用于涡轮叶片的、具有带间隔开的柱体的柱状结构的热障的制作方法

文档序号:3254205阅读:100来源:国知局
专利名称:用于涡轮叶片的、具有带间隔开的柱体的柱状结构的热障的制作方法
技术领域
本发明的领域是涡轮机的领域,并且更特别是用于这些经受高温的涡轮机的组件的领域。
背景技术
如在航空领域中用于推进的涡轮机包括大气进气口,其与一个或多个压缩器连通,其通常包括绕着同一个轴旋转的风扇。在被压缩之前此空气的主气流供应在此轴周围环状定位的燃烧腔,并且与燃料混合以便提供下游的至一个或多个涡轮的热气体,通过这一个或多个涡轮这些热气体膨胀,涡轮转子驱动压缩器的转子。引擎在涡轮入口处的引擎气体的温度下运行,寻求它尽可能地高,这是因为此温度调节涡轮机的性能。为了此目的,把热部分的材料选择为经受住这些操作状况,并且为诸如涡轮喷嘴或旋转涡轮叶片之类的 受热气体掠扫的组件的壁提供冷却装置。此外,由于由基于镍或基于钴的超合金制成的这些叶片的金属结构的原因,还有必要保护它们以防止由引擎气体的成分在这些温度下发生的侵蚀和腐蚀。使得这些部件能够承受住这些极端状况而设计的保护措施之中,是在它们的外面上沉积称为热障的涂层。热障通常包括白微米左右的陶瓷层,其沉积在金属层的表面处。放置在陶瓷和金属基底之间的几十微米的铝子层通过在这两个组件之间提供连接完成了热障,并且还保护下面的金属免于氧化。通过金属互扩展,通常通过汽相铝化工艺(对于由本申请人使用的此版工艺而言被称为APVS)沉积的此铝子层被固定到基底,并且在该表面形成保护氧化层。在本申请人的专利申请FR2928664中描述了此技术的实现方式的示例。至于由陶瓷制成的实际热障,它可以采用若干方式来制作,这取决于将由其制成的用途。对于热障而言粗略地有两种类型结构柱状屏障,其结构是一个挨一个地并置的柱子的结构并且其垂直于基底表面延伸;以及叠层或匀质屏障,其在基底的表面上的均匀的层上延伸。前面的通常通过被称为EBPVD (electron beam physical vapor deposition,电子束物理气相沉积)的工艺来制作,采用该工艺,在高真空下通过由带电钨丝发射的电子束冲击目标阳极。电子束使来自目标的分子变为气相。这些分子于是采用固体形式沉淀,用薄的阳极材料层覆盖要保护的部件。这些热障的特征为对热循环的良好抵抗性,也有相对高的热导性。匀质屏障通常使用APS (大气等离子体喷涂)类型的热喷涂工艺或者通过溶胶-凝胶工艺,由等离子体沉积而成。溶胶-凝胶工艺使之成为可能,经由溶液中的分子前体的简单聚合,在接近周围温度的温度下,在不经过熔化步骤的情况下获得玻璃质物质。对于大量的金属而言存在这些前体并且对于大多数在标准溶剂中是可溶的。在以溶胶为名指示的此液体相中,化学反应有助于三维无机网络的形成,已知以凝胶为名,在其中保留由溶剂。从凝胶获得该物质的工艺经过干燥步骤,该步骤在于把溶剂从聚合体网络抽出。这样的屏障的优点为它展示的多孔性。
因此匀质屏障的特性为低热导性,其是期望目的,但是它们对于热循环没有足够的抵抗性。通过溶胶-凝胶工艺获得的屏障它们本身具有一般的抗腐蚀性。最后,多裂开的热障是已知的,它们通过等离子体,使用本申请人在若干专利(EPI 645 654和EP I 471 162)中描述的工艺来获得,其在服务期和腐蚀期之间展示出可接受的折中。然而所有这些屏障不是足够高的性能的,并且有必要在这两个域内进一步改进它们的性能。

发明内容
本发明的目的是通过提出用于制作热障的工艺来克服这些缺点,该热障不包括现有技术缺点中的一些缺点,并且特别地它结合良好服务期地具有低传导性。 为此目的,本发明的一个主题是用于把陶瓷层沉积到金属基底上以便制作热障的工艺,包括沉积所述采用柱状结构的陶瓷,其特征在于所述沉积是通过冲击有孔的网格实施的,定位成平行于基底的表面以便制作至少两个陶瓷柱,这些陶瓷柱与彼此分离开一间隔。因此制作的柱子足够确保该屏障的机械强度及其抗腐蚀性,并且此外在它们之间留有空间以便用最适当的材料填充后者。本发明因此为热障的组成创建了大的柔性。有利地,孔的宽度处于10微米和300微米之间。优选地,孔之间的间隔处于10微米和100微米之间。在一个特定实施例中,该过程还包括在所述间隔内沉积匀质陶瓷层。在间隔内沉积匀质结构保证了屏障防止来自基底方向的气流的气体的氧化的入侵。有利地,第二沉积通过用于把配备有其柱体的基底浸涂到溶胶-凝胶型溶液中。因此获得了具有匀质结构的陶瓷,其具有高的多孔性并且因此具有低热导性。优选地,匀质沉积通过以下序列实施在所述溶胶-凝胶溶液中浸涂和撤回操作以及在两次浸涂和撤回操作之间实施的干燥操作,直到获得了基本等于柱体的高度的厚度。在此配置中,柱体确保了良好的机械强度和匀质层的保护这二者。有利地,该过程还包括最后的热处理步骤。本发明还涉及在金属基底上沉积的热障,其特征在于它包括陶瓷柱,所述陶瓷柱垂直于所述基底的表面沿着并且彼此分离开一间隔,所述间隔被填充有匀质陶瓷层。有利地,柱体具有10微米和300微米之间的最大宽度。优选地,间隔具有10微米和100微米之间的宽度。在一个特定实施例中,匀质层由多孔陶瓷制成。本发明最终涉及用于涡轮机的涡轮叶片,其包括如上面所描述的热障,以及涉及包括至少一个这样的叶片的涡轮机。


参考所附示意图,在跟随借助纯说明性和非限制性示例给出的本发明的实施例的详细解释说明的过程,将较佳地理解本发明,以及其其他目的、细节、特征及优点将变得更清楚地显而易见。在这些附图中图I是用于涡轮叶片的热障的物理组成的示意图;图2是在实施依据本发明的一个实施例的工艺的第一步之后热障的示意剖视图;图3表示了用于实施依据本发明的一个实施例的工艺的第二步的四个阶段;图4是在依据本发明的工艺结尾时热障的示意剖视图。
具体实施例方式参考图1,横截面中看出的是沉积在涡轮叶片表面上的热障的组成,后者基于由朝向该图的左侧指向的箭头表示热气流。构成叶片的金属(典型地是基于镍或钴的超合金)形成了基底1,沉积在其上的是由铝2制成的子层,该子层夹置在基底I和陶瓷层3之间。铝子层的角色是保持陶瓷层以及向该装配提供一定的弹性以便使得它能够吸收扩张差,该扩张差由两个相反方向的箭头表示,该扩张差存在于高扩张基底I和低扩张陶瓷3之间。这里所表示的陶瓷3属于柱状结构,该柱状结构允许横向位移,这是由于各柱子之间出现了裂缝的原因,并且该柱状结构给它以良好的服务期。于是使铝与由在涡轮机的气流中循环的气体载送的氧气接触,这导致了该屏障的平均热导性及对其的渐进损坏。现在参考图2,看出了在实现依据本发明的工艺的第一步之后热障的制作的进展。要覆盖的基底I顶部上放置的是由均匀间隔开的孔11形成的网格10,以便让通过EBPVD工艺或者使得能够制作柱状沉积的任何其他工艺(诸如像在非常低的压力下的APS工艺,由公司Sulzer实施以及已知名字为LPPS-TF)实施的气相沉积通过。该网格形成了掩膜,其使得采用彼此间隔开的柱子的形式或者柱子组5的形式能够实现陶瓷的沉积。一方面,其间隔足够大以使得可以实施足够的柱间沉积,以及另一方面,足够接近以保证热障整体的机械强度。典型地,柱子或柱子组5具有10微米和300微米之间的厚度以及它们之间的间隔6在一微米和几十微米之间变化。在此第一步结尾,在此情形下用基底I和子层2来表示屏障,该基底I和子层2被由陶瓷制成的柱体5装配围绕。传统上这些柱体具有朝向顶部更宽的形状,并且该形状从沉积的颗粒的不断聚集得到。这些柱体之间是空的空间,这些空间在依据本发明的工艺的第二步期间将被填充。图3采用参考标记为3a至3d的四个示图示出了此第二步的实施。每个示图对应于以下阶段中的一个阶段I-阶段3a :配备有其陶瓷柱5的基底浸涂在特别基于钇氧化锆(yttriatedzirconia)的前体的溶胶-凝胶型的溶液20中,其用在用于制作勻质热障的工艺中。该溶液的粘性是使得它是充分流动的以便能够插入到柱子5之间的间隔6中并且完全填充它们,以及它足够粘以使得在其撤回期间它依然粘到该组件。2-阶段3b :要覆盖的组件浸没在溶液20中足够长以便柱体5之间的间隔6被正确地填充。3-阶段3c :该组件于是以受控速度从溶液20撤出以使得可以在热障的表面均匀且具有良好粘性地形成期望厚度的膜。
4-阶段3d :对它进行干燥以使得保留的、陷于柱子5之间的溶液20凝固。在干燥和去除溶剂之后,获得了保留嵌入于柱体之间的薄陶瓷层。由于在第四阶段期间沉积的陶瓷厚度非常小,所以有必要若干次地实施已知为浸涂的操作,也就是说在对在3d中形成的每一层的干燥之后重复四步操作。图4给出了在来自图3的四步操作之后获得的结果。基底I及其子层2覆盖上热障3,该热障3由均匀间隔的柱体5构成,在柱体5之间采用匀质形式7沉积了陶瓷。匀质层具有许多嵌入的空气泡,这使它具有高多孔性,并且还使热障对热传导具有良好的抵抗性。现在将描述制作依据本发明的热障的工艺的过程。首先用铝或者任何其他能够构成热障子层的金属制成的子层覆盖构成要保护的叶片的材料的基底。把它放置在用于陶瓷层的沉积的设备中,例如通过电子束物理气相沉积,通过在要保护的组件的顶部上,在使得能够形成陶瓷柱或者陶瓷柱组的距离处,定位被 冲击有孔11的网格10。通过孔11发生沉积,并且通过垂直地生成至所述基底,在基底I上沉积陶瓷。由于由网格10的固体部分生成的掩膜的原因,沉积沿着离散地分布在基底I表面上的柱子5发生;在这些柱子5之间保留空的间隔6,所述间隔6在该工艺的下一步期间将被填充。然后把要保护的组件从柱状沉积设备撤出并转移到第二片设备以供多孔部分的沉积。该工艺的第二步构成了在溶胶-凝胶型的溶液中浸涂操作的后续,包括前面描述的四个阶段。在这些操作的每一个操作期间,间隔6用薄的多孔陶瓷层填充,该薄的多孔陶瓷层聚集,浸涂之后浸涂直到形成了完全填充了间隔6的层7为止。通过传统的热处理来完成热障的制作,在该传统的热处理期间对该陶瓷进行稳定化并且获取期望的晶结构。最终,获得了混合热障,混合热障一方面包括一系列柱体5,以及另一方面的高度的多孔匀质层,所述柱体5确保了良好的机械强度和具有对掠扫在该组件上的气体的良好抗腐蚀性,所述多孔匀质层确保了在基底的方向上对热传导的良好抵抗性。这保护了基底I和子层2免受来自引擎中循环的气流的气体的氧化。此外,柱体的存在使得热障能够在其扩展期间,在基底的表面上纵向地展开,而不出现裂缝的危险,裂缝会使得来自气体的氧气能够达到基底的金属并且使其损坏。因此达到了具有热障的目的,该热障组合了低热导性、良好的抗腐蚀性以及对热机械压力的良好适配。使用EBPVD工艺描述了热障的制作的第一步,但是它可以只用其他已知沉积工艺来实施,诸如热喷涂,在此步骤期间由网格形成的掩膜的存在足够产生期望的柱状结构。
权利要求
1.一种用于把陶瓷层沉积到金属基底(I)上以便制作热障的工艺,包括在柱状结构中沉积陶瓷的步骤,所述沉积是通过冲击有孔(11)的网格(10)发生的,定位成平行于所述基底(I)的表面以便制作至少两个陶瓷柱(5),这些陶瓷柱(5)彼此分离开一间隔(6); 其特征在于,它还包括在所述间隔(6)中沉积匀质陶瓷层(7)的后续步骤。
2.如权利要求I所述的工艺,其中所述孔(11)的宽度在10微米和300微米之间。
3.如权利要求I或2任一所述的工艺,其中所述孔(11)之间的间隔在10微米和100微米之间。
4.如权利要求I至3之一所述的工艺,其中所述第二沉积通过用于把配备有其柱子(5)的基底(I)浸涂到溶胶-凝胶型溶液(20)中的操作来实施。
5.如权利要求4所述的工艺,其中,匀质沉积通过以下序列实施在所述溶胶-凝胶溶液中浸涂和撤回操作以及在两次浸涂和撤回操作之间实施的干燥操作,直到获得了基本等于柱体(5)的高度的厚度。
6.如权利要求I至5之一所述的工艺,附加地包括最后的热处理步骤。
7.一种沉积在金属基底上的热障,其特征在于它包括陶瓷柱(5),所述陶瓷柱(5)垂直于所述基底的表面延伸并且彼此分离开一间隔(6),所述间隔(6)被填充有匀质陶瓷层(7)。
8.如权利要求7所述的热障,其中所述柱体(5)具有10微米和300微米之间的最大宽度。
9.如权利要求7或8中任一所述的热障,其中所述间隔(6)具有10微米和100微米之间的览度。
10.如权利要求7至9之一所述的热障,其中所述匀质层(7)由多孔陶瓷制成。
11.一种用于涡轮机的涡轮叶片,包括如权利要求7至10之一所述的热障。
12.一种涡轮机,其包括如前面权利要求所述的至少一种叶片。
全文摘要
用于把陶瓷层沉积到金属基底(1)上以便制作热障的工艺,该工艺包括在柱状结构中沉积陶瓷的步骤,所述沉积是通过冲击有孔(11)的网格(10)发生的,定位成平行于所述基底(1)的表面以便制作至少两个陶瓷柱(5),这些陶瓷柱(5)彼此分离开一间隔(6);优选地,它还包括在所述间隔(6)中沉积匀质陶瓷层(7)的后续步骤。
文档编号C23C30/00GK102971446SQ201180032767
公开日2013年3月13日 申请日期2011年7月5日 优先权日2010年7月6日
发明者贾斯廷·曼纽伊, 莎拉·哈玛迪, 朱丽特·于戈, 安德鲁·休伯特·路易斯·马利, 法布里斯·克里博斯 申请人:斯奈克玛
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1