸方向上的柔性片材的长度/在拉伸之前在拉伸方向上的柔性片材的长度)拉伸。在拉伸状态下测量了柔性片材的复合片材的表面电阻。

同时,通过以下方法测量了复合片材的表面电阻。将铜带(由3M公司生产的“COPPER COND TAPE 1/4in”)粘结在复合片材的两端处,并且将铜带和复合片材与银膏连接。将柔性片材的两端分别固定在2片玻璃基底上。然后使用万用电表(非接触式电压检测器,Extech Instruments Corporation)测量铜带之间的电阻,并计算复合片材的表面电阻。通过扩大玻璃基底之间的距离以拉伸复合片材来测量在拉伸状态下复合片材的表面电阻。

表1

从以上结果,证实在根据本实施例的柔性片材中,以波形结构形成复合片材中所含的碳纳米管。此外,在拉伸之前的柔性片材中与处于拉伸状态的柔性片材中之间复合片材的表面电阻不存在可识别的变化。

在实施例2的柔性片材的情况下,将复合片材中所含的碳纳米管进行金属化处理,并且由此可实现复合片材的表面电阻的降低,但是与实施例1的柔性片材相比,仅浸渍2层碳纳米管片材。

同时,在对比实施例1的柔性片材的情况下,证实复合片材中所含的碳纳米管未以波形结构形成。此外,在拉伸之前的柔性片材中与处于拉伸状态的柔性片材中之间复合片材的表面电阻存在显著变化。从所述结果,推测碳纳米管的连接状态由于复合片材中所含的碳纳米管片材的断裂和碳纳米管的彼此分离而变化。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1