将用于联接结构的聚合物、陶瓷和复合材料金属化的制作方法

文档序号:14955304发布日期:2018-07-17 23:26阅读:144来源:国知局

本申请要求于2016年10月26日提交的题为将用于联接结构的聚合物、陶瓷和复合材料金属化的第15/334,986号美国专利申请的优先权,并且要求2015年10月27日提交的第62/246,909号美国临时申请和2016年3月23日提交的第62/312,012号美国临时申请的优先权。

本发明大体上涉及将聚合物、陶瓷或陶瓷-聚合物复合材料部件联接到另一部件的技术。



背景技术:

在包覆成型(overmolding)中在聚合物、陶瓷或陶瓷-聚合物复合材料部件与组件内的一种或多种下面的部件之间形成的结构联接,可能难以获得充分的结合。当整体组件优选为尽可能小的尺寸时,这种情况会加剧,因为包覆成型需要增加组件的体积。包覆成型的部件表面与下面的部件的表面可能有限地粘结或者不粘结。与组件内部件的相邻表面彼此粘结的另外的方案相比,这种在包括包覆成型部件的组件的相配合的表面之间缺少粘结可能会限制组件的强度。



技术实现要素:

本文公开的制造技术使在非金属部件例如聚合物(如塑料)、陶瓷或陶瓷-聚合物复合材料部件上联接表面,用以将非金属部件联接到金属部件或另外的非金属部件上变得容易。作为一个实例,使待接合的表面金属化以提供“连接(tie)”层,从而使得能够应用其他的结合方法。对于聚合物和陶瓷部件,金属化层可以通过溅射来施加,例如用铬和/或铜溅射。对于金属部件,如果需要,可以使用溅射或镀,例如镀镍,以提供适合于接合的金属化“连接”层。金属化“连接”层可以用多种方法接合,包括例如软钎焊(soldering)、硬钎焊(brazing)、粘合剂结合(使用为金属到金属结合设计的粘合剂)、金属熔合结合(例如金熔合结合)、和其它金属到金属接合技术。本文公开的技术可特别用于接合塑料到塑料、陶瓷到陶瓷、陶瓷到金属、陶瓷到塑料和/或塑料到金属部件,用于暴露于恶劣环境例如医疗应用的产品。

当将部件的表面接合到至少一个聚合物或陶瓷表面时,例如组件44的非金属间隔件34(图1b),直接结合到聚合物或陶瓷表面可能导致粘结较差。如本文所公开,首先向聚合物或陶瓷表面施加金属化连接层,提供不同的功能化表面,使得粘合剂与其结合。在将两个聚合物或陶瓷部件结合到一起的情况下,两个部件可以选择性地用金属化连接层溅射,使得可以应用金属到金属粘合剂来接合表面。这样的金属到金属粘合剂可以为金属化粘结层提供良好的结合,并在用于聚合物到聚合物、陶瓷到陶瓷、陶瓷到塑料、陶瓷到金属和/或塑料到金属的结合时,可提供与常规技术相比的改进的粘结。

这些技术可有助于将成形的(平面或非平面的)金属部件联接到非金属部件,例如支撑结构、间隔件或支座,尽管其也可用于结合两个非金属部件。非金属部件也可另外使用其它已知方法例如冲压、激光切割、机加工和挤出形成。

在两个非金属部件的实例中,可将所述表面制备技术施用至待联接和结合的两个非金属表面。对于塑料到塑料、陶瓷到陶瓷或陶瓷到塑料表面接合,可在两个非金属部件上形成金属化表面,以作为不同表面,使得结合可在所述表面上进行。结合可以通过软钎焊、硬钎焊、金结合、粘合剂或其它金属到金属结合技术进行。

某些陶瓷、陶瓷-聚合物复合材料和聚酰胺类塑性树脂例如zytel、akromid、amodel及类似物难以结合包括使用粘合剂结合到金属上。当表面是非平面的或具有相配合的3d曲面时,可能会出现这种结合困难。本文公开的技术可以特别用于将这样的陶瓷、陶瓷-聚合物复合材料和塑性树脂结合到金属、陶瓷或聚合物部件。

附图说明

图1a–1b示出组件44的部件。图1a–1b示出利用焊料作为连接层之间的联接方法的组装技术。特别地,图1a示出了组件44的部件的分解图,图1b示出了组件44的联接的部件的截面图。

具体实施方式

组件44包括金属部件30、非金属间隔件34和不锈钢部件38。如图1b所示,金属部件30和不锈钢部件38,包括任选的在表面上的镀镍层,与非金属间隔件34待接合。同样地,非金属间隔件34与金属部件30和不锈钢部件38待接合,所述非金属间隔件34包括在表面上的金属化连接层,例如铬、铜和/或镍层,以及可预镀锡或使用其他已知的方法施用的焊料层。所述焊料可以是适用于医疗装置的焊料如indalloy121(或类似焊料)。在其他实例中,选择用粘合剂接合金属化表面来代替焊料,从而不需要焊料层。不锈钢部件38可以包括镀层,例如镀镍层。

在使用金属到金属结合技术将金属部件30、非金属间隔件34和不锈钢部件38结合在一起之前,部件应根据最终组装的需要适当地对准。对于焊料附着结合,部件可以堆叠和对准并烘烤,使预镀锡的低温焊料回流焊并润湿配合件的金属化部分。通常,焊料应仅润湿金属化区域。

在胶联接结合(金属化到金属化)中,粘合剂可以在堆叠和对准部件之前施用。金属化表面为直接接合至非金属间隔件34提供了可选方案,并且为直接将粘合剂施用到非金属间隔件34提供更强的粘结。

如图1b所示,金属部件30、非金属间隔件34和不锈钢部件38可以通过金属到金属结合技术,例如焊料或其它技术接合。以这样的方式,不需要包覆成型层。在非金属间隔件34上由金属化连接层提供的用于强机械联接的界面表面使得非金属间隔件34能够使用金属接合技术接合到其它部件,例如金属部件30和不锈钢部件38。这些技术消除了对包覆成型的需求。

组件44提供金属部件30、非金属间隔件34和不锈钢部件38之间的密封。因此,在对组件44施加弯曲型载荷时,三个层,即金属部件30、非金属间隔件34和不锈钢部件38彼此加强以提供相比于用常规包覆成型可实现的额外的弯曲强度。

在一些特定实例中,组件44可以表示医疗器械内的部件。在这样的实例中,将不锈钢部件38与金属部件30电隔离和/或热隔离可为重要的。在一些这样的实例中,不锈钢部件38的厚度可以是大约0.010英寸。在相同或不同的实例中,金属部件30的厚度可为约0.025英寸。金属部件30和不锈钢部件38的联接表面可任选地镀镍、镀铬或镀有其它材料以提供适当的连接层界面。此外,非金属间隔件34的相邻表面可以用连接层金属化,以促使使用金属到金属接合技术结合到金属部件30和不锈钢部件38。所述金属化连接层的形式是任选的。在一些实例中,非金属间隔件34可以是聚合物部件,例如注塑成型的纤维填充的部件,例如玻璃纤维或碳纤维部件、陶瓷部件、或者聚合物和陶瓷材料的共混物形成的复合材料部件。

在组件44的变型中,可以加入高强度非金属代替金属部件30,或除金属部件30以外可添加高强度非金属,以提供结构强度至组件。在另一变型中,金属部件30和非金属间隔件34的功能可以由单个高强度非金属部件层代替。

在组件44的另一变型中,不锈钢部件38可由电镀的部件代替,所述电镀的部件在非金属间隔件34上或直接在高强度非金属部件层上。这种电镀和/或电铸可以发生在非金属部件的金属化连接层上。

在非金属部件上形成金属化连接层之后,可设置非金属部件的表面以与第二部件的金属表面相配合。然后可以使用金属到金属接合技术将非金属部件上的金属化连接层与第二部件的配合的金属表面接合。

第二部件可以是在第二部件上具有第二金属化连接层的金属部件或非金属部件。在不同的实例中,金属化连接层可用于接合塑料到塑料、陶瓷到陶瓷、陶瓷到金属、陶瓷到塑料和/或塑料到金属部件,用于暴露于恶劣环境例如医疗应用的产品。

根据本文公开的技术,一种或多种非金属部件的金属到金属联接的可能的方法包括金属熔合(焊接)、硬钎焊、软钎焊、粘合剂结合、所镀金属的熔合(例如通过超声波或电阻),或如下面进一步详细讨论的其它金属到金属结合技术。

因为某些基体材料例如金属部件的性质,且金属部件可能受到特定结合技术所需的温度的影响,金属到金属结合技术不需要不利于基体材料的温度。一般而言,结合技术依赖于材料相容(可润湿并且在润湿和冷却/固结之后具有形成强结合的能力)、预先制备的基底和可容易地粘结/结合至熔融金属结合材料的结合部分表面。

除了上面列出的技术之外,低温熔融纳米颗粒材料结合技术在一些实例中可用于接合塑料到塑料、陶瓷到陶瓷、陶瓷到金属、陶瓷到塑料和/或塑料到金属部件。低温熔融纳米颗粒材料结合“纳米颗粒”焊料,通过使用小颗粒尺寸以在部件的基体材料可承受的温度下完全熔融焊料,实现较低的处理温度。

作为另一实例,低温和压力烧结结合技术可用于接合塑料到塑料、陶瓷到陶瓷、陶瓷到金属、陶瓷到塑料和/或塑料到金属部件的一些实例中。低温和压力烧结结合中,烧结主要依赖于部分熔融结合材料(例如软化/熔融待烧结颗粒的表面),且然后施加压力以形成与部件的高表面积强结合。这种技术可以使用低温“纳米颗粒”焊料或其它烧结材料。

作为其它实例,熔融或反应性光子固化或烧结结合可用于接合塑料到塑料、陶瓷到陶瓷、陶瓷到金属、陶瓷到塑料和/或塑料到金属部件的一些实例中。随着熔融或反应性光子固化或烧结结合,通过超快速加热和熔化结合材料,“闪光灯熔融(flashlampmelted)”材料可实现保持低温。结合材料可以吸收闪光灯能量并且简单地熔融,或者结合材料可以在表面处开始放热的、自持续的反应,该反应可以跨膜和穿过膜增长,使得膜自身熔融并且润湿和加热部件表面以形成结合。

作为其它实例,低温和低压反应性软钎焊/硬钎焊材料结合可用于接合塑料到塑料、陶瓷到陶瓷、陶瓷到金属、陶瓷到塑料和/或塑料到金属部件的一些实例中。使用低温和低压反应性软钎焊/硬钎焊材料结合,形成的熔融化合物,特别是共晶化合物(eutecticcompound)可以位于金属结合材料和基底与部件之间。这种技术不同于那些仅依赖于结合材料熔融然后润湿至部件的技术。对于低温和低压反应性软钎焊/硬钎焊材料结合,熔融材料的形成能够通过施加热和压力以实现相互扩散并开始形成共晶化合物,其然后在当前温度下熔融。可选地或另外地,对于低温和低压反应性软钎焊/硬钎焊材料结合,熔融材料可以通过使用多组分(颗粒或多层膜的混合物)结合材料来形成,使它们经点火事件(ignitionevent)(例如在一个微小点处电弧或激光加热)熔融和互混,然后,由于混合和自增长反应的高能量,整个结合材料熔融并放出大量热量,使得基底和结合部分形成强结合,同时保持较低的平均/平衡温度并且使对基底的热效应最小化。

非导电间隔件的概念的可选方案包括:

·使用高性能板作为非导电性间隔件。(例如但不限于rogersloproro4000系列高频层压材料,可从美国connecticut,rogerscorporationofrogers获得)。高性能板可以用作层压材料(即,用导电层预包覆(ie–precladwithconductivelayers)),和/或可以是未包覆的芯,所述未包覆的芯随后通过上述技术金属化。

·使用粉末涂层作为非导电性间隔件。

实施例

如下所述示出将非金属表面接合到金属表面,例如接合非金属表面非平面(3d)金属表面的工艺选项的变型,如图1b所示。这些实施例仅仅作为对本文公开的技术和可在本公开的精神内使用的其它技术的代表。

实施例a:用含氧等离子体对非金属部件例如塑料、陶瓷或塑料陶瓷复合材料3d部件改性。然后用cr溅射非金属部件的表面以形成连接层至后续可焊接的金属。连接层厚度为50埃至500埃。连接层厚度优选为75至150埃。溅射的后续可焊接金属选自cu、ni、au、pt、pd等。例如ni、pt、pd。可焊接的金属的厚度可以是大于500埃且小于50000埃,例如大于1000埃且小于5000埃。

实施例b:在该实施例中,重复实施例a的技术,增加使用金作为结合材料且铬作为连接层的压缩结合。

实施例c:在该实施例中,重复实施例a的技术,使用失配金属,例如一个表面上为镍、另一个表面上为pd,或一个表面上为au、另一个表面上为镍等。

实施例d:在该实施例中,重复实施例a的技术,其中非金属部件难以通过粘合剂如聚酰胺、聚四氟化物、聚二氟化物等结合。

实施例e:在该实施例中,将两个非金属部件结合在一起。两个部件的配合表面可选地溅射金属化连接层,使得可以施用金属到金属接合技术,例如金属到金属粘合剂,来接合表面。所述金属到金属粘合剂可以提供良好的结合至金属化连接层,且在对于塑料对塑料、陶瓷到陶瓷或陶瓷到塑料结合时,可提供与常规技术相比的改进的粘结。

在实施例1中,制造方法包括:在非金属部件的表面上形成金属化连接层,设置非金属部件的表面以与第二部件的金属表面配合,以及使用金属到金属接合技术将金属化连接层与第二部件的配合的金属表面接合。

在实施例2中,实施例1的方法,其中非金属部件为由以下组成的组中之一:聚合物部件、陶瓷部件、陶瓷-聚合物复合材料部件和树脂注塑成型的部件(resinplasticinjectionmoldedcomponent)。

在实施例3中,实施例1的方法,其中金属到金属接合技术包括压缩熔焊。

在实施例4中,实施例3的方法,其中非金属部件的表面和第二部件的金属表面镀金,其中通过将两个镀金表面接触并施加能量源进行压缩熔焊。

在实施例5中,实施例4的方法,其中能量源本质上是超声波或兆声波。

在实施例6中,实施例4的方法,其中通过形成金属化连接层的另一金属将金保持在非金属部件的表面。

在实施例7中,实施例1的方法,其中形成金属化连接层包括电镀。

在实施例8中,实施例1的方法,其中形成金属化连接层包括化学镀。

在实施例9中,实施例1的方法,其中形成金属化连接层包括真空镀。

在实施例10中,实施例1的方法,其中形成金属化连接层包括金属的溅射。

在实施例11中,实施例10的方法,其中溅射的金属包括以下中的一种或多种:ti、cr、ta、ru、镍铬合金(nichrome)和niv。

在实施例12中,实施例10的方法,其中使用荫罩(shadowmask)选择性地沉积溅射的金属。

在实施例13中,实施例1的方法,其中形成金属化连接层包括气相沉积。

在实施例14中,实施例1的方法,还包括在非金属部件的表面上形成金属化连接层之前,通过含氧或氩或两者的离子源对非金属部件的表面改性。

在实施例15中,实施例1的方法,还包括在非金属部件的表面上形成金属化连接层之前,通过含氧或氩或两者的等离子体源对非金属部件的表面改性。

在实施例16中,根据权利要求1-15之一所述的方法,其中非金属部件的表面是3d表面。

在实施例17中,实施例16的方法,还包括在使用金属到金属接合技术将金属化连接层与第二部件的配合的金属表面进行接合之前,将金层结合或粘合于金属化连接层上。

在实施例18中,实施例1的方法,其中金属到金属接合技术包括锡基焊料回流焊,所述锡基焊料附着至两个表面。

在实施例19中,实施例1的方法,其中非金属部件是树脂注塑成型的部件,并且第二部件的表面是金属的3d曲面。

在实施例20中,实施例1的方法,其中非金属部件具有3d曲面,并且第二部件的表面是金属的3d曲面。

在实施例21中,实施例1的方法,其中金属到金属接合技术包括锡基焊料回流焊,所述锡基焊料附着至金属化连接层。

在实施例22中,实施例21的方法,其中焊料通过可焊接金属结合到非金属部件。

在实施例23中,实施例22的方法,其中可焊接金属包括以下中的一种或多种:cu、au、ag、ni、ru、cd、sn、rd、黄铜和pb。

在实施例24中,实施例22的方法,其中可焊接金属通过金属化连接层粘接性结合到非金属部件。

在实施例25中,实施例22的方法,其中可焊接金属选自这样的可焊接金属:形成金属间化合物(intermetallic)但不完全溶解于焊料中。

在实施例26中,实施例22的方法,其中可焊接金属选自这样的可焊接金属:可以电镀到第二部件的金属表面。

在实施例27中,实施例1的方法,其中第二部件是金属部件。

在实施例28中,实施例1的方法,其中第二部件是第二非金属部件,其中第二部件的配合的金属表面包括第二金属化连接层。

在实施例29中,实施例28的方法,其中第二非金属部件为由以下组成的组中之一:聚合物部件、陶瓷部件、陶瓷-聚合物复合材料和树脂注塑成型的部件。

尽管已经参考各种实施例描述了所公开的技术,但是本领域技术人员可以认识到,在不脱离本公开的精神和范围的情况下,可以在形式和细节上进行改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1