精炼和铸造的装置与方法

文档序号:3418574阅读:322来源:国知局
专利名称:精炼和铸造的装置与方法
技术领域
本发明涉及一种精炼和铸造金属和金属合金锭和预型件的装置与方法。本发明特别涉及一种精炼和铸造在铸造过程中易于产生偏析的金属和金属合金的大直径金属锭和其它预型件的装置和方法,其中通过这种装置和方法形成的预型件显示最低限度的偏析,并且没有重大的熔融缺陷。本发明的装置与方法应用于一些特定的场合,例如,应用在复杂镍基超耐热合金的精炼和铸造场合,所述的镍基超耐热合金如通过本领域常规方法铸造易于产生偏析的706合金、718合金以及一些钛合金、钢和钴基合金。本发明还涉及通过本发明的方法和/或装置生产的预型件和其它产品。
背景技术
在一些关键应用场合,组件必须由大直径的金属和金属合金预型件制造,这种预型件要有小的偏析,并且大体上没有与金属熔化有关的如白点和斑点这样的缺陷。(为方便起见,这里采用的术语“金属材料”均指纯金属和金属合金。)这些关键性应用场合包括将金属件作为航空或陆地涡轮,在其它一些应用场合,冶金缺陷会导致这种金属件出现灾难性故障,所以生产这种金属件的预型件不能含有有害的非金属夹杂物,在被铸造成预型件之前,熔化金属必须被适当地提纯或精炼。如果在这种应用场合使用的金属材料在铸造时易于产生偏析,则这种材料通常要通过一种“三重熔化”工艺精炼,这种工艺依次结合真空感应熔化(VIM)、电渣再熔化(ESR)和真空电弧再熔化(VAR)几个工序。然而,易于产生偏析的金属材料通过真空电弧再熔化(VAR)(即三重熔化工序中的最后一步工序)难于生产大直径件,这是由于其难于达到一个足以减小偏析的冷却率。尽管通过使铸锭经受长时间均质化处理可以降低凝固微偏析,但这种处理并不是完全有效的,而且处理成本高。此外,VAR经常产生大尺寸缺陷,例如,金属锭中产生白点、斑点、中心偏析等缺陷。在一些情况下,由大直径金属锭生产单一件,因此VAR产生的缺陷在生产该件之前不能被有选择地排除。随后,整个金属锭或其一部分就需要被废弃。这样,三重熔化工艺的一些缺点会包括大量浪费,延长生产周期,高的材料处理成本,不能生产冶金质量令人满意的大尺寸易偏析金属材料锭。
已知的一种通过熔化易偏析金属材料生产高质量预型件的方法是喷射成型,这种方法一般在专利号为NO.5325906和NO.5348566的美国专利中描述。喷射成型实质上是一种利用气体雾化由熔化金属流生产液体金属滴喷雾的“无模”生产工艺。这种喷雾成型工艺的工艺系数被调节成使得在与收集器表面发生碰撞时,喷成雾状的小滴内的平均固体部分足够高,以产生能够呈现并保持理想几何形状的高粘度沉积物。需要高的气体与金属质量比(1或更高)来保持预型件的适当固化所需要的临界热平衡。
喷射成型有许多缺点,这使得其在用于生产大直径预型件时出现问题。一种不可避免的喷射成型副产品是不粘附喷射物,其中金属错过正在形成的预型件或在喷射途中已固化不能附着在预型件上。由于在喷射成型中的不粘附喷射物而导致的平均损失量是20%-30%。而且,由于需要相对高的气体与金属比率来保持在与收集器或正在形成的预型件碰撞时需要在小滴内产生适当固体部分的临界热平衡,碰撞后金属的迅速固化会俘获雾状气体,在预型件内形成气孔。
由易偏析金属材料喷射成型预型件的一个重大局限是在对微观结构和宏观结构没有不利影响的情况下,仅仅能够生产有限大直径的预型件。生产质量令人满意的大直径喷射成型预型件需要大大控制喷射的局部温度,以保证随时都存在半液体状的喷射表面层。例如,一个相对较冷的喷射在预型件的接近中心位置是理想的,而当喷射接近外部(预型件的较快冷却区域)时则需要一个越来越热的喷射。预型件的有效最大直径也受喷射成型过程物理条件的限制。用单独一个喷嘴,可能的最大预型件具有约12-14英寸的最大直径。这一尺寸限制是由经验得出的,由于当预型件直径增加时,预型件表面的旋转速度增加,增加了在半液体层产生的离心力。当预型件的直径达到12英寸范围时,施加在半液体层上的增加的离心力趋向于使得该层从预型件表面被甩落。
所以,用于精炼和铸造由容易出现偏析的金属材料制成的预型件特别是大直径预型件的一些已知工艺技术存在一些严重的缺陷。这样,就需要提供一种用于精炼和铸造由偏析倾向的金属和金属合金的改进的装置和方法。

发明内容
为了满足上述需要,本发明提供了一种精炼和铸造预型件的方法,包括提供一个金属材料熔化电极,然后熔化并精炼该电极以提供一种被熔化精炼的材料。至少一部分熔化精炼后的材料穿过一个保护其不与周围空气中的氧气接触而受污染的通道。该通道最好是由不与被熔化精炼材料发生反应的材料制成。被熔化精炼材料的喷雾小滴通过撞击从所述通道中出现的熔化精炼材料流上的一种气体而形成。小滴喷雾沉积在一个模内并为凝固成一预型件。预型件被加工成一种所需的件,例如适合于在航空或陆地涡轮机中旋转的零件。
熔化和精炼熔化极的步骤包括电渣再熔化和真空电弧再熔化所述熔化电极中的至少一种熔化方法以提供熔化精炼材料。所述熔化精炼材料然后穿过的通道可以是通过一种冷感应导引装置而形成的通道。熔化精炼合金的至少一部分穿过冷感应导引通道并在所述通道内感应加热。在不过分苛求的场合,例如在合金内可以有少量氧化物污染的场合,不必采用冷感应导引装置。用于这种不过分苛求场合中的件包括例如航空涡轮发动机中的静态件。在不采用冷感应导引装置的场合,通道可以是保护其不受大气污染的未加热通道,包括由耐火材料制成的壁。该通道适合于保护被熔化精炼材料不受不合需要的杂质的污染。从通道内出来的熔化精炼材料然后被固化形成一个如上所述的预型件。
为满足上述要求,本发明还提供了一种精炼铸造合金的装置。该装置包括一个熔化精炼装置,所述装置包括电渣再熔化装置和真空电弧再熔化装置中的至少一个装置;一个与所述熔化精炼装置流体连通的传送装置(例如一个冷感应导引装置);以及与所述传送装置流体连通的带可铸造装置。被传送到熔化精炼装置中的金属材料的熔化电极被熔化和精炼,该熔化精炼材料通过形成传送装置的一个通道传送到所述带核铸造装置中。在传送装置是一个冷感应导引装置的情况下,精炼材料的至少一部分通过感应加热在冷感应导引装置通道内保持熔融状态。
当通过本发明的一些具体实施例方法铸造金属材料时,铸造材料不需要接触在通用铸造方法中采用的熔化坩埚和浇铸嘴中使用的氧化物耐火材料。这样,就会避免这种耐火材料的散裂、腐蚀和反应而出现的氧化物污染。
可以作为本发明精炼和铸造装置一部分的电渣再熔化装置包括其上具有一个小口的容器,接到该容器上的电源,以及在电渣再熔化工序中当材料从所述电极上熔化时,用来将熔化电极送进到所述容器内的电极送进机构。真空电弧再熔化装置不同于电渣再熔化装置之处在于熔化电极是通过直流电弧在部分真空条件下在容器内被熔化,并且熔化合金小滴通过本发明装置中的传送装置不需要首先接触电渣。尽管真空电弧再熔化没有将微量内含物排除到电渣再熔化那样的程度,但其具有排除电极材料中的溶解气体和降低高气压微量元素的优点。
作为本发明铸造精炼装置一部分的冷感应导引装置通常包括一个熔化材料收集区域,其与熔化精炼装置容器内的小口直接或不直接流体连通。所述冷感应导引装置还包括形成通道的传送区域,该区域终止于一个孔。至少一个导电线圈可与所述传送区域相连,用于感应加热穿过所述通道的熔化金属。一个或多个冷却剂循环通道也可于所述传送区域相连,以允许感应线圈和通道邻近壁的冷却。
本发明铸造精炼装置的带核铸造装置包括一个与传送装置通道直接或间接流体连通的雾化喷嘴。雾化气体源与所述喷嘴连通并从传送装置接收的熔化金属流上形成小滴喷射。包括基部和侧壁其形状与预型件一致的一个模邻近所述雾化喷嘴设置,模基部相对于雾化喷嘴的位置可以被调节。
本发明的装置与方法允许以熔化或半熔化形式被传送到带核铸造装置的熔化材料的精炼熔化,并且被熔化材料实质上具有减少的被氧化物或固体杂质再污染的可能性。带核铸造工艺允许形成没有偏析和其它铸造方法容易产生的熔化缺陷的精细颗粒预型件。通过传送装置结合本发明的精炼铸造特点,可以通过电渣再熔化或真空电弧再熔化大熔化电极或多个熔化电极,形成一个被带核铸造成精细颗粒预型件的连续精炼熔化材料流。以这种方法,由易偏析金属材料或通过其它方法难于铸造的金属材料可以方便地铸造大直径预型件。采用本发明的使用大和/或熔化电极的方法能够以连续方式铸造大尺寸预型件。
所以,本发明也包括由本发明装置和/或方法生产的预型件,以及例如通过处理本发明预型件而生产的航空或陆地涡轮这样的件。本发明也包括直径为12英寸或更大的易偏析合金的预型件或铸锭,其没有大的熔化缺陷。这种预型件和铸锭可以用本发明的方法和装置生产,其具有由相同材料制成的小直径VAR或ESR铸锭级别的偏析特性。这种易偏析合金包括例如合金706、合金718、合金720、雷内88和其它镍基超耐热合金。
通过结合本发明的下列实施例的详细描述,读者可以理解本发明的前述细节和优点及其它情况。通过实施或使用本发明,读者也可以领会本发明其它的优点和详细情况。


本发明的一些特点和优点在参照下面的附图后将会得到更好的理解,其中图1是本发明精炼和铸造方法的一个实施例的框图;图2是按照本发明制成的一个精炼和铸造装置实施例的示意图;图3(a)和(b)是采用图2所示的精炼和铸造装置,在质量流速度为8.51bs/分的条件下,由熔化后合金718的模拟铸件计算得出的参数曲线图;图4(a)和(b)是采用图2所示的精炼和铸造装置,在质量流速度为25.51bs/分的条件下,由熔化后718合金模拟铸件计算得出的参数曲线图;图5表示在例2的实验铸件中使用的本发明装置的实施例;图6是采用本发明装置的一个铸锭的类似喷射的中心长度方向显微图,表示一种ASTM 4.5等轴晶粒结构;图7是由20英寸直径的VAR锭得到的类似铸造的显微图(约50倍放大倍数)。
具体实施例方式
一方面,本发明提供了一种新颖的精炼金属材料并将其铸造成一个预型件的工艺方法。将该预型件进行处理后就提供了一件加工完成后的件。本发明的方法包括熔化和精炼金属材料,并随后通过一种带核的铸造工艺将其铸造成一个预型件。熔化和精炼材料可以通过例如电渣再熔化(ESR)或真空电弧再熔化(VAR)来完成。本发明的方法也包括穿过一个通道将所述熔化精炼后的材料传送到一个带核铸造装置的步骤,以便材料不被污染。所述通道可通过一种冷感应导引装置(CIG)或其它传送装置形成。
本发明也提供了一种包括至少一个熔化并精炼金属材料的装置、一个通过带核铸造由熔化精炼后的材料生产预型件的装置,以及一个传送装置,该装置将熔化精炼后的材料从所述熔化精炼装置传送到所述带核铸造装置。如下面进一步描述得那样,当由铸造时有偏析倾向的金属材料生产大直径高纯度预型件时,本发明的装置和方法的优点特别突出。例如,大直径预型件(12-14英寸或更大)可以通过本发明的装置和方法由具有偏析倾向的材料或其它难于铸造的金属材料生产,这样生产的预型件大体上没有于金属熔化有关的缺陷,也显示出最小的偏析。
图1示出本发明的装置和方法的一个实施例。第一步,金属材料的熔化电极经过电渣再熔化(ESR),其中精炼材料的热量由通过电极的电流量产生,导电渣沉积在精炼容器内并与电极接触。由电极熔化的液滴穿过导电渣并被该导电渣精炼,再由所述精炼容器收集,然后可被传送至下游装置中。一个ESR装置的基本组件通常包括一个电源,一个电极送进机构,一个水冷却铜精炼容器和所述熔渣。所采用的具体熔渣类型根据被精炼的具体材料而定。所述ESR处理方法是已知的并被广泛应用,对于任何特定类型和尺寸电极所需要的工作系数,本领域的普通技术人员就可容易地确定。因此,对于一种ESR装置的构造方式或操作模式的进一步详细讨论或者对于一种特定材料和/或某种类型和尺寸电极的特定操作系数的详细讨论是不必要的。
如图1中进一步表示的那样,该实施例也包括一个在液体中与所述ESR装置直接或间接连通的CIG装置。所述CIG装置用于将在ESR装置中产生的精炼熔化金属传送到一个带核铸造装置中。所述CIG装置在将由ESR装置中产生的精炼熔化金属传送到带核铸造装置的过程中将其保持为熔化状态。通过保护熔化金属不与周围空气接触并保护其不会由于通用喷嘴的使用而被再污染,所述CIG装置也能保持通过ESR装置送达的熔化金属的纯度。所述CIG装置最好直接连接到ESR装置和带核铸造装置上,以便更好地防止精炼熔化金属材料不与大气接触,防止在熔化金属中形成氧化物和污染熔化金属。采用适当的结构,CIG装置也可以用于测量从ESR装置到带核铸造装置的熔化精炼金属材料流。不同地被称之为一个冷指状物或冷壁状感应导引件的CIG的构造和使用方式在本领域中也是已知的,例如,其在专利号为5272718、5310165、5348566和5769151的美国专利中已被描述,所有披露的内容在此仅作为参考。CIG装置通常包括一个接收熔化金属的熔化金属容器,该容器包括一个带有小孔的底壁。CIG装置的传送区域被成形为包括一个通道,该通道可以时普通的漏斗形,用来接收来自熔化金属容器底壁小孔的熔化材料。在CIG装置的一个通用结构中,漏斗形通道的壁是由许多液体冷却金属部分构成,这些液体冷却部分形成了所述通道的内轮廓,该通道从该区域的入口端到出口端的横截面逐渐减小。一个或多个导电线圈与所述漏斗形通道的壁相连,电源有选择性地与所述导电线圈电连接。
当熔化精炼材料从CIG装置的熔化金属容器穿过该装置的通道流动时,电流以足以感应加热所述熔化材料并使其保持熔化状态的电流强度通过感应线圈。熔化材料部分与CIG漏斗形通道的冷却壁接触,其会被固化形成隔离穿过CIG的熔化金属流剩余部分与所述壁接触的一层壳。壁的冷却和硬壳的形成保证熔化金属不被金属或构成CIG装置内壁的其它组件污染。如本领域已知技术那样,在CIG装置漏斗形区域的硬壳厚度可以通过适当地调节冷却剂的温度、冷却剂的流速和/或感应线圈中的电流强度而被控制,以控制或完全切断穿过CIG装置的熔化金属流,当硬壳厚度增加时,穿过传送区的熔化金属流相应减少。关于其特征可以参照例如美国专利No.5649992,所披露的所有内容在此仅作为参考。
CIG装置可以有各种不同的形式,但每一这样的CIG装置通常包括下列内容(1)提供一个通道,利用重力导引熔化金属;(2)通道壁的至少一部分被冷却以允许在壁上的熔化金属形成硬壳;(3)导电线圈与通道的至少一部分相连,允许穿过通道的熔化金属被感应加热。本领域普通技术人员可以很容易地提供一个合适设计的具有一个或全部上述三个特征的CIG装置,以在本发明的装置中使用,不需要在此进一步讨论。
CIG装置与带核铸造装置直接或间接地液体连通,并且将精炼熔化材料从ESR装置传送到铸造装置。带核蜘蛛装置在本领域是已知的,例如,在美国专利No.5381847和在D.E.Tyler和W.G.Watson Proceedings of theSecond International Spray Forming Conference(Olin金属研究室,1996年9月)中已有描述,上述每一资料在此仅作为参考。在带核铸造中,金属材料液体流被碰撞的气体流分裂或撞击成一个喷射的滴状圆锥体。最后形成的圆锥状液滴被导引至具有底壁和侧壁的一个铸模中,其中液滴不断积累形成与铸模形状一致的预型件。调节用于在带核铸造过程中产生液滴的气体流速,以在单个液滴内提供一个相对低的固体摩擦(相对于喷射成形过程)。这样就产生一种低粘度的沉积在模中的材料。低粘度半固体材料充填铸模并与铸模的轮廓一致。当沉积时,碰撞气体和撞击的液滴在铸造的半固体表面形成紊流,加强了在铸模内铸件的均匀沉积。当材料沉积时,通过与在材料表面流动的气体一起将半固体材料沉积在铸模内,材料的凝固率得到加强,最终得到细晶粒结构。
结合本发明,与熔化/精炼装置和传送装置连接在一起,可以采用带核铸造装置制造相对大的铸造预型件,如直径为16英寸或更大的预型件。通过本发明装置铸造的熔化进给电极可以具有这样的尺寸,即适合于提供一个从传送装置出口经过传送大量熔化材料的一段延长时间到带核铸造装置连续的熔化材料流。通过这种带核铸造处理过程可以成功地生产预型件,包括成功生产出有易于偏析的合金预型件,如复杂镍基超耐热合金,包括706合金、718合金、720合金、雷内88(Rene’88)、钛合金(包括Ti(6-4)和Ti(17))、一些钢和一些钴基合金。铸造时易于偏析的其它金属材料采用那些普通技术出现的偏析现象是很明显的。通过带核铸造可以将这种金属材料预型件形成大直径预型件,而不产生与铸造有关的缺陷,如白点、斑点、β斑纹和中心偏析。当然,本发明的装置也可以应用于铸造不易于发生偏析的金属材料预型件。
如ESR和CIG装置一样,带核铸造在本领域也是已知技术,本领域普通技术人员,不需要过多的实验,经过对本发明技术内容的了解,就可构造出一个带核铸造装置,或者使得一种现有的装置适合于从如本发明这样的传送装置中接收熔化金属。尽管带核铸造和喷雾成形二者均采用气体将熔化金属流雾化成许多熔化合金小滴,但二者处理过程的基本原理是不同的。例如,在每一处理过程中的气体与金属质量比(可以用气体千克数与金属千克数的比来计量)是不同的。在本发明中的带核铸造处理中,选择气体与金属的质量比和飞行距离,以便在撞击铸模收集表面或所形成的铸件表面之前,每一小滴的高达大约30%的体积被固化。相反,在一典型的喷射成形处理中,小滴撞击收集面,如在美国专利No.5310165和欧洲专利申请No.0225732中描述得那样,包括约40%到70%固化体积百分比。为了保证40%到70%的喷射小滴被固化,在喷射成形中用于产生小滴喷雾的气体与金属质量比则通常为1或更大。在带核铸造中使用较少的固体部分用来保证被沉积小滴与铸模的形状一致,在铸件内不会留有空隙。在喷射成形加工过程中使用的40-70%体积百分比的固体部分有选择地形成一个不需依靠支撑物的预型件,不适合于带核铸造处理。
喷射成形的另一个区别是尽管喷射成形与带核铸造都是将雾化小滴收集成一个固体预型件,但在喷射成形中,预型件被沉积到一个没有侧壁的旋转收集器上,沉积材料与收集器形状相符合。与这种收集方式相关的重大缺点包括由于俘获气体而在预型件中产生的多个气孔和由于不粘附喷涂物而形成的重大收得率损失。尽管在高温作业中可以减少喷射成形件中的气孔,但在随后的高温热处理中又会出现气孔。这种现象的一个实例是由于在超耐热合金中俘获的氩气而产生的多个气孔,这种气孔可能出现在热致气孔(TIP)实验过程中,其可以作为低循环疲劳端面的带核部位。
当形成大直径预型件时,喷射成形的实用性受到限制。在这种情况下,整个时间段在喷射表面必须保持一个半液体层,以获得令人满意的铸件。这需要正在被喷射成形的表面的任何给定部分在其从喷射锥出来到随着绕收集器旋转轴的收集器旋转到再进入喷射锥这段时间内绝对不能被固化。这种限制(结合由离心力施加的旋转速度方面的限制)已经限制了可被喷射成形的预型件的直径。例如,带有单个喷嘴的喷射成形装置可以仅成形直径不大于约12英寸的预型件。在本发明中,发明人已经发现,带核铸造的使用大大增加了铸件的尺寸,这种铸件通过由所述熔化和精炼装置与传送装置的结合而制备的熔化金属材料形成。因为,相对于喷射成形,带核铸造方法可以被制成能均匀地将所供应的小滴分配到铸模中,并能够迅速地接着发生固化,预型件中的任何残留氧化物和碳氮化物将很小,并细碎地分散在预型件微观结构中。在带核铸造过程中,通过例如rastering一个或多个液滴喷嘴和/或以适当方式相对于液滴喷射平移和/或转动铸模,可以实现小滴的均匀分配。
图2表示按照本发明制成的精炼和铸造装置10的图解示意图。装置10包括呈ESR装置20形式的熔化和精炼装置、呈CIG装置40形式的传送装置和一个带核铸造装置60。ESR装置20包括一个电源22,其与要被铸造的金属材料的一个熔化电极24电连接。电极24与沉积在底部带开口的水冷容器26内的渣28接触,该容器例如可由铜或其它合适材料制成。电源22给包括电极24、渣28和容器26的电路提供大电流低电压的的电流。电源22可以是直流电源也可以是交流电源。当电流通过电路时,渣28上的电阻热使其温度增加到一个足以熔化与渣28接触的电极24的端部的水平。当电极24开始熔化时,熔化材料液滴形成,当电极熔化时采用一个未示出的电极送进机构将电极24送进到渣28中。熔化材料液滴穿过加热后的渣28,渣28从材料中排除氧化物夹渣和其它不纯物。当穿过渣28时,精炼熔化材料30在容器26的较低端形成熔池。然后精炼熔化金属材料30的池在重力作用下穿过CIG装置40内的一个通道41。
CIG装置40与ESR装置20密切相关,例如,CIG装置40的上端可以直接与ESR装置20的下端相连。在装置10中,容器26形成ESR装置20的底端和CIG装置40的上端。这样,本发明精炼铸造装置的熔化精炼装置、传送装置和带核铸造装置试图共享一个或多个件。CIG装置40包括一个由现有输送线圈42包围的漏斗形传送部分44。由一个交流电源(未示出)为线圈42提供电流。线圈42作为感应加热线圈并且用来有选择地加热穿过传送部分44的精炼熔化材料30。通过循环适当的冷却剂如穿过与传送部分44结合的管道流动的水冷却线圈42。冷却剂的冷却作用也引起被凝固材料出现硬壳,形成传送部分44的内壁。传送部分44的加热和/或冷却的控制可用于控制穿过CIG装置40的熔化材料30的流动速度,或完全阻断其流动。优选地,CIG装置40与ESR装置20紧密结合,以便保护在ESR装置20中的熔化精炼材料不受大气污染,例如,不被氧化。
熔化材料从CIG装置40的底部小孔46出来进入带核铸造装置60。在带核装置60中,将供应的适当惰性雾化气体61传送到雾化喷嘴62。从雾化喷嘴62出来的气体流61撞击熔化材料流30并将其撞成小滴64。形成的小滴64锥形体被导引至包括侧壁66和基部67的一个铸模65中。当材料被沉积在模65中时,基部67可旋转,以更好地保证小滴的均匀沉积。由装置10产生的小滴64大于通常喷射铸造的小滴。较大的小滴64优于普通喷射铸造之处在于它们具有减小的含氧量,并且需要较少的雾化气体消耗量。而且,由带核铸造装置60产生的小滴的气体与金属比可以少于在喷射铸造中通常量的一半。调节气体61的流速和小滴64的飞行距离以在铸模66中提供一种所需的固体与液体比率的半固体材料。所需的固体与液体比率在5%-40%范围内(单位体积中的体积)。被导引至铸模66中的相对较少的小滴固体部分形成低粘度半固体材料68的沉积,当其充填沉积时形成的形状与铸模66的形状一致。
喷射小滴64的撞击在预型件72的最上端表面70形成紊流区域。紊流区域的深度取决于雾化气体61的粘度和小滴64的体积和粘度。当小滴64开始凝固时,固体小颗粒在具有给定材料晶格结构特征的液体中形成。开始在每一小滴中形成的固体小颗粒随后作为一个核,邻近的其它原子趋向于附着在它们上面。在小滴64固化期间,在各个位置独立形成许多核,这些核具有随意的取向。随后原子的重复附着导致晶体的生长,所述晶体由相同的基本模式构成,其从各自的核向外延伸直至该晶体与其它晶体相互交叉。在本发明中,足够多的核在每一小滴64中以细碎的树枝状结构出现,以便最后形成的预型件72由均匀的等轴晶粒结构组成。
为了在沉积于铸模66内的材料中保持所需的固体部分,雾化点和预型件72的上表面70之间的距离就要被控制。这样,本发明的装置10也可以包括调节这一距离的装置,该装置包括附着在模65基部67的可收缩杆75。当材料被沉积并与侧壁66相一致时,基部67连续向下收缩,以便雾化喷嘴62和预型件72的表面70之间的距离得到保持。基部67的向下收缩暴露了模65侧壁66下方的已固化预型件的壁的一部分。
尽管在装置10中仅包括单独一个CIG装置和带核铸造装置的结合,但送进到一个铸模的多个雾化喷射装置或带有雾化喷射装置的多个熔化和精炼装置(如ESR装置)的结合会是更好的。例如,在单个ESR装置下游使用多个传送装置/雾化喷嘴结合的系统将准许生产更大直径的铸锭,这是由于多个雾化喷射会覆盖模内更大的区域。此外,铸造速度增加成本降低。可替换地,单个或多个ESR装置或其它熔化精炼装置可以送进多个被导引至若干个模的雾化喷嘴,以便由单独一个供应到熔化精炼装置的送进电极生产多个预型件。
对于本发明的上述装置10的其它可能的改进包括改变带核铸造装置60使其在生产处理过程期间旋转带核铸造预型件72,以获得一个在大的表面上更加均匀的小滴喷射分布;使用多个送进到一个模中的雾化喷嘴;装备装置10使得一个或多个雾化喷嘴能够震荡。如上面表示的那样,一个VAR装置是一个熔化精炼装置,其可用于替代ESR装置20来熔化熔化电极24。在VAR装置中,利用直流电流而不通过导电渣熔化熔化电极。
对于装置10的其它可能的修改包括一个替代CIG装置40的件作为传送装置来将在ESR装置20(或其它熔化精炼装置)中熔化的材料传送到带核铸造装置60中,穿过所述件有一个通道,该件由陶瓷壁或其它合适的耐火材料制成。在这种情况下,传送装置中的通道与穿过其中而加热材料的装置相连,因此,在调节流动到带核铸造装置60的熔化金属材料流中将有较小的浮动。
装置10也可适合于改变预型件72的收回方式,以保持在预型件72上具有令人满意的成形表面。例如,可以这样制造装置10,即铸模65往复运动(即模上下移动),铸模65震荡,和/或预型件72以类似于通用连续铸造技术中采用的方式往复运动。另外的可能修改是使得装置适合于一个或多个雾化喷嘴活动而移动喷射以增加在预型件表面的覆盖面积。也可以件个该装置设计成以任何合适的方式移动一个或多个喷嘴。
而且,为了保证减少在预型件中的气孔,带核铸造腔室可以保持部分真空,如有1/3到2/3的大气。将腔室保持部分真空也有利于更好地保持被铸造材料的纯度。材料的纯度也可以通过给铸件导入保护气体气氛。合适的保护气体包括例如氩气、氦气、氢气和氮气。
尽管对铸造装置10的上述描述指的是ESR装置20、传送装置CIG 40和带核铸造装置60作为相对不连续的顺序连接装置,但可以理解,装置10不必以这样的方式构造。本装置制成不连续的构造,不相连接的熔化/精炼、传送和铸造装置,所述装置10可以包括每一个这些装置的必要特征,而不是能够拆解成这样的不连续和单个操作装置。这样,参考后面熔化精炼装置、传送装置和带核铸造装置的权利要求,其不能被解释为工作时不同的装置可以不与权利要求中的装置发生联系。
下面的计算机模拟和实际实施例使得本发明的装置和方法的优点进一步得到确认。
实施例1-计算机模拟计算机模拟表示出由本发明装置10制成的预型件将比采用通常加工方法生产的铸锭冷却得快很多。图3(0.065kg/秒的质量流速或约8.5Ib/分)和图4(0.195kg/秒的质量流速)表示在温度和由采用下列表1的参数的本发明装置10铸造的预型件的液体体积部分上的计算效果。
表1-模拟铸件系数预型件几何尺寸·20英寸(508毫米)直径的圆柱体预型件·流入区域构成预型件的整个顶部表面带核铸造装置工作条件·0.065kg/秒的质量流速(下面脚注为对比的VAR处理)(图3)和0.195kg/秒的质量流速(图4),模中冷却水的平均温度是324°K(51℃)。
·324°K(51℃)有效下降温度为铸锭顶部表面的辐射热损失·流入模中的合金在合金的液相线温度·与预型件顶面的热对流损失系数如per E.J.Lavernia和Y.Wu的“喷射雾化和沉积”(John Wiley & Sons.,1996),pp.311-314,气体与金属比例为0.2,侧表面0W/m2K。.Lavernia和Wu披露的内容在此仅作为参考预型件材料和热物理特性·718合金·液相线温度和固相线温度分别为1623°K和1473°K,(如在脚注中公开的那样)·0.05(顶面)和0.2(侧面)的辐射系数模的热传输模型·模的热传输模型如在n.1中描述得那样,其中热传输临界条件从大于液相线温度的预型件表面温度的完全接触条件到表面温度小于固相线温度的间隙热传输线性变化脚注L.A.Bertram等人的“超耐热合金VAR铸锭的宏观模拟”,1997年在液体金属加工和铸造上的国际研讨会学报,A.Mitchell and P.Auburtin,eds.(Am.Vac.Soc.,1997)该内容在此仅作为参考。
·直径为20英寸(508毫米)的模在图3和图4中图解提供的等温线数据表示在模拟预型件中产生的表面温度低于合金的液相线温度。图3和图4计算出的最高预型件温度分别是1552°K和1600°K。所以,喷射池呈半液状态,池中的半固体性质由在图3和图4中图解表示出的液体部分数据表示。
下面表2比较n.1参考内容中记录的类似尺寸的计算机模拟预型件的结果和通常由VAR铸造预型件的结果。表2表示本发明装置10制备的预型件表面的材料池会是半固体状,而由通常VAR方法生产的预型件表面的材料池为直到表面6英寸下仍完全为液体。这样,对于一个给定的预型件尺寸,实质上有较少的潜在热从由本发明装置铸造的预型件凝固区域释放。结合材料池的半固体特性,这将减少微观偏析和斑点形成的可能性,以及减小中心偏析和其它有害宏观偏析的形成。此外,本发明完全消除了白点缺陷的出现,而这一缺陷在VAR处理方法中是不可避免的。
表2——本发明与VAR铸锭的比较

实施例2——实验性铸造现在描述采用本发明制成的装置的实验性铸造。图5图解性地表示出装置100,为了了解其比例尺,该装置的总体高度约30英尺。装置100通常包括ESR头110、ESR熔炉112、CIG装置114、带核铸造装置116和用于支持和操纵模120的材料支撑装置118,在所述模120内生产铸件。装置100还包括为熔化电极124供电的ESR电源122和为CIG装置114的感应加热线圈供电的CIG电源126。
ESR头110控制在ESR熔炉112内的电极124的移动。ESR熔炉124具有典型的设计并被制成支撑约4英尺长直径为14英寸的电极。在实验性铸造中使用的合金的情况下,这种电极重约2500磅。ESR熔炉112包括具有观察孔128和130的中空圆柱形铜容器126。观察孔128和130用于在ESR熔炉112内加渣(通常表示为132)并估计其内的温度。CIG装置114纵向长度约10”,具有标准的设计,其包括带有冷却剂循环通道的铜壁围成的熔化材料通道的中心孔。反过来,所述铜壁由感应加热线圈包围,用来调节穿过CIG装置114的材料的温度。
带核铸造装置116包括包围模120的腔室136。腔室136用保护氮气氛包围其中进行铸造的模120。在图5中腔室136的壁表示为透明状,用来观察模120和与其有关的在腔室136内的设备。模120被支撑在材料支撑装置118的机械手138端部。机械手设计用来支撑并相对于用140表示的从带核铸造装置116的喷嘴喷射的熔化材料喷雾进行平移。然而在实验性铸造中,在铸造期间机械手138不能平移模120。腔室136的另一个优点是收集任何在铸造期间产生的超范围喷涂物。
所供应的熔化储料是一个铸件,表面直径为14英寸的VIM电极具有表3中所示的钢水化学成分。采用图5中的装置100以331bs./分的送进速度电渣再熔化所述电极。ESR熔炉112中使用的渣具有下列成分(重量百分比)50%CaF2,24%CaO,24%Al2O3,2%MgO。由ESR装置处理后的熔化精炼材料穿过CIG装置114进入带核铸造装置116。CIG装置114使用气体和再循环以调节CIG装置114内的熔化材料温度。利用氢气雾化在带核铸造装置116内产生小滴喷雾。可采用最小的0.3气体与金属比率与合并在带核铸造装置116内的雾化喷嘴。雾化小滴沉积在模120的中心,所述模是直径为16英寸,深度为8英寸(内部尺寸),1英寸厚的未冷却的钢模,并用Kawool绝缘材料盖住模底板。如上所述,当铸造预型件时,模120不能rastered,喷射锥也不能rastered。
从铸造预型件上切下中心线板并进行分析。此外,从中径位置,在1950°F预锻5英寸到1.7英寸高的2.5×2.5×5?英寸铸件部分,以加强宏观偏析蚀刻检查。表3中提供了在两个位置的铸造预型件化学成分。
表3——浇包和铸造预型件化学成分

在15分钟喷射铸造的第14分钟在熔化的ESR池中加入锡添加物,标记液相池深度。沉积后每0.25英寸测量锡含量。液相和固相分界线之间的测量距离估计为4-5英寸。这证实了由实施例1中描述模型所示的浅熔化池。预型件的视觉检测显示出一些缺陷,表示出被沉积材料需要增加流动性以填补整个模。通过减少气体与金属比率或在不雾化情况下浇铸金属材料流而不用在预型件上加冒口。
图6和图7分别是由上述带核铸造方法生产的预型件的类似喷射结构显微图,和由相同材料制成的20英寸直径VAR铸锭的类似铸件的显微结构图。图6中的带核铸造(NC)预型件具有均匀的ASTM 4.5等轴晶粒结构,在晶粒边界出现Laves相,在一些晶粒边界也出现δ相,对铸造预型件材料进行退火处理期间这些相或许可以消失。VAR铸锭包括大的晶粒尺寸,比喷射铸造材料较大的Laves相体积和较大的Laves相颗粒(VAR铸造>40μm,而喷射铸造<20μm)。
在预型件中没有观察到如白点和斑点这样的与宏观偏析有关的缺陷。预锻加工以改进晶粒结构并有助于缺陷的检测。所述锻造件没有显示出任何宏观缺陷。相对于VAR铸锭材料,预型件材料中的氧化物和碳化物分散得非常精细,并与在喷射成形材料中发现的类似。预型件中碳化物尺寸小于2微米,氧化物尺寸小于10微米。通常,由常规VAR铸造的直径为20英寸的718合金预型件的显微结构具有6-30微米大的碳化物和1-3微米到300微米大的氧化物。本发明材料铸件中看到的碳化物和氧化物是喷射成形中看到的碳化物和氧化物的典型类型,但是比其它熔化处理方法如VAR装置生产的铸件中看到的碳化物和氧化物更细。这些观察结果证实本发明方法中熔化材料的固化速度比同等尺寸铸锭的常规VAR铸锭熔化材料的固化速度更快,即使本发明方法有代表性地使用比VAR方法高得多的铸造速度也是如此。
表3中所示的化学成分分析没有显示任何元素梯度变化。特别是在预型件中没有检测到铌元素梯度变化。铌具有特别的重要性,这是由于该元素从预型件表面到中心的移动变化在喷射成形铸锭中已经被检测到。表3没有表示出预型件浇包化学成分和铸锭化学成分之间的不同。这些不同归结为在XRF生产过程中使用的预型件样品的多孔性,而不是实际化学成分的不同。
根据实验铸件的结果,较低的气体对金属比率在加强模充填性和抑制多孔出现方面是理想的。采用较多的流体喷射会将微观偏析降低到一定程度,但在VAR装置实验中呈现的宽的有益范围将适合于任何方面的增加?。随着流动性的增加颗粒尺寸也会增加,但新出现小滴的持续撞击提供了颗粒核位置的高密度,阻止了在预型件内大颗粒或柱状晶的形成。较大的喷射流动性将大大增加小滴填充铸模的能力,并且一个较大的流体撞击区域将减少侧壁回弹沉积作用。一个更大的流体撞击区域的额外优点是雾化气体将更容易从材料中选出,并且气孔减少。为了增加预型件表面的雾化气体的除气作用,铸件可以在部分真空条件下进行,例如1/2大气压下进行。希望由于气体与金属比率的减少而引起的碳化物和氧化物尺寸的任何增加是轻微的。这样,希望小滴喷雾流动性的有利增加对晶粒结构和二次相分散仅具有较小的影响。
因此,本发明的装置和方法弥补了现有的由易于偏析的合金铸造大直径预型件的方法中的重大缺陷。本发明的熔化精炼装置提供了一个实质上没有劣质氧化物的精炼熔化后合金的来源。本发明的传送装置提供了一种氧化污染可能性减小的将熔化精炼后合金传送到带核铸造装置中的方法。带核铸造装置可被用来有利地由易偏析合金形成小颗粒、大直径铸锭,而不会出现与VAR和/或喷射铸造有关的缺陷。
可以理解,本发明的现有描述使得对本发明有一个更清楚的理解。本发明的一些方面对于本领域的普通技术人员来说将是清楚的,所以,为了简明扼要,不需要作出进一步的说明。虽然已经用一些实施例的方式对本发明进行了描述,但本领域普通技术人员根据前述说明可以认识到,可以对本发明进行许多修改和变化。所有的这些修改和变化均在本发明的前述描述范围内,并且也包含于本发明的下列权利要求保护范围内。
权利要求
1.一种生产预型件的方法,该方法包括提供一个金属材料熔化电极;熔化并精炼该熔化电极以提供一种被熔化精炼的材料;至少一部分熔化精炼后的材料穿过一个保护其不与周围空气中的氧气接触而受污染的通道;通过撞击从所述通道中出现的熔化精炼材料流上的一种气体而形成被熔化精炼材料的喷雾小滴,其中该气体以单位质量气体与单位质量熔化精炼材料之比以小于1的比率被供应到熔化精炼材料流上;在一个模内沉积并固化熔化精炼材料小滴喷雾以形成一预型件。
2.一种如权利要求1所述的方法,其特征在于,熔化和精炼所述熔化电极包括下述之一电渣再熔化所述熔化电极以提供熔化精炼材料;真空电弧再熔化所述熔化电极以提供熔化精炼材料。
3.一种如权利要求2所述的方法,其特征在于,电渣再熔化所述熔化电极包括提供一个含有渣的底部开口的容器;在底部开口容器中将熔化电极接触渣;对包括熔化电极、渣和所述容器的电路通电,以电阻加热电渣,导致在电极与渣的接触点的熔化电极材料的熔化,由此形成熔化材料小滴;以及让所述熔化材料小滴穿过被加热的渣。
4.一种如权利要求3所述的方法,其特征在于,电渣再熔化所述熔化电极进一步包括控制熔化电极向容器内的传送,保持所述电极于加热电渣之间的接触。
5.一种如权利要求2所述的方法,其特征在于,真空电弧再熔化所述熔化电极包括在部分真空条件下将熔化电极接触直流电弧以加热电极,由此形成熔化材料小滴。
6.一种如权利要求1所述的方法,其特征在于,至少一部分熔化精炼后的材料穿过一个通道包括提供一个冷感应导引装置;在所述冷感应导引装置中收集熔化精炼后的材料;以及将至少一部分熔化精炼后的材料穿过一个在所述冷感应导引装置内的通道,同时,在所述通道内感应加热所述熔化精炼后的材料。
7.一种如权利要求6所述的方法,其特征在于,所述冷感应导引装置包括一个熔化后材料收集区域;包括一个终止于一小孔的通道的一个传送区域;至少一个与所述传送区域相关的导电线圈;以及至少一个与所述传送区域有关的冷却剂循环通道。
8.一种如权利要求7所述的方法,其特征在于,将至少一部分熔化精炼后的材料穿过一个通道包括在熔化材料收集区域接收熔化精炼后的材料;以及将至少一部分熔化精炼后的材料穿过传送区域内的一个通道,同时保持电流通过导电线圈,并将冷却剂穿过冷却剂循环通道。
9.一种如权利要求1所述的方法,其特征在于,将至少一部分熔化精炼后的材料穿过一个通道包括将至少一部分熔化精炼后的材料穿过一个通道,该通道的壁带有耐火性材料的衬,并且没有感应加热源。
10.一种如权利要求1所述的方法,其特征在于,沉积并固化小滴喷雾的步骤包括通过撞击气体和熔化精炼材料小滴的撞击,在预型件表面产生一个紊流区域。
11.一种如权利要求1所述的方法,其特征在于,沉积并固化小滴喷雾的步骤包括在部分真空条件和有保护气体气氛条件中的至少一个条件下,在一个模内沉积并固化熔化精炼材料的小滴喷雾。
12.一种如权利要求1所述的方法,其特征在于,气体与金属的质量之比小于0.3。
13.一种如权利要求1所述的方法,其特征在于,在形成小滴喷雾的过程中,熔化精炼材料的小滴部分被固化,以至于平均计算,每一小滴中5%到40%的体积部分被固化。
14.一种如权利要求1所述的方法,其特征在于,所述金属材料是镍基、超耐热合金、钛合金、钢和钴基合金中的一种。
15.一种如权利要求1所述的方法,其特征在于,所述金属材料是选自合金706、合金718、合金720和雷内88这些材料中的一种镍基超耐热合金。
16.一种如权利要求1所述的方法,其特征在于,所述金属材料是选自Ti(6-4)和Ti(17)中的一种钛合金。
17.一种如权利要求1所述的方法,其特征在于,所述预型件直径至少为12英寸。
18.一种生产预型件的方法,该方法包括提供一种装置包括选自电渣再熔化装置和真空电弧再熔化装置中的一种熔化再精炼装置,一个包括一从其中穿过的终止于一小孔的通道的传送装置,该传送装置与所述熔化精炼装置流体连通,以及一个包括一个模的带核铸造装置,该带核铸造装置与所述传送装置流体连通;提供一个金属材料熔化电极;在所述熔化精炼装置中熔化并精炼所述熔化电极;将所述熔化精炼后的材料穿过所述传送装置;将所述熔化精炼后的材料提供给带核铸造装置,并通过撞击在穿过通道流动的熔化精炼材料流上的气体而形成熔化精炼后材料的小滴喷雾,其中气体以单位质量气体与单位质量熔化精炼材料之比小于1的比率被供应到熔化精炼材料流上;以及在所述模内沉积并固化熔化精炼后材料的小滴喷雾,以形成所述预型件。
19.一种提供金属材料预型件的装置,该装置包括选自电渣再熔化装置和真空电弧再熔化装置中的一种熔化再精炼装置;一个包括一从其中穿过的终止于一小孔的通道的传送装置,该传送装置与所述熔化精炼装置流体连通;以及一个带核铸造装置,该带核铸造装置与所述传送装置流体连通。
20.一种如权利要求19所述的装置,其特征在于,所述电渣再熔化装置包括其上具有一个小口的底部开口容器;一个与所述容器连接的电源;一个在所述容器内的导电槽;以及一个适合于将所述熔化电极送进到容器内的送进机构。
21.一种如权利要求19所述的装置,其特征在于,所述真空电弧再熔化装置包括一个真空腔室;一个在所述真空腔室内其上带有一个小口的底部开口容器;以及一个与所述腔室连接的电源。
22.一种如权利要求19所述的装置,其特征在于,所述传送装置包括一个冷感应导引装置。
23.一种如权利要求22所述的装置,其特征在于,所述冷感应导引装置包括与所述底部带开口容器的小口流体连通的一个熔化材料收集区域;一个包括终止于一小孔的通道的传送区域;至少一个与所述传送区域相关的导电线圈;以及至少一个与所述传送区域相关的冷却剂循环通道。
24.一种如权利要求19所述的装置,其特征在于,所述传送装置包括一个带有耐火材料内衬的壁并且没有感应加热源的通道,所述通道终止于一个小孔。
25.一种如权利要求19所述的装置,其特征在于,所述带核铸造装置包括一个与所述内部空间的小孔流体连通的雾化喷嘴;一个与所述喷嘴连通的雾化气体源;以及一个位于所述雾化喷嘴下方包括侧壁和底部的一个模,所述底壁相对于雾化喷嘴的位置是可以调节的。
26.一种通过一方法生产的产品,该方法包括提供一个金属材料熔化电极;熔化和精炼所述熔化电极以提供一种熔化精炼后的材料;将至少一部分熔化精炼后材料通过一个防止与大气接触的通道;通过撞击在穿过通道流动的熔化精炼材料流上的气体而形成熔化精炼后材料的小滴喷雾,其中气体以单位质量气体与单位质量熔化精炼材料之比小于1的比率被供应到熔化精炼材料流上;以及在所述模内沉积并固化熔化精炼后材料的小滴喷雾。
27.一种如权利要求26所述的产品,其特征在于,熔化精炼所述熔化电极包括下列之一电渣再熔化所述熔化电极以提供熔化精炼后材料;以及真空电弧再熔化所述熔化电极以提供熔化精炼后材料。
28.一种如权利要求27所述的产品,其特征在于,电渣再熔化所述熔化电极包括提供一个包含有渣的底部带开口容器;在底部带开口容器内将熔化电极与渣接触;给一个电路通电,所述电路包括熔化电极、渣以及所述容器,以使得电阻热加热渣形成与渣接触的电极端的熔化电极材料的熔化,由此形成所述熔化材料小滴;以及让所述熔化材料小滴穿过所述加热渣。
29.一种如权利要求28所述的产品,其特征在于,所述电渣再熔化所述熔化电极进一步包括控制进入所述容器内的熔化电极传送,以保持电极与加热渣之间的接触。
30.一种如权利要求27所述的产品,其特征在于,真空电弧再熔化所述熔化电极包括在真空条件下将熔化电极与一DC电弧接触以加热电极,由此形成熔化材料小滴。
31.一种如权利要求26所述的产品,其特征在于,至少一部分熔化精炼后材料穿过所述通道进一步包括提供一个冷感应导引装置;在所述冷感应导引装置内收集熔化精炼后的材料;以及将至少一部分熔化精炼后材料穿过在所述冷感应导引装置内的通道,同时在所述通道内感应加热所述熔化后精炼材料。
32.一种如权利要求31所述的产品,其特征在于,所述冷感应导引装置包括一个熔化材料收集区域;一个包括终止于一个小孔的通道的传送区域;至少一个与所述传送区域相关的导电垫圈;以及至少一个与所述传送区域相关的冷却剂循环通道。
33.一种如权利要求32所述的产品,其特征在于,至少一部分熔化精炼后材料穿过一个通道进一步包括在熔化材料收集区域接收熔化精炼后材料;以及将至少一部分熔化精炼后材料穿过一个在传送区域的通道,同时保持电流通过导电线圈,并将冷却剂穿过所述冷却剂循环通道。
34.一种如权利要求26所述的产品,其特征在于,至少一部分熔化精炼后材料穿过一个通道包括将至少一部分熔化精炼后的材料穿过一个通道,该通道的壁带有耐火性材料的衬,并且没有感应加热源。
35.一种如权利要求26所述的产品,其特征在于,沉积和固化所述小滴喷雾包括通过熔化精炼后材料小滴与碰撞气体的碰撞在预型件表面产生紊流区域。
36.一种如权利要求26所述的产品,其特征在于,沉积和固化所述小滴喷雾包括在部分真空条件和有保护气体气氛条件中的至少一个条件下,在一个模内沉积并固化所述熔化精炼材料的小滴喷雾。
37.一种如权利要求26所述的产品,其特征在于,所述气体与金属质量之比小于0.3。
38.一种如权利要求26所述的产品,其特征在于,在形成小滴喷雾的过程中,熔化精炼材料的小滴部分被固化,以至于平均计算,每一小滴中5%到40%的体积部分被固化。
39.一种如权利要求25所述的产品,其特征在于,所述金属材料是镍基、超耐热合金、钛合金、钴基合金和钢中的一种。
40.一种如权利要求26所述的产品,其特征在于,所述金属材料是选自合金706、合金718、合金720和雷内88这些材料中的一种镍基超耐热合金。
41.一种如权利要求26所述的产品,其特征在于,所述金属材料是选自Ti(6-4)和Ti(17)中的一种钛合金。
42.一种如权利要求26所述的产品,其特征在于,所述产品是直径至少为12英寸的预型件。
43.一种如权利要求26所述的产品,其特征在于,所述产品是一种适合于在航空和陆地涡轮机的其中一种中使用的旋转件;在一个模内沉积并固化所述熔化精炼后材料的小滴喷雾,提供一个预型件;以及该方法进一步包括加工处理预型件而提供所述旋转件。
44.通过一方法生产的一种产品,该方法包括提供一种装置包括选自电渣再熔化装置和真空电弧再熔化装置中的一种熔化再精炼装置,一个包括一从其中穿过的终止于一小孔的通道的传送装置,该传送装置与所述熔化精炼装置流体连通,以及一个包括一个模的带核铸造装置,该带核铸造装置与所述传送装置流体连通;提供一个金属材料熔化电极;在所述熔化精炼装置中熔化精炼所述熔化电极;将所述熔化精炼后的材料穿过所述传送装置;将所述熔化精炼后的材料提供给带核铸造装置,并通过撞击在穿过通道流动的熔化精炼材料流上的气体而形成熔化精炼后材料的小滴喷雾,其中气体以单位质量气体与单位质量熔化精炼材料之比小于1的比率被供应到熔化精炼材料流上;以及在所述模内沉积并固化熔化精炼后材料的小滴喷雾。
45.如权利要求44所述的产品,其特征在于,所述产品是直径至少为12英寸的预型件和适合于在航空涡轮机或陆地涡轮机中使用的旋转件中的其中之一。
全文摘要
一种精炼和铸造金属和金属合金的方法,包括熔化和精炼一种金属材料,然后通过一种带核铸造工艺铸造所述精炼熔化后材料。将熔化精炼后的材料通过一种传送装置提供到带核铸造装置的雾化喷嘴中,所述传送装置适合于保持熔化精炼后材料的纯度。本发明还公开了一种装置,该装置包括一个熔化精炼装置,一个传送装置和一个带核铸造装置,这些装置之间顺序流体连通。
文档编号B22D27/02GK1483299SQ01819972
公开日2004年3月17日 申请日期2001年11月13日 优先权日2000年11月15日
发明者琼斯·R·M·福布斯, 理查德·L·肯尼迪, 拉梅什·S·米尼桑德拉姆, L 肯尼迪, S 米尼桑德拉姆, 琼斯 R M 福布斯 申请人:Ati资产公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1