镁合金材及其制造方法

文档序号:3249236阅读:261来源:国知局

专利名称::镁合金材及其制造方法
技术领域
:本发明涉及镁合金及其制造方法,特别是涉及机械的强度高的镁合金材及其制造方法。
背景技术
:一般来说,镁合金材在实用化的合金中密度最低,即使在轻量下强度也很高,因此对电气制品的壳体、汽车的车轮、旋转部件或者发动机旋转部件等的应用得到推进。特别是在关系到汽车的用途的部件中,因为要求有高的机械的性质,所以作为添加有Gd和Zn等元素的镁合金材,通过单辊法、急速凝固法制造特定的形态的材料被进行(例如,专利文献1,还有专利文献2、非专利文献1)。但是,前述的镁合金材在特定的制造方法中虽然能够获得高的机械的性质,但是需要特殊的设备,也存在生产性低的问题,此外还有能够适用的构件受限的问题。因此,历来在制造镁合金材时,都不使用前述专利文献那样的特殊的设备或工艺,而是提出利用生产性高的通常的熔解铸造实施塑性加工(压出),这也能获得实用上有用的机械的性质(例如,专利文献3、专利文献4)。专利文献3、4所公开的镁合金材已知能够得到高的机械的性质。专利文献l:特开平06-041701号公报专利文献2:特开2002-256370号公报专利文献3:国际公开第2005/052204号手册专利文献4:国际公开第2005/052203号手册非专利文献l:轻金属学会第108回大会讲演概要(2005)P42-45但是,现有的镁合金材存在应该进行如下所示的改良的余地。艮P,现有的镁合金材,出于轻量化的目的而推进在汽车上的应用,因4此要求进一步提高强度。
发明内容本发明鉴于所述的问题而发明,其课题为提供一种不用使用特殊的制造设备和工艺的、机械的性质高而优异的镁合金材及其制造方法。本发明为了解决所述课题,而构成如下这种镁合金材。S卩,镁合金材是Mg-Zn-RE系合金,其作为必须成分含有Zn,以及作为RE而含有Gd、Tb、Tm之中至少l种以上,余量由Mg和不可避免的杂质构成,并且为具有针状析出物或板状析出物的结构。通过如此构成,镁合金作为针状析出物或板状析出物的X相使原材析出强化,与具有长周期堆垛结构(LPO)相比,0.2%屈服强度进一步提高。该镁合金作为RE有Gd、Tb、Tm之中任意l种或l种以上,由此形成例如Mg3Gd(Mg3Zri3Tb2或Mg24Tm5)的结晶物,与作为X相(卩相、卩,相、(31相的至少一个)的针状析出的或板状析出物一起使0.2%屈服强度提高。还有,作为X相的针状析出物或板状析出物优选为7pm以下。另外,在所述镁合金材中,所述针状析出物或板状析出物构成为Mg5Gd或/禾卩Mg7Gd。如此,由于针状析出物或板状析出物为Mg5Gd或/和Mg7Gd,从而使合金的强度提高。还有,当Mg7Gd的比例多时为p,相,当MgsGd的比例多,该Mg5Gd的状态为六方最密堆积结构时,则为P1相,此外,若包含Mg5Gd的状态为体心立方晶格的结构,则为|3相。另外,在所述镁合金材中,优选成分范围为所述Zn:0.53原子%,所述RE:15原子%的范围。通过如此构成,镁合金材使Zn和RE(Gd、Tb、Tm)的成分处于规定的范围,由此作为使强度提高的X相的针状析出物或板状析出物(p相、卩,相、Pl相的至少一个)容易析出。此外,为了解决上述课题,镁合金材的制造方法为,在镁合金材的制造方法中,含有如下工序铸造作为必须成分含有Zn、作为RE含有Gd、Tb、Tm之中至少l种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金,从而形成铸造材的铸造工序;固溶所述铸造材的固溶工序;以规定条件对作为所述固溶的铸造材进行热处理的热处理工序,设热处理温度(°C)为y,设热处理时间(hr)为x时,在-18[In(x)]+240<y<-12[In(x)]+375,并且2<x<300所示的范围的条件下进行所述热处理工序。根据这一步骤进行的镁合金材的制造方法,Mg和RE的析出物通过固溶处理而成为固溶状态,此外,通过使热处理条件在规定的范围进行热处理工序,而在镁合金材中作为x相((p相、p,相、pi相的至少一个)的针状析出物或板状析出物(Mg5Gd或/和Mg7Gd)被形成,从而被析出强化,0.2%屈服强度提高。另外,在镁合金材的制造方法中,含有如下工序铸造作为必须成分含有Zn、作为RE含有Gd、Tb、Tm之中至少l种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金,从而形成铸造材的铸造工序;固溶所述铸造材的固溶工序;以规定条件对作为所述固溶的铸造材进行热处理的热处理工序;对所述经过热处理的铸造材实施塑性加工的塑性加工工序,设热处理温度(。C)为y,设热处理时间(hr)为x时,在-18[In(x)]+240<y<-12[In(x)]+375,并且2<x<300所示的范围的条件下迸行所述热处理工序。另外,在所述镁合金材的制造方法中,塑性加工工序为压出加工或锻造加工。根据这一步骤进行的镁合金材的制造方法,Mg和RE的析出物通过固溶处理而成为固溶状态,此外,通过使热处理条件在规定的范围进行热处理工序,能够使作为X相((3相、p,相、pi相的至少一个)的针状析出物或板状析出物(Mg5Gd或/和Mg7Gd)形成,针对塑性加工而成为能够充分使延伸率和0.2%屈服强度提高的状态。此外,在镁合金材的制造方法中,含有如下工序铸造作为必须成分含有Zn、作为RE含有Gd、Tb、Tm之中至少l种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金,从而形成铸造材的铸造工序;固溶所述铸造材的固溶工序;以规定条件对作为所述固溶的铸造材进行热处理的热处理工序,设热处理温度(°C)为T,设热处理时间(hr)为t时,在330-20XIn(t)<T<325,并且t》5所示的范围的条件下进行所述热处理工序。根据这一步骤进行的镁合金材的制造方法,Mg和RE的析出物通过固溶处理而成为固溶状态,此外,通过热处理条件在更优选的规定的范围进行热处理工序,在镁合金材中作为x相((p相、p,相、pi相的至少一个)的针状析出物或板状析出物(Mg5Gd或/和Mg7Gd)被形成,从而被析出强化,0.2%屈服强度提高。另外,镁合金材的制造方法含有如下工序铸造作为必须成分含有Zn、作为RE含有Gd、Tb、Tm之中至少l种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金,从而形成铸造材的铸造工序;固溶所述铸造材的固溶工序;以规定条件对作为所述固溶的铸造材进行热处理的热处理工序;对所述经过热处理的铸造材实施塑性加工的塑性加工工序,设热处理温度(°C)为T,设热处理时间(hr)为t时,在330-20XIn(t)<t<325,并且t》5所示的范围的条件下进行所述热处理工序。另外,在所述镁合金材的制造方法中,塑性加工工序为压出加工或锻造加工根据这一步骤进行的镁合金材的制造方法,Mg和RE的析出物通过固溶处理而成为固溶状态,此外,通过使热处理条件在更优选的范围进行热处理工序,能够使作为X相(p相、(3'相、(31相的至少一个)的针状析出物或板状析出物(Mg5Gd或/和Mg7Gd)形成,针对塑性加工而成为能够充分使延伸率和0.2%屈服强度提高的状态。本发明的镁合金材及其制造方法,发挥着如下优异的效果。因为镁合金材具有作为针状析出物或板状析出物(Mg5Gd或/和Mg7Gd)的X相(卩相、(3'相、(31相的至少一个),所以在规定的延伸率下,与具有长周期堆垛结构的镁合金材相比,能够使0.2%屈服强度大幅提高。另外,若进行压出(塑性)加工,则能够得到因组织中具有长周期堆垛结构而通常所达不到的那么高的机械性质。因此,镁合金即使在例如汽车用部件,特别是活塞等机械的性质的条件严格的部分也可以使用。镁合金材的制造方法是在进行固溶处理后,使热处理条件在规定的范围来进行,因此其成为的结构是,在镁合金材中具有作为针状析出物或板状析出物(Mg5Gd或/和Mg7Gd)的X相(p相、(3'相、卩l相的至少一个),在规定的延伸率下,0.2%屈服强度比现有的镁合金材有了进一步提高,这种镁合金材通过一般的制造设备或工艺就可以高效率地制造。另外,镁合金才的制造方法,是针对热处理温度和热处理时间,设热处理温度(°C)为y,设热处理时间(hr)为x时,在-18[In(x)]+240<y<-12[In(x)]+375,并且2<x<300所示的范围的条件下进行,从而在更宽范围内规定的延伸率下,能够制造0.2%屈服强度大幅提高(与具有长周期堆垛构造的镁合金相比较)的镁合金材。还有,进一步优选在如下所示的条件下进行,设热处理温度(°C)为T,设热处理时间(hr)为t时,在330-20XIn(t)<t<325,并且t^5,由此能够制造在规定的延伸率下,0.2%屈服强度有大幅提高(与具有长周期堆垛结构的镁合金材相比较)的镁合金材。图1(a)、(b)是表示本发明的镁合金的金属组织中出现针状析出物或板状析出物的状态的TEM照片。图2(a)、(b)、(c)是表示本发明的镁合金的金属组织的TEM照片或SEM照片,(a)是表示镁合金材中出现Mg3Gd的结晶物和针状析出物或板状析出物的状态的SEM照片,(b)是表示镁合金材中出现针状析出物或板状析出物的状态的TEM照片,(c)是表示针状析出物或板状析出物、和Mg3Gd的结晶物、和长周期堆垛结构出现的状态的TEM照片。图3表示本发明的镁合金的金属组织,是显示(3'相(长析出物)出现的状态的TEM照片。图4表示本发明的镁合金的金属组织,是显示(3'相和pl相(长析出物)出现的状态的TEM照片。图5表示本发明的镁合金的金属组织,是显示(3相(长析出物)出现的状态的TEM照片。图6是表示本发明的镁合金材的制造方法的流程图。图7是模式化地显示本发明的镁合金材的固溶处理和热处理的温度与时间的关系的曲线图。图8是表示在本发明的条件1下的热处理温度与热处理时间内,金属组织中析出的析出物的区域的曲线图。图9是表示在本发明的条件2下的热处理温度与热处理时间内,金属组织中析出的析出物的区域的曲线图。图10表示本发明的镁合金材在30(TC和25(rC下IO小时、60小时和100小时的金属组织的状态的TEM照片。图11是表示对于本发明的镁金属材和现有的镁合金材,继热处理工序后进行压出加工的延伸率和0.2%屈服强度的关系的曲线图。图12是对以本发明的镁合金的长状析出物出现的热处理温度250°C进行60小时热处理后,实施压出加工时的金属组织的TEM照片,和以50(TC进行10小时热处理时的金属组织的TEM照片加以比较的说明照片。图13是表示包含本发明的镁合金材在内的热处理温度和热处理时间的关系的曲线图。图14是表示用于对说明本发明的实施例时的机械的性质进行评价的各工序的方块图。图15是以各温度对本发明的实施例所使用的铸锭进行60小时的热处理时的TEM照片。图16是表示在本发明的实施例中现有的金属组织的状态的TEM照片。符号说明1镁合金材2长状析出物(针状析出物或板状析出物X相,相、(3'相、(31相的任意一个)3长周期堆垛结构(LPO)具体实施例方式以下,参照附图对用于实施本发明的最佳的方式进行说明。图1(a)、(b)是表示本发明的镁合金的金属组织中出现针状析出物或板状析出物的状态的TEM照片,图2(a)是表示镁合金材中出现Mg3Gd的结晶物和针状析出物或板状析出物的状态的SEM照片,(b)是表示镁合金材中出现针状析出物或板状析出物的状态的TEM照片,(c)是表示针状析出物或板状析出物、和Mg3Gd的结晶物、和长周期堆垛结构出现的状态的TEM照片。镁合金材1是Mg-Zn-RE系合金,其作为必须成分含有Zn,以及在RE(稀土类)之中含有Gd、Tb、Tm的至少1种以上,余量由Mg和不可避免的杂质构成,在此,以含有Gd的为例加以说明。如图1和图2(b)所示,镁合金材l析出微细的针状析出物或微细的板状析出物(以下,出于适宜和便宜而称长状析出物)。还有,如图2(a)所示,作为Mg-Zn-RE系合金RE为Gd时的镁合金材1,呈白的微细的针状或微细的板状而无数显示的是长状析出物2(针状析出物或板状析出物),白的仿佛滴落的点状(比针状析出物或板状析出物大)的部分是Mg3Gd的结晶物,混在镁合金材1中析出。另外,如图2(c)所示可知,在此,镁合金材1是具有长状析出物2、Mg3Gd的结晶物和长周期堆垛结构3的构成。还有,镁合金材的Mg3Gd的结晶物通过后述的固体处理而固溶,但若其添加量多,则能够推荐其在热处理时会作为过饱和的固溶体出现。因此,即使镁合金材为只有长状析出物2或具有长状析出物2和长周期堆垛结构3的状态的构成也能够推测成立。在镁合金材中所谓针状析出物或板状析出物(长状析出物2)为Xphase(x相^p相、卩'相、pi相的至少一个),是在规定的温度条件下析出的析出物,该X相的出现会带来机械的强度(0.2%屈服强度)提高。该X相其长状析出物2是细长的微细的针状或板状,若过小则无助于强度的提高,另外若过大,则析出物会成为破坏的起点而造成延伸率的降低。因此,长状析出物2优选其大小(长度)为0.120pm的范围,另外更优选为0.110pm的范围,而且进一步优选为0.37pm的范围。还有,长状析出物2其纵横比为比2比1更细长的状态。另外,如图3至图5所示可知,长状析出物2根据温度条件和温度时间而出现的相的状态,是从(3'相替换到P1相,再从P1相替换为P相。而且还可知,这里出现的长状析出物2,作为相的状态会出现(3'相、(31相、卩相的至少一种状态,作为(3'相、pi相、P相的金属组成是Mg5Gd或Mg7Gd,或者MgsGd和Mg7Gd。还有,p,相的组成为Mg7Gd,(31相和(3相为Mg5Gd。pi相和(3相虽然组成相同,但是结构不同,因此区别称作(31相和p相。g卩,作为区别的标准,作为(31相,Mg5Gd的结构为六方最密堆积结构,另外作为p相,Mg5Gd的结构为体心立方晶格。在该Mg5Gd或/和Mg7Gd作用下,镁合金材1在维持延伸率的状态下合金的强度提高。还有,虽然是相同的Mg5Gd,但之所以有结构的变化,是由于热能导致p'相变成pi相,根据热处理条件,也有在变化的途中两者混杂的事例。如图3和图4所示,作为长状析出物2的p'相,Mg7Gd呈现为整列而平行地排列为线状的状态。另外如图4所示,作为长状析出物2的pi相,其黑的短针状或板状的物质交替变化方向而呈现为锯齿形的状态。此外如图5所示,作为长状析出物2的p相,作为细长的针状或板状而出现在照片的中央。还有,在图3至图5中,在长状析出物2((3相、(3'相、pi相的至少一个)的周围,基体显现。(长周期堆垛结构及其间隔)所谓长周期堆垛结构(LongPeriodOrderedStructure简称为LPO或LPOS)3,是例如规则晶格经由14个逆相位排列的偏移,再度为规则晶格14个排列,构成为原晶格的数倍至10数倍的单位的结构。这种长周期的结构称为长周期堆垛结构。该相出现的规则相与不规则相之间的微小的温度范围。电子射线衍射图中规则相的反射分裂,在10倍的周期所对应的位置出现衍射斑点。可知该长周期堆垛结构3也表现为金属间化合物等。还有,Mg3Gd(Mg3ZrVTb2或Mg24Tm5)被铸造凝固时在晶界结晶,另外通过固溶处理被固溶,使长状析出物2或长周期堆垛结构3析出。(合金组成)若Zn低于0.5at。/。,则不能得到Mg3Gd,强度降低。另外,若Zn超过3at。/。,则得不到与添加量相称的强度提高,延伸率降低(发生脆化)。因此,Zn在此为0.53at。/。的范围。Gd、Tb、Tm仅通过铸造无法使长周期堆垛结构3出现,但在铸造后,通过以规定的条件进行热处理,则会使长周期堆垛结构3或长状析出物2析出。镁合金1虽然在热处理的条件下长周期堆垛结构3析出而能够实现强度的提高,但为了得到更高强度,也可以通过Mg3Gd(Mg3Zri3Tb2或Mg24Tm5)的固溶或热处理而使长状析出物2析出,或者通过Mg3Gd(Mg3Zn3Tb2或Mg24Tms)固溶和热处理而使长状析出物2析出,并使结晶的Mg3Gd(Mg3Zn3Tb2或Mg24Tm5)掺杂。因此,在镁合金材1中,由Gd、Tb、Tm的至少1种构成的RE需要为规定量。在镁合金材1中若Gd、Tb、Tm的至少1种以总量计低于lat%,则不能使Mg3Gd(Mg3ZrVrb2或Mg24Tm5)和长状析出物2析出,另外若以决量计超过5at。/。,则得不到与添加量相称的强度提高,延伸率降低。因此,在镁合金材1中由Gd、Tb、Tm的至少1种构成的RE在此以总量计为15at。/。的范围。因此,镁合金材l在合金组成中,基于原子n/。的组成为组成式MgH)0—a一bZnaREb所示的范围(组成式中,0.5《a《3,l《b《5)。还有在本发明中,除所述成分以外,在不影响本发明的镁合金的效果的范围内,还能够在不可避免的杂质的范围内添加其他成发,例如也可以含有有助于微细化的Zr为0.10.5at。/。左右。接着,对于镁合金材的制造方法进行说明。图6是表示本发明的镁合金材的制造方法的流程图,图7是模式化地显示本发明的镁合金材的固溶处理和热处理的温度与时间的关系的曲线图。镁合金材1首先通过铸造工序Sl被铸造。在此,作为镁合金材1由组成式Mg咖-a-bZnaREb表示,RE为Gd。然后,经铸造的铸造材接着在固溶工序S2中被固溶处理(RE固溶)。这时的固溶处理的温度,作为一例是以52(TC进行2小时。铸造材通过固溶处理在铸造中产生的Mg和Gd(Tb、Tm)的化合物溶入基体中固溶。还有,固溶处理优选以50(TC以上保持2小时。接下来,进行以规定条件对实施了固溶处理的铸造材进行热处理的热处理工序S3。通过进行该热处理工序S3,长状析出物(X相二卩相、(3'相、f31相的至少一个)2、长周期堆垛结构3析出,并且存在掺杂有结晶物Mg3Gd(Mg3Zn3Tb2或Mg24丁m5)、Mg3Zn3Gd2的情况。热处理工序S3在此显示为两个条件。即,优选的范围的条件(条件1)和更优选的范围的条件(条件2)这2个。作为热处理工序S3的条件1,是在如下所示的范围的条件下进行设热处理温度(°C)为y,设热处理时间(hr)为x时,在-18[In(x)]+24(Xy<-12[In(x)]+375,并且2<x<300(参照图8,作为条件1的热处理温度和热处理时间显示的区域是由四角形包围的区域的范围)。另外,作为热处理工序S3的条件2,是在如下所示的范围的条件下进行设热处理温度(°C)为T,设热处理时间(hr)为t时,在330-20XIn(t)<t<325,并且t^5(参照图9,作为条件2的热处理温度和热处理时间显示区域被表示为包含有黑方块的点的Mg3Gd+XphaSe的线内的区域内范围)。热处理工序S3中,由条件1设定的范围的一方为更广阔的区域,由条件2设定的范围的一方为稍狭一些的区域,但是条件2在热处理工序S3中,表示为更优选的范围。若以规定条件进行热处理工序S3,作为镁合金材1则会成为特别能够提高强度的长状析出物(X相,,相、卩l相、(3相的至少一个)2析出的相区域的结构。图8是在条件1下的热处理温度与热处理时间内,金属组织中析出的析出物的区域的曲线图。图9是表示在条件2下的热处理温度与热处理时间内,金属组织中析出的析出物的区域的曲线图。图10是表示镁合金材在300。C和25(TC下10小时、60小时和100小时的金属组织的状态的TEM照片。还有,在图IO中全部以相同的比例拍摄。如图8所示可知,长状析出物(X相:Xphase=[3,、|31相、(3相的至少一个)2析出的范围,是所述的规定的热处理条件的范围。还有,如图8所示可知,在此,Mg3Gd的析出物与长状析出物2(Mg7Gd或邻Mg5Gd)也一起析出。镁合金材1通过使长状析出物2(Mg7Gd或/和Mg5Gd)析出,能够提高0.2%屈服强度(参照图ll:Cast-T6)材。另外如图IO所示可知,热处理温度为30(TC,分别使热处理时间为IO小时、60小时和100小时时,以及热处理温度为25(TC,分别使热处理时间为10小时、60小时和100小时时,作为长状析出物2的(3'相、|31相、卩相的至少一个析出。另外,即使使热处理时间为100小时以上,也只是作为X相的(3'相、pi相、(3相的至少一个析出,但在考虑到实用的范围时,镁合金材的热处理温度范围为,构成所述条件1的-18[In(x)]+240<y<-12[In(x)]+375,并且2<x<300所示的范围,或者构成所述条件2的330-20XIn(t)<t<325,并且t^5所示的条件。经热处理的铸造物,接着进行根据需要而实施塑性加工的塑性加工工序S4。该塑性加工工序S4的塑性加工可以是压出加工或锻造加工。经塑性加工的塑性加工物其0.2%屈服强度显著提高。图II是表示继热处理工序后进行压出加工的镁合金材(压出材)的0.2%屈服强度和延伸率的关系的曲线图。如图ll所示可知,进行热处理工序S3并进行作为塑性加工工序S4的压出加工的镁合金材1,显示出高的0.2%屈服强度的值。另外,镁合金材1在热处理工序S3和塑性加工工序S4中,0.2%屈服强度有提高时,具有长状析出物(卩,相、卩l相、卩相的至少一个)2很重要,此外,在析出Mg3Gd(Mg3Zn3Tb2或Mg24Tms)的结晶物或者长周期堆垛结构3时,如果是仍有长状析出物((3'相、Pl相、P相的至少一个)2析出的状态,则0.2%屈服强度得到提高。还有,图12中显示压出加工前后的金属组织的状态。图12是镁合金的长状析出物出现的热处理温度25(TC进行60小时热处理后,实施压出加工时的金属组织的TEM照片,和以500。C进行10小时热处理时的金属组织的TEM照片加以比较的说明照片。还有,在图12中,全部以相同的尺寸进行摄影。如图12所示,在500'C进行IO小时热处理的,在压出加工前,直线地形成长周期堆垛结构3,但是X相((3'相、(31相、(3相的至少一个)完全没有析出。相对于此,在25(TC进行60小时热处理的,在压出加工前析出大量的Mg3Gd的结晶物,以及无数作为微细的X相的(3'相、pi相、(3相的至少一个(长状析出物2)。另外,如图11所示,在25(TC进行60小时热处理的镁合金材,在压出加工前后,显示出0.2%屈服强度高的值。因此,如图8、9所示,|3'相、卩l相、p相的至少一个(X相(Xphase))出现的区域的镁合金材1与具有长周期堆垛结构3的区域的镁合金材相比,形成0.2%屈服强度提高的结A还有,图6所示的塑性加工工序S4,是对于经过热处理的铸造物施加塑性加工(压出加工、锻造加工),从而使强度能够提高,因此也可以根14据镁合金材1的目的而进行。另外,塑性加工后的镁合金材〗通过切削等被加工成规定的形状而制品化。另外,这里作为镁合金材1的制造方法,表示为从铸造工序Sl至塑性加工工序S4这一系列的工序,但是从铸造工序S1至热处理工序S3为一系列的工序,而塑性加工工序S4也可以在制品投入前进行。实施例接下来,对于本发明的实施例进行说明。还有,这里所示的实施例只是一个例子,并不限定本发明。图13是表示热处理温度和热处理时间的关系的曲线图,图14是表示用于进行机械的性质的评价的各工序的方块图,图15是以各温度对铸锭进行60小时的热处理时的TEM照片,图16是表示在实施例中现有的金属组织的状态的TEM照片。作为镁合金材,是Zn为lat。/。、Gd为2aty。,余量由Mg和不可避免的杂质的Mg-Zn-Gd合金,将其投入熔解炉,经熔剂精炼进行熔解。接着,如图14所示,用金属模具对加热溶解了的材料进行铸造(Sl),制成029mmXL60mm的铸锭,再以520。C在2小时内对铸造好的铸锭进行固溶处理(S2),其后,在各温度下进行热处理(S3),在压出温度40(TC下,作为压出比IO制造进行了性加工(S4)的和不进行塑性加工的(实施例),在室温下进行拉伸试验。还有,拉伸试验的应变速度为^5.0X1(T4(s—i)。另外,固溶处理和热处理用马弗炉进行,各温度是图13所示的温度,在2小时、4小时、IO小时、20小时、40小时、60小时和100小时下进行热处理。还有,在图14中将固溶和热处理一并作为热处理加以记述。如图13所示,在此,在合并前述的各温度和各时间内对于53套试验用的镁合金材进行试验。如图15(a)所示可知,金属组织的状态为,在固溶状态下只出现显示Mg3Gd的相。如图15(b)所示可知,以25(TC进行60小时的热处理时的金属组织的状态为,作为X相的(3,相、f31相、j3相的至少一个(长状析出物2)析出,与显示Mg3Gd的相混杂。如图15(c)所示可知,以350。C迸行60小时的热处理时的金属组织的状态为,显示Mg3Gd的相和显示14H-LPO的相(长周期堆垛结构)析出。如图15(d)所示可知,以450。C进行60小时的热处理时的金属组织的状态为,显示14H-LPO的相析出。15此外,如图15(e)所示可知,以500。C进行60小时的热处理时的金属组织的状态为,显示14H-LP0的相析出,与显示Mg3Zn3Gd2的相混杂。如图16所示可知,在50(TC下没有热处理时间(固溶的状态)、以500'C进行2小时、10小时和60小时的热处理的镁合金材中,金属组织中单独析出显示14H-LPO的相或显示Mg3Gd的相,或者显示14H-LPO的相的析出和显示Mg3Gd的相混杂,但是作为X相的p'相、pi相、卩相的至少一个(长状析出物2)的析出不能确认。另外,表1将图13所示之中代表性的关系作为实施例1至实施例5,同样,图13的代表性的关系作为比较例1、2,从而显示各工序的条件,表2显示实施例和比较例中的组织的形态、0.2%屈服强度和延伸率。[<table>tableseeoriginaldocumentpage16</column></row><table>实施例1至实施例5的镁合金材,在金属组织中均析出并具有Mg3Gd和X相,具有高的0.2%屈服强度和延伸率(参照图ll)。另一方面,比较例1和比较例2的镁合金材,因为只具有长周期堆垛结构,所以与析出X相的镁合金材相比较,可知0.2%屈服强度降低(参照图11)。其结果可知,以表8所示的条件1遵循热处理温度和热处理时间进行热处理,即使在更宽范围内为低温,也会析出P'相、Pl相、P相的任意一个。还有,在图8中由四角形的外形线和点划线划分的区域显示为(3相,由点划线和虚线划分的区域显示为pi相,由虚线和四角形外形线划分的区域显示为P'相。另外在条件2下可知,由于(3'相、pi相、P相的任意一个存在,压出后的机械的性质提高,因此在条件l下,与条件2—样,压出后的机械的性质也提高(参照图ll)。如此,镁合金材通过析出X相(针状析出物或板状析出物=长状析出物=(3,相、pi相、(3相的任意一个),即使是Mg-Zn-RE系合金,也可以作为机械的性质更优异的材料使用。还有,由于制品的尺寸或铸造时机造成的晶粒直径,即使经过同样的热处理,每个部位的组织形态也会有所不同,卩相、(31相、卩'相这些相也会存在单独或混杂存在的情况。权利要求1.一种镁合金材,其特征在于,是作为必须成分含有Zn,以及作为RE含有Gd、Tb、Tm中的至少1种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金,该Mg-Zn-RE系合金中具有针状析出物或板状析出物。2.根据权利要求1所述的镁合金材,其特征在于,所述针状析出物或板状析出物为Mg5Gd或/和Mg7Gd。3.根据权利要求1所述的镁合金材,其特征在于,成分范围是所述Zn:0.53原子%,所述RE:15原子%。4.一种镁合金材的制造方法,其特征在于,包括对作为必须成分含有Zn、以及作为RE含有Gd、Tb、Tm中的至少l种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金进行铸造,形成铸造材的铸造工序;固溶所述铸造材的固溶工序;以规定条件对进行了所述固溶的铸造材进行热处理的热处理工序,所述热处理工序在如下所示的范围的条件下进行在将热处理温度(。C)定为y,将热处理时间(h)定为x时,-18[In(x)]+240<y<-12[In(x)]+375,并且2<乂<300。5.—种镁合金材的制造方法,其特征在于,包括对作为必须成分含有Zn、以及作为RE含有Gd、Tb、Tm中的至少l种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金进行铸造,形成铸造材的铸造工序;固溶所述铸造材的固溶工序;以规定条件对进行了所述固溶的铸造材进行热处理的热处理工序;对进行了所述热处理的铸造材实施塑性加工的塑性加工工序,所述热处理工序在如下所示的范围的条件下进行在将热处理温度(°C)定为y,将热处理时间(h)定为x时,-18[In(x)]+240<y<-i2[In(x)]+375,并且2<x<300。6.—种镁合金材的制造方法,其特征在于,包括对作为必须成分含有Zn、以及作为RE含有Gd、Tb、Tm中的至少l种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金进行铸造,形成铸造材的铸造工序;固溶所述铸造材的固溶工序;以规定条件对进行了所述固溶的铸造材进行热处理的热处理工序,所述热处理工序在如下所示的范围的条件下进行在将热处理温度(°C)定为T,将热处理时间(h)定为t时,330-20XIn(t)<T<325,并且t^5。7.—种镁合金材的制造方法,其特征在于,包括对作为必须成分含有Zn、以及作为RE含有Gd、Tb、Tm中的至少l种以上,余量由Mg和不可避免的杂质构成的Mg-Zn-RE系合金进行铸造,形成铸造材的铸造工序;固溶所述铸造材的固溶工序;以规定条件对进行了所述固溶的铸造材进行热处理的热处理工序;对进行了所述热处理的铸造材实施塑性加工的塑性加工工序,所述热处理工序在如下所示的范围的条件下进行在将热处理温度(。C)定为T,将热处理时间(h)定为t时,330-20XIn(t)<T<325,并且t》5。8.根据权利要求5或7所述的镁合金材的制造方法,其特征在于,所述塑性加工工序中的塑性加工是压出加工或锻造加工。全文摘要本发明提供一种不用使用特殊的制造设备和工艺的、机械的性质高而优异的镁合金材及其制造方法。该镁合金材,是Mg-Zn-RE系合金,其作为必须成分含有Zn,以及作为RE而含有Gd、Tb、Tm之中至少1种以上,余量由Mg和不可避免的杂质构成,该Mg-Zn-RE系合金中具有针状析出物或板状析出物(长状析出物X相=β’相、β1相、β相)。文档编号C22C23/04GK101448965SQ20078001815公开日2009年6月3日申请日期2007年3月20日优先权日2006年3月20日发明者三部隆宏,中田守,冈田义夫,山崎伦昭,山田雄一,板仓浩二,河村能人申请人:株式会社神户制钢所;日产自动车株式会社;国立大学法人熊本大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1