水性纳米导电溶胶的制备方法及由该导电溶胶制备的透明导电薄膜的制作方法

文档序号:3261644阅读:137来源:国知局
专利名称:水性纳米导电溶胶的制备方法及由该导电溶胶制备的透明导电薄膜的制作方法
技术领域
本项目涉及一种二氧化锡/ 二氧化钛固溶体纳米溶胶复合材料的合成方法及其相应透明导电薄膜的制备方法,属于无机非金属材料领域。
背景技术
SnO2可以应用于气敏传感器、电阻器、透明加热元件、催化剂及太阳能电池等领域,在科学研究及工业应用上早已引起了相当广泛的关注。但是,SnO2半导体的禁带宽度比较宽,为3. 6eV,属于典型绝缘体,只有对其进行掺杂,才能得到各种功能性的产品。如,通过对SnO2薄层的掺杂将其电阻大大降低,因而得到良好的导电膜。SnO2-TiO2是目前研究较广泛一类氧化物掺杂SnO2复合材料,在光催化、导电粉体等领域有广泛的应用。锡钛氧化物固溶体纳米溶胶作为SnO2-TiO2复合物的均匀稳定分散体系,具有广泛的应用前景,可以用于纳米薄膜涂层或高级导电涂料添加剂及气敏材料。因此,其制备方法的研究具有重要的研究意义。目前的制备方法(如固相烧结、水热法等)具有一定的局限,如,专利号为02109076. 9的专利报道了以四氯化钛及四氯化锡为原材料,通过水解及碱中和获得沉淀,将过滤得到的沉淀在高温高压反应釜里处理纳米复合粒子的方法,但它们的反应温度一般较高,对设备要求高,能耗也较大;同时,得到的产品也存在分散性差,易团聚的问题,如专利号为200510031659的专利报道了可以制备任意比例混溶的SnO2-TiO2复合物,但其得到的为粉体。虽然也有一些低温制备纳米溶胶的报道,如专利号为200710067939. X的专利报道了锡钛溶胶的原位合成方法,但在这些方法中均大量使用了有机溶剂及有机试剂,不仅提高了产品的生产成本、对环境有一定危害,这些因素均制约着纳米材料的规模化生产和工业化应用。因此,寻求低温水基制备锡钛氧化物纳米材料的新方法具有重要的实际应用价值。

发明内容
本发明的目的是提出一种低温水基制备锡钛氧化物固溶体纳米溶胶的合成方法,同时基于所合成纳米溶胶,发展出在不同基底表面制备得到透明导电薄膜,克服已有技术的缺点,避免环境污染,实现常压、低温、水基的合成纳米导电溶胶及得到透明导电薄膜。本发明的低温制备水基锡钛氧化物固溶体纳米导电溶胶的合成方法及使用该导电溶胶制备的透明导电薄膜,其中所述低温制备水基锡钛氧化物固溶体纳米导电溶胶的合成方法包括以下步骤I)锡钛氢氧化物沉淀将钛盐、锡盐溶解于水中,得到钛、锡盐复合水溶液,水溶液中的锡盐与钛盐的摩尔比优选为O. 01 O. 1,更优选为O. 025 O. 075,再优选为O. 03 O. 06,最优选为O. 052,然后向复合盐的水溶液中滴加无机碱溶液至pH值约为5 11,得到锡钛氢氧化物沉淀;或用水稀释复合盐的水溶液,优选将复合盐的水溶液稀释到原体积的10 100倍,优选为20 75倍,更优选为25 65倍,最优选为47. 3倍,得到复合锡钛氢氧化物沉淀;或加热复合盐的水溶液,优选加热温度为50 100°C,优选为60 85°C,得到锡钛氢氧化物沉淀;2)过氧化氢分散沉淀用过氧化氢溶液分散步骤I)得到的锡钛氢氧化物沉淀,其中H2O2 Sn的分子摩尔比为I 25,优选为4 20,更优选为7 15倍,最优选为11.6 ;3)制备最终产品在温度为50 120°C,优选为65 95°C,更优选为84. 5°C下加热步骤3)的溶液2 24小时,得到黄橙色透明或半透明锡钛氧化物固溶体纳米溶胶。其中所述的溶于水形成含锡水溶液的锡盐并无特殊限制,但优选自氯化亚锡、氯化锡中的一种或多种。其中所述的溶于水形成含钛水溶液的钛盐并无特殊限制,但优选自四氯优钛、硫酸钛或硫酸氧钛中的一种或多种;或者是直接用硫酸溶解钛酸类化合物所得的水溶液。所述的无机碱选自碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、氢氧化钠、氢氧化钾或氨水等。步骤I)中水溶液中的锡盐与钛盐的摩尔比优选为O. 01 O. I,如果所述摩尔比低于O. 01,则最终的导电溶胶中纳米颗粒团聚严重,如果所述摩尔比高于O. I,则最终的导电溶胶的导电性能不佳,甚至严重到无法应用。所述摩尔比最优选为O. 052,在该摩尔比时,导电溶胶中纳米颗粒的粒度最均匀,并且分散度最佳。步骤2)中H2O2 Sn的分子摩尔比优选为I 25,如果所述分子摩尔比小于1,则导电溶胶中SnO2颗粒和TiO2颗粒分离严重,不能均匀复合在一起,导致最终导电溶胶的导电性能不够均一,产品质量不稳定;而如果所述分子摩尔比大于25,则有可能导致导电溶胶中颗粒粒度过大,影响导电膜的表面平滑度。所述分子摩尔比最优选为11. 6,在该分子摩尔比时,导电溶胶的纳米颗粒中SnO2和TiO2复合均匀,最终导电薄膜的导电均匀性最佳。不同基底表面透明导电薄膜的制备利用上述方法得到的锡钛氧化物固溶体纳米导电溶胶与添加剂混合形成涂布混合物,通过常规的涂布方法,能够在不同性质基底上得到硬度较高的透明导电膜。该透明导电膜的组分是由锡钛氧化物固溶体纳米导电溶胶与添加剂组成,根据要涂布的基底的性质不同,其中添加剂占锡钛氧化物固溶体纳米导电溶胶与添加剂总质量的O. 1%。 5%,优选为 O. 5%0 2%。其中所述涂布方法,可以为本领域一般常规使用的涂布方法,例如旋涂法、喷涂法、辊涂法等。对于在不同基底表面上制备导电薄膜的方法并无特殊限制,可以采用本领域一般常规使用的导电薄膜制备方法,但优选采用包括以下步骤的方法(I)对所涂基底进行预处理对基底先用氢氧化钠溶液超声洗涤进行除油处理,再用乙醇超声洗涤进行除垢处理,再用洁净剂超声洗涤进行清洁处理;最后用纯水对基底进行超声洗涤;(2)采用常规的涂布方法在基底表面上涂布所述导电溶胶;
(3)对涂布了所述导电溶胶的基底进行如烘干、清洗等后处理,得到最终的产品。其中针对不同的基底各种涂布用的配方如下在对无机材料基底表面进行涂布成膜时,在锡钛氧化物固溶体纳米导电溶胶中添加有少量的添加剂,添加量控制在添加剂加入量占锡钛氧化物固溶体纳米导电溶胶与添加剂总质量的O. 1%。 5%,添加剂是低分子量表面活性剂、有机硅试剂或它们的混合物;在对高分子基底(如聚氯乙稀板等)表面进行涂布成膜时,在锡钛氧化物固溶体纳米导电溶胶中添加有少量的添加剂,添加剂的加入量占锡钛氧化物固溶体纳米导电溶胶与添加剂总质量的O. 1%。 5 %,添加剂选自低分子量表面活性剂、高分子量表面活性剂、有机硅试剂中的一种或多种。所述作为添加剂的低分子量表面活性剂选自十二烷基磺酸钠、十二烷基硫酸钠、十六烷基三甲基溴化胺、磺基甜菜碱或它们的混合物等。所述的闻分子量表面活性剂选自分子量为2000的聚乙烯醇、分子量为4000的聚乙烯醇、聚乙二醇、聚氧乙烯、两性聚丙烯酰胺、聚醚或它们的混合物等。所述的有机硅试剂选自硅烷偶联剂、烷基硅氧烷、聚醚改性有机聚硅氧烷、长链烷基与聚醚共改性硅油以及杭州包尔得有机硅有限公司生产的BD-3033有机硅试剂、BD-S II有机硅试剂、BD-3032有机硅试剂、BD-3055有机硅试剂、BD-SIII有机硅试剂或它们的混合物等。本发明通过对锡钛氢氧化物与过氧化氢的溶解及结晶机理的深入研究,实现了常压、低温液相合成锡钛氧化物固溶体纳米溶胶。本方法原料来源广泛,价格低廉;处理设备简单,反应温和可控;操作方便,运作周期短,大大降低了成本和简化了工艺。同时,所得到锡钛氧化物固溶体溶胶为水性制剂,胶粒约15 30nm,pH值6 8,在I. 5 35°C环境温度下能长时间稳定保存,与传统粉体分散或水热制备工艺相比,具有极大优越性和良好的创新性。


图I为本发明实施例I中制备的锡钛氧化物固溶体溶胶,纯SnO2和纯TiO2粉体的XRD谱图,其中本发明实施例I中制备的锡钛氧化物固溶体溶胶中的Sn : Ti为O. 052 ;图2为不同回流时间下本发明实施例4锡钛氧化物固溶体溶胶的XRD谱图。
具体实施例方式本发明的技术内容通过以下实施例的说明将更为明晰,但这些实施例仅是用于理解本发明的技术方案而提出的,并不构成对本发明技术内容的限制。制备实施例锡钛氧化物固溶体溶胶的制备实施例I将O. 94g (4. 16 X l(T3mol) SnCl2 · 2H20 溶解于 400mL0. 2mol/L TiCl4 溶液中(锡盐与钛盐的摩尔比为O. 052),用氨水调节溶液的pH为8,过滤得到黄色的锡钛氢氧化物沉淀。将沉淀分散于5. 5mL质量浓度为30%的过氧化氢溶液中(H2O2 Sn的分子摩尔比为11.6),加水调节体积至150mL,84. 5°C回流12小时得到锡钛氧化物固溶体溶胶。附图I为实施例
5I的制备的锡钛氧化物固溶体溶胶的XRD谱图,由该可以看出本发明的锡钛氧化物固溶体溶胶中氧化锡和氧化钛为结晶形式,且为复合共生晶体。实施例2除了调整SnCl2 ·2Η20和TiCl4的摩尔比为O. 008以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例3除了调整SnCl2 ·2Η20和TiCl4的摩尔比为O. 012以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例4除了调整SnCl2 · 2Η20和TiCl4的摩尔比为O. 04以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例5除了调整SnCl2 · 2Η20和TiCl4的摩尔比为O. 07以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例6除了调整SnCl2 · 2Η20和TiCl4的摩尔比为O. 085以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例7除了调整SnCl2 ·2Η20和TiCl4的摩尔比为O. I以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例8除了调整SnCl2锡钛氧化物固溶体溶胶。实施例9除了调整SnCl2备锡钛氧化物固溶体溶胶。实施例10除了加入O. 47mL质量浓度为30%的过氧化氢溶液中(H2O2I)以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例11除了加入11. 79mL质量浓度为30%的过氧化氢溶液中(H2O2 Sn的分子摩尔比为25)以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例12除了加入4. 7mL质量浓度为30%的过氧化氢溶液中(H2O210)以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例13除了加入6. IlmL质量浓度为30%的过氧化氢溶液中(H2O213)以外,以实施例I相同的方法制备锡钛氧化物固溶体溶胶。实施例14
2H20和TiCl4的摩尔比为O. I以外,以实施例I相同的方法制备
2H20和TiCl4的摩尔比为O. 12以外,以实施例I相同的方法制
Sn的分子摩尔比为
Sn的分子摩尔比为
Sn的分子摩尔比为
6
将I. 09g SnCl4溶解于400mL0. 2mol/L TiOSO4溶液中(锡盐与钛盐的摩尔比为
O.052),用水稀释溶液至原体积的50倍得到锡钛氢氧化物沉淀。将沉淀分散于5. 5mL,质量浓度为30%的过氧化氢溶液中,加水调节体积至200mL,50°C回流24小时得到锡钛氧化物 固溶体溶胶。实施例15质量浓度为80%的硫酸加热溶解钛铁矿,得到的固相沉积物用水浸取得到钛液,将钛液进行过滤去除不溶性矿渣,冷冻重结晶以过滤除去硫酸亚铁得到含钛的前驱体溶液;将O. 94g SnCl2 · 2H20溶解于200mL含O. 4mol/L钛的前驱体溶液中,100°C加热搅拌得到锡钛氢氧化物沉淀。将沉淀分散于5. 5mL质量浓度为30%的过氧化氢溶液中,加水调节体积至lOOmL,100°C回流2小时得到橙黄色锡钛氧化物固溶体溶胶。实施例16将O. 94g SnCl2 ·2Η20溶解于200mL0.4mol/L Ti (SO4) 2溶液中,用氢氧化钠溶液调节溶液的PH为9,得到黄色的锡钛氢氧化物沉淀。将沉淀分散于5. 5mL质量浓度为30%的过氧化氢溶液中,加水调节体积至lOOmL,100°C回流4小时得到橙黄色锡钛氧化物固溶体溶胶。XRD表征为不同加热时间溶体晶体,见图2。实施例17质量浓度为70%的硫酸加热溶解钛酸铝,得到的固相沉积物用水浸取得到钛液,将钛液进行过滤去除不溶性矿渣,冷冻重结晶以过滤除去硫酸亚铁得到含钛的前驱体溶液;将O. 94g SnCl2 ·2Η20溶解于200mL含O. 4mol/L钛的前驱体溶液中,用氢氧化钾调节溶液的PH为7,得到黄色的锡钛氢氧化物沉淀。将沉淀分散于5. 5mL质量浓度为30%的过氧化氢溶液中,80°C回流12小时得到橙黄色锡钛氧化物固溶体溶胶。导电薄膜的制备实施例18分别向IOOmL实施例I至17中制得的锡钛氧化物固溶体纳米导电溶胶溶胶中加入BD-3033(杭州包尔得有机硅有限公司)有机硅试剂(加入量为总质量的I. 2% ),然后搅拌混合2个小时至混合均匀得到用于制备导电薄膜的涂布溶液。实施例19分别向IOOmL实施例I至17中制得的锡钛氧化物固溶体纳米导电溶胶中加入十二烷基硫酸钠(加入量为总质量的O. 5%。),聚乙烯醇(2000)(加入量为总质量的
O.1%0),BD-S II (杭州包尔得有机硅有限公司)有机硅试剂(加入量为总质量的1%。),然后搅拌混合2个小时至混合均匀得到用于制备导电薄膜的涂布溶液。实验实施例实验实施例I取IOcmX IOcm尺寸的绝缘玻璃作为基底,用氢氧化钠溶液超声洗涤绝缘玻璃30分钟进行除油处理,然后用洁净剂超声洗涤30分钟进行清洁处理;最后用纯水对基底进行超声洗涤10分钟,从而完成基底的预处理,测量得到其表面电阻约为3. 5X IO12 Ω ;采用旋涂法将实施例18中制备的涂布溶液均匀涂布在基底上;将涂布了涂布溶液的基底在100°C的烘箱中烘烤30分钟,使导电溶胶在基底表面上形成导电薄膜,测量其表面电阻,结果如下表I所示
表I
实施例表面电阻/Ω实施例表面电阻/Ω实施例II. 4 X IO7实施例118. 2 X IO9实施例22. 5 X IO10实施例123. 6 X IO7实施例33. 6 X IO9实施例133. 8X107实施例49. 5 X IO7实施例142. 7X107实施例55. 7 X IO9实施例156. 3X107实施例6I. 3 X IO10实施例164. 5X107实施例79. 4 X IO10实施例178. 2 X IO8实施例84. 4X1011绝缘玻璃基底3. 5X1012实施例9I. OXlO12实施例107. 9 X IO9实验实施例2除了用聚氯乙烯板(其表面电阻约为2Χ1012Ω)代替绝缘玻璃作为基底,并且在70°C进行烘烤外,以实验实施例I相同的方法在聚氯乙烯板基底上制备导电薄膜,并测量其表面电阻,测量其表面电阻,结果如下表2所示表 2
实施例表面电阻/Ω实施例表面电阻/Ω实施例I2. 4X107实施例117. 3 X IO9实施例24. 3X1010实施例124. 8X107实施例36. 3 X IO9实施例136. 5X107实施例43. 7X107实施例144. 9X107实施例56. 7 X IO9实施例156. 5X107实施例68. 2 X IO10实施例166. 5X107实施例78. 8X1010实施例172. 2 X IO8
权利要求
1.一种水基锡钛氧化物固溶体纳米导电溶胶的合成方法,包括以下步骤1)锡钛氢氧化物沉淀将钛盐、锡盐溶解于水中,得到钛、锡盐复合水溶液,水溶液中的锡盐与钛盐的摩尔比优选为O. 01 O. 1,更优选为O. 025 O. 075,再优选为O. 03 O. 06,最优选为O. 052,然后向复合盐的水溶液中滴加无机碱溶液至pH值约为5 11,得到锡钛氢氧化物沉淀;或用水稀释复合盐的水溶液,优选将复合盐的水溶液稀释到原体积的10 100倍,优选为20 75倍,更优选为25 65倍,最优选为47. 3倍,得到复合锡钛氢氧化物沉淀;或加热复合盐的水溶液,优选加热温度为50 100°C,优选为60 85°C,得到锡钛氢氧化物沉淀;2)过氧化氢分散沉淀用过氧化氢溶液分散步骤I)得到的锡钛氢氧化物沉淀,其中H2O2 Sn的分子摩尔比为I 25,优选为4 20,更优选为7 15倍,最优选为11. 6 ;3)制备最终产品在温度为50 120°C,优选为65 95°C,更优选为84. 5°C下加热步骤3)的溶液2 24小时,得到黄橙色透明或半透明锡钛氧化物固溶体纳米溶胶。
2.根据权利要求I所述的合成方法,其特征在于,所述溶于水形成含锡水溶液的锡盐并无特殊限制,但优选自氯化亚锡、氯化锡中的一种或多种。
3.根据权利要求I所述的合成方法,其特征在于,所述溶于水形成含钛水溶液的钛盐并无特殊限制,但优选自四氯化钛、硫酸钛或硫酸氧钛中的一种或多种;或者是直接用硫酸溶解钛酸类化合物所得的水溶液。
4.根据权利要求I所述的合成方法,其特征在于,所述的无机碱选自碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、氢氧化钠、氢氧化钾或氨水等。
5.一种透明导电薄膜,其特征在于,所述透明导电薄膜为包含通过权利要求I至4中任意一项所述的合成方法制备的锡钛氧化物固溶体纳米溶胶与添加剂的组合物。
6.根据权利要求5所述的透明导电薄膜,其特征在于,所述添加剂的加入量占锡钛氧化物固溶体纳米导电溶胶与添加剂总质量的O. 1%。 5%。
7.根据权利要求5所述的透明导电薄膜,其特征在于,所述添加剂选自低分子量表面活性剂、高分子量表面活性剂和有机硅试剂中的一种或多种。
8.根据权利要求7所述的透明导电薄膜,其特征在于,所述低分子量表面活性剂选自十二烷基磺酸钠、十二烷基硫酸钠、十六烷基三甲基溴化胺、磺基甜菜碱或它们的混合物坐寸ο
9.根据权利要求7所述的透明导电薄膜,其特征在于,所述高分子量表面活性剂选自分子量为2000的聚乙烯醇、分子量为4000的聚乙烯醇、聚乙二醇、聚氧乙烯、两性聚丙烯酰胺、聚醚或它们的混合物等。
10.根据权利要求7所述的透明导电薄膜,其特征在于,所述有机硅试剂选自硅烷偶联剂、烷基硅氧烷、聚醚改性有机聚硅氧烷、长链烷基与聚醚共改性硅油以及杭州包尔得有机硅有限公司生产的BD-3033有机硅试剂、BD-S II有机硅试剂、BD-3032有机硅试剂、BD-3055有机硅试剂、BD-SIII有机硅试剂或它们的混合物等。
全文摘要
本发明涉及一种二氧化锡/二氧化钛固溶体纳米溶胶复合材料的合成方法,及基于此溶胶在不同基底表面制备得到透明导电薄膜的成膜技术。所述合成方法包括1)锡钛氢氧化物沉淀;2)过氧化氢分散沉淀;和3)制备最终产品共三个步骤,步骤少,工艺简单,制得的锡钛氧化物固溶体纳米溶胶为水基溶胶,克服已有技术的缺点,避免环境污染,实现常压、低温、水基溶胶的合成及容易成膜。
文档编号C23C20/08GK102910672SQ20121038516
公开日2013年2月6日 申请日期2012年10月12日 优先权日2012年10月12日
发明者程明明, 张彩霞, 黄晓静 申请人:程明明, 张彩霞, 黄晓静
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1