用于电解电容器的精炼铝薄板或带的制作方法

文档序号:3341810阅读:554来源:国知局
专利名称:用于电解电容器的精炼铝薄板或带的制作方法
技术领域
本发明涉及纯度高于99.9%的精炼铝薄板或带,在经过旨在提高其比表面积的点蚀表面处理后,其用于制造电解电容器(尤其是高压电容器)的阳极。
背景技术
许多研究者已经研究了精炼铝的表面对其蚀刻性的影响,并阐明了以下两个主要参数的影响-表面氧化物层-在表面上偏析的杂质和掺杂剂。
Osawa和Fukuoka最近对有关表面氧化物层的知识进行了综述(Hyomen Gijutsu(2000)51(11)1117-1120)。研究表明,点蚀可在氧化物层中存在的微晶周围被引发,并且已确认两种类型γ-Al2O3和MgAl2O4(尖晶石)。点蚀在与氧化物膜的结晶密切相关的裂纹中被引发。
多个专利申请还提到氧化物层结晶的尺寸(importance),具体的是JP08222487和JP08-222488(Mitsubishi Aluminium),JP2000-216063和JP2000-216064(Nippon Foil Mfg),其中要求保护γ-Al2O3的量的作用。
专利申请JP10-189397(Sumitomo Light Metal Industries)提到MgAl2O4(尖晶石)的尺寸,其作为引发点蚀的有利因素而存在。
多个专利提到氧化物层的大量水合作用的有利效果,在各种添加剂的存在下在沸水中进行浸渍处理可以提高薄板的蚀刻性,例如JP08-306592(Kobe Steel),JP2000-232038(Kobe Steel),JP05-006840(Nippon Seihaku),JP07-150279(Nippon Seihaku),JP07-297089(Nippon Seihaku),US5417839(Showa Aluminum)和JP06-104147(Sumitomo Light Metal Indutries)。
对于在表面上偏析的杂质和掺杂剂来说,已知在浇铸期间金属中存在的许多杂质对薄板的蚀刻性是有影响的,其中这些杂质是有意添加或者来源于所用的矿物,并且在不同的转化步骤期间,尤其是在热轧和最终热处理期间在表面上偏析。
Osawa和Fukuoka提到了已知影响蚀刻的主要杂质。铋在氧化物-铝的界面偏析,并且象硼一样具有有害的影响。镁在氧化物层表面偏析。已知铅和铟偏析的深度最多可达50nm,并且对蚀刻具有有利的影响。Fukuoka描述了硼、镁、铁和铋的表面偏析分布(Journal of JapanInstitute of Light Metals,51(7)2001,第370-377页)。
多个专利要求保护如铅、铋和铟这样的杂质的深度分布,具体地是JP57-194516(Toyo Aluminium),US5128836(Sumitomo LightMetal)和本申请人的专利申请EP1031638。
Showa Aluminium的专利EP0490574描述了或者在氧化物层表面,或者在氧化物层与金属的界面,或者在氧化物层表面和所述界面上16种元素的表面富集的有益效果。离子探头测定的浓度比是1.2-30。
专利申请JP04-062820(Showa Aluminium)描述了包含1-50ppm的碳的薄板,并且在0.1μm厚的表面层中富集的碳是内部浓度的5-300倍。表面的碳源于内部碳的表面偏析。
本发明的目的是提供精炼铝薄板和带,与现有技术相比,其具有更好的蚀刻性,并且还可以改善由这些薄板或带制造的电解电容器的性能。
发明目的本发明的目的在于一种纯度大于99.9%的精炼铝薄板或带,其用于制造电解电容器的阳极,其在厚度为10nm的表面区域中包含原子含量为5-25%,优选10-20%的碳化铝。
本发明的描述本发明是基于申请人在实验过程中发现的精炼铝薄板,所述精炼铝薄板具有不同寻常的蚀刻性,并使得由这些薄板制造的电容器的电容明显增加。这些薄板的许多特性被认为是这种不同寻常的性能的原因,并且已经表明,其在金属与氧化物之间的界面包含有非常规量的碳化铝。
可用两种分析方法显示所形成的碳化铝,即ESCA(化学分析用电子能谱法),又名XPS(X射线光电子能谱法),和TEM(透射电子显微镜)。
使用XPS表明在退火之后形成碳化物(Al4C3≈282eV,使用72.8eV位置作为金属铝峰的基准)。如在下面的文献中所指出的,在能量为283-281eV之间的碳C 1s峰上观察到金属碳化物,这些文献是NIST(National Institute of Standards and Technology)的XPS数据库或C.D.WAGNER,W.M.RIGGS,L.E.DAVIS,J.F.MOULDER的手册《Handbook of X-ray Photoelectron Spectroscopy》,Perkin-ElmerCorporation,Physical Electronics Division。
更具体地,对于碳化铝来说,C.Hinnen,D.Imbert,J.M.Siffre和P.Marcus的文章“An in situ XPS Study of Sputter-depositedAluminium Thin Films on Graphite”(Applied Surface Science,78,(1994),219-231)提到了对于Al4C3来说的282.4eV的峰。B.Maruyama,F.S.Ohuchi和L.Rabenberg的文章“Catalytic Carbide Formationat Aluminium-Carbon Interface”(Journal of Materials ScienceLetters,9,(1990),第864-866页)指出了对于Al4C3来说的281.5eV的峰和对于碳氧化物来说的282.5eV的峰。
P.J.Cumpson的文章“Angle-resolved XPS and AESDepth-resolution and a General Comparison of Properties ofDepth-profile Reconstruction Methods”(Journal of ElectronSpetroscopy and Related Phenomena,73(1995),第25-52页)中的角度XPS分析法显示,与由于样品受到气氛的污染而存在的表面碳不同,碳化物位于氧化物层下。碳化物具有类似于金属铝的角度分布,所述金属铝理所当然地位于氧化物层下。
XPS法可进行材料表面的定量分析。这种方法目前得到了广泛地认可,其结果以原子%来表示。由于碳化物的原子%受到表面层的尺寸(污染碳、氧化物层厚度)的影响,因而定义了一种方法来对这些参数进行独立定量。
由于碳化物和金属二者均位于氧化物层下并因此以完全相同的方式受到表面层的影响,因此所提出的方法要确定碳化铝与金属形式的铝的原子%之比。因而使用按照如下方式计算的碳化铝在金属铝中的%金属Al中的碳化物%=碳化物的原子%/(碳化物的原子%+金属Al的原子%)*100。金属铝和碳化物的百分数通过XPS测量法来确定;分析角是分析仪与表面之间的45°,射线源是AlKα单色化射线(1486.8eV)。
在铝的选择性溶解之后进行的TEM检验通过其晶体结构(Al4C3)确认在氧化物层下存在碳化物。
尽管难以定量,但TEM检验无可争辨地表明了本发明的薄板和带存在碳化铝。对于其在铝中5-25%的原子浓度来说,已经看到了碳化铝的有利效果,并且对其来源进行了研究。
由于碳在固体铝中非常难溶(小于0.1ppm)并且由于所形成的碳化物非常稳定,因而这意味着铝材中所含的碳以碳化物形式被封闭,并且不能向表面迁移,下面的出版物对此均有涉及L.Svendsen和A.Jarfors《Al-Ti-C Phase Diagram》,MaterialsScience and Technology,1993 Vol.9,R.C.DorwardDiscussion of《Comments on the Solubility ofCarbon in Molten Aluminium》,Metallurgical Transactions A,1990,Vol.21A,C.Q iu,R.Metselaar《Solubility of Carbon in liquid Al andStability of Al4C3》,Journal of Alloys and Compounds,1994,216,55-60。
因此,表面上存在的碳化物不可能是由内部碳的偏析而产生的。相反,这种碳来源于外部,并且与表面的铝在高温下反应。
本发明的薄板和带是采用一种已知方式生产的,直到最终的退火步骤为止。所述生产包括产生纯度至少等于99.9%的精炼铝。所使用的精炼方法可以是如专利FR759588和FR832528所描述的所谓“3-层”电解精炼,或者是如专利FR1594154所描述的偏析方法。金属以板的形式浇铸,均化,随后是热轧,然后冷轧至最终厚度,该厚度约为0.1mm。该生产过程在热轧和冷轧之间通常包括中间退火,以及在两次冷轧之间的另一次退火。随后在中性气氛下,如在氩气中,在500-580℃的温度下,对薄板或带进行最终的退火。
为了获得本发明的薄板或带,在中性气体中引入含有碳原子的气体,这样可在最终退火温度下形成碳化铝。例如可使用甲烷CH4或者碳的其它气态衍生物,如丙烷、丁烷、异丁烷、乙烯、乙炔、丙烯、丙炔、丁二烯等。
众所周知,氧化物微晶的存在有利于蚀刻,而且本发明人提出,在氧化物层下引入碳化物具有类似的效果,并且可以提高表面微晶密度并进而提高通道(tunnel)密度,由此提高电容器的电容。
实施例通过使用下面的转化操作步骤制备纯度为99.99%精炼铝薄板的12个样品-浇铸板材并将所述板材在600℃下均化30小时,-热轧和冷轧至厚度为0.125mm,-在200℃下进行中间退火30小时,-冷轧至厚度为0.1mm,-在表1所述条件的氩气中(把5%或10%的甲烷加到氩气中),对本发明样品进行最终的退火。
随后根据下面的方法测量由点蚀的样品制得的电容器的电容在含有5%HCl和15%H2SO4的溶液中,在200mA/cm2的直流电流强度下,在85℃下将铝薄板电解60s。随后,在5%HCl的溶液中,在50mA/cm2的直流电流强度下,在80℃下将铝薄板电解8分钟。氧化物在硼酸铵溶液中在450V的电压下形成。以μF/cm2测量电容,并在随后将其转换为相对于参比精炼薄板的百分数。其结果在表1中示出表1

可以看到,样品1-8中有7个的电容增加了,在这8个样品中,最终的退火是在向氩气中添加甲烷的情况下进行的,尤其是对于添加更多甲烷的5-8这四个样品来说,平均为108%,而样品1-4为104%,现有技术的样品9-12为97%。
权利要求
1.纯度高于99.9%的精炼铝薄板或带,用于制造电解电容器的阳极,其在厚度为10nm的表面区域中包含原子含量为5-25%的碳化铝。
2.权利要求1的薄板或带,其特征在于该表面区域中的碳化铝的原子含量为10-20%。
3.权利要求1或2的薄板或带的生产方法,包括浇铸精炼铝板,对其均化、热轧、冷轧和在中性气氛中进行最终退火,其特征在于将中性气体与含有碳原子的气体混合。
4.权利要求3的方法,其特征在于包含碳原子的气体属于由甲烷、丙烷、丁烷、异丁烷、乙烯、乙炔、丙烯、丙炔和丁二烯所构成的组。
全文摘要
本发明涉及纯度高于99.9%的精炼铝薄板或带,用于制造电解电容器的阳极,其在厚度为10nm的表面区域中包含原子含量为5-25%,优选10-20%的碳化铝。
文档编号C22F1/04GK1685068SQ03822625
公开日2005年10月19日 申请日期2003年9月22日 优先权日2002年9月24日
发明者M·伯姆, J-R·比特吕耶 申请人:皮奇尼何纳吕公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1