高强屈比普通热轧钢板及其制造方法

文档序号:3290979阅读:265来源:国知局
高强屈比普通热轧钢板及其制造方法
【专利摘要】本发明公开了一种高强屈比普通热轧钢板及其制造方法,按照质量百分比计的化学成分为:C:0.12~0.22%,Si:0.12~0.30%,Mn:0.30~0.90%,P≤0.025%,S≤0.025%,B:0.0010~0.0020%,其它为Fe和残留元素。所述的高强屈比普通热轧钢板的制造方法,包括以下步骤:转炉冶炼、LF炉精炼、连铸、板坯加热、轧制、控制冷却和精整。该高强屈比普通热轧钢板及其制造方法,生产成本低,对普通热轧钢板的化学成分改变很小,而且几乎不改变普通热轧钢板的微观组织。由于硼元素加入量很少,对普通热轧钢板的加工制造成本影响很小。在低碳钢中添加10~20ppm微量硼元素,钢的抗拉强度略有上升,升幅在5~15MPa,而屈服强度则有较大幅度下降,降幅可达30~50MPa,从而可以显著提高钢的强屈比。
【专利说明】高强屈比普通热轧钢板及其制造方法
【技术领域】
[0001]本发明属于普通热轧钢板【技术领域】,尤其涉及一种高强屈比普通热轧钢板及其制造方法。
【背景技术】
[0002]普通热轧钢板通常是指普通条件下使用,且主要用于工程、建筑及其他一般结构体的碳素结构钢和低合金结构钢热轧薄板和中厚板,其含碳量一般不大于0.30%,使用时,大多数情况下都将进行焊接。它是用途最广、使用量最大的一种钢铁材料产品,也是我国出口贸易量最大的钢铁产品之一。
[0003]对普通热轧钢板来说,其常用的强度指标包括屈服强度与抗拉强度。两者所反映的材料能力有一定差别:屈服强度反映材料抵抗变形的能力,而抗拉强度反映材料抵抗破坏的能力,两者之间也有一定的关联性,通常材料这两种强度指标为正相关。有多种方法可以提高普通热轧钢板的抗拉强度,但是有时候我们只希望热轧钢板的抗拉强度与屈服强度的比值即强屈比提高,以提高材料加工性能或改善其使用安全性。通常可以通过降低碳含量、添加合金元素、改变微观组织结构等方法来解决这些问题。
[0004]普通热轧钢板中碳元素含量通常在0.10~0.22%范围内,室温组织铁素体(碳原子在铁的体心立方晶格中的固溶体)与少量珠光体(铁素体与渗碳体Fe3C的共晶组织)的混合组织,其中铁素体相强度低、塑性好,而珠光体强度高、塑性差,通常可以通过提高珠光体比例、提高铁素体强度、细化晶粒等方法对这种普通热轧钢板进行强化,这些强化方法同时提高普通热轧钢板的 屈服强度与抗拉强度,并且对屈服强度的提高效果明显优于抗拉强度,对普通热轧钢板进行强化的同时降低了其强屈比。
[0005]现有技术中,普通热轧钢板中添加硼元素,主要用于提高钢材的淬透性、改善钢材淬火后的力学性能,另外 用于核工业的结构钢板中添加高含量的硼元素,主要用于屏蔽热中子的辐射作用。关于微量硼元素与改善普通热轧钢板强屈比之间的联系,未见研究与报道。

【发明内容】

[0006]本发明的目的在于提供一种生产高强屈比普通热轧钢板的方法。
[0007]为实现上述目的,本发明采取的技术方案是:
一种高强屈比普通热轧钢板,按照质量百分比计的化学成分为: [0008]按照质量百分比计的化学成分为:C:0.15%,Si:0.22%,Mn:0.71%,P:0.013%,S:0.003%, B:0.0015%,其它为Fe和残留元素。
[0009]按照质量百分比计的化学成分为:C:0.22%,Si:0.24%,Mn:0.87%,P:0.016%,S:0.010%, B:0.0020%,其它为Fe和残留元素。[0010]按照质量百分比计的化学成分为:C:0.12%,Si:0.15%,Mn:0.33%,P:0.021%, S:0.018%,B:0.0010%,其它为Fe和残留元素。
[0011]所述高强屈比普通热轧钢板厚度为18mm的SS400,其屈服强度为240MPa,抗拉强度为450MPa,延伸率为29%,强屈比为1.875。
[0012]所述高强屈比普通热轧钢板厚度为40mm的SS400,其屈服强度为255MPa,抗拉强度为480MPa,延伸率为28%,强屈比为1.882。
[0013]所述高强屈比普通热轧钢板厚度为12mm的Q235B,其屈服强度为235MPa,抗拉强度为410MPa,延伸率为33%,强屈比为1.745。
[0014]本发明的另一个目的在于提供该高强屈比普通热轧钢板的制造方法。
[0015]为实现上述目的,本发明采取的技术方案是:
所述的高强屈比普通热轧钢板的制造方法,包括以下步骤:
a.转炉冶炼:在转炉内兑入铁水和废钢;铁水满足温度1235~1270°C,按照质量百分比计的化学成分为,S1:0.30~0.60%,P ( 0.10%,S ( 0.04%,其它为Fe和残留元素;废钢为总装入量的10~20% ;加入石灰、白云石,然后供氧吹炼;吹炼结束后,加入硅铁、硅锰、硅铝钡进行脱氧合金化;当钢水化学成分按照质量百分比计为C:0.12~0.17%,S1:0.10~
0.25%, Mn:0.55~0.75%, P≤0.025%, S≤0.040%,其它为Fe和残留元素时,钢水出钢;
b.LF炉精炼:转炉出钢后送入LF炉,电弧升温化渣,按照0.8~1.0kg/t钢水加入硅钙钡合金,10~20g/t钢水加入硼;精炼过程全程吹氩搅拌;处理后钢水的化学成分满足 C:0.12 ~0.22%, Si:0.12 ~0.30%, Mn:0.30 ~0.90%, P ≤ 0.025%, S ≤0.025%, B:
0.0010~0.0020%,其它为Fe和残留元素;
c.连铸:钢水在1535~1555°C进行浇铸,板坯连铸机的拉速为0.8 m/min ;
d.板坯加热:采用连续式板坯加热炉进行加热,加热到完全奥氏体化;
e.轧制:加热好的钢坯经高压水除鳞后送入2800_四辊可逆式中厚板轧机在奥氏体再结晶区进行轧制;
f.控制冷却:轧制后的钢板,经汽雾式快冷装置快速冷却到相变区附近;
g.精整:经控制冷却后的钢板,用矫直机进行矫直;再经辊盘式冷床空冷、切边、切头尾、定尺、取样检验、表面检查、综合判定等工序,得到的高强屈比普通热轧钢板。
[0016]试验结果表明,钢中硼含量达到IOppm时这一效应显现,但增加的硼元素超过20ppm后并不会显著增大这一效应,反而会增加钢板表面缺陷,通常以控制钢中硼元素含量在10~20ppm范围内即可。这种效果的机理在于,微量硼原子进入钢中后引起了材料晶格畸变,从而使钢强化;另外硼与碳、氮一样在钢中形成间隙固溶体,单独存在时均会形成柯氏气团富集在位错周围,降低位错的易动性,从而提高钢的屈服强度并形成屈服平台,但钢中硼原子与碳、氮原子之间有相互作用,从而影响柯氏气团的形成,削弱了 C、N原子对晶体内部位错的钉扎作用,提高了钢中位错的易动性,使钢在应力作用下更加容易发生滑移变形,从而可以显著降低钢的屈服强度,进而提高其强屈比。
[0017]采用本发明提供的方法生产的高强屈比普通热轧钢板,生产成本低,对普通热轧钢板的化学成分改变很小,而且几乎不改变普通热轧钢板的微观组织。由于硼元素加入量很少,对普通热轧钢板的加工制造成本影响很小。
[0018]在碳含量0.10~0.22%的低碳钢中添加10~20ppm微量硼元素,钢的抗拉强度略有上升,升幅在5~15MPa,而屈服强度则有较大幅度下降,降幅可达30~50MPa,从而可以显著提高钢的强屈比。
【专利附图】

【附图说明】
[0019]图1为B元素检验值低于5PPM的18mm厚度SS400钢板金相照片。
[0020]图2为B元素检验值15ppm的18mm厚度SS400钢板金相照片。
[0021]图3为B元素检验值低于5ppm的40mm厚度SS400钢板金相照片。
[0022]图4为B元素检验值20ppm的40mm厚度SS400钢板金相照片。
[0023]图5为B元素检验值低于5ppm的12mm厚度Q235B钢板金相照片。
[0024]图6为B元素检验值IOppm的12mm厚度Q235B钢板金相照片。
[0025]图7为普通低碳钢的拉伸曲线。
[0026]图8为本发明所生产高强屈比普通热轧钢板的拉伸曲线。
【具体实施方式】
[0027]下面结合具体实施例和附图,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
[0028]实施例1
厚度为18mm的SS400高强屈比普通热轧钢板,按照质量百分比计的化学成分为:C:0.15%, Si:0.22%, Mn:0.71%, P:0.013%, S:0.003%, B:0.0015%,其它为 Fe 和残留元素。其力学性能检验结果为屈服强度为240MPa,抗拉强度为450MPa,延伸率为29%,强屈比为1.875。
[0029]本发明提供的厚度为18mm的SS400高强屈比普通热轧钢板的生产方法,其工艺流程为:转炉冶炼一LF炉精炼一连铸一板还加热一轧制一控制冷却一精整,包括以下步骤:
1.转炉冶炼
在120吨公称容量的转炉内兑入铁水102吨,废钢18吨,其中铁水温度为1249°C,按照质量百分比计的化学成分为,S1:0.48%、P:0.070%、S:0.037%,其它为Fe和残留元素。
[0030]加入1500kg石灰、600kg白云石,然后供氧吹炼,吹炼结束后,吹炼结束后检验终点成份为 C:0.14%, P:0.013%, S:0.024%。
[0031]加入含76%Si 的硅铁 40kg,含 18.5%S1、68.5%Mn 的硅锰 880kg (残锰 0.20%),含40%S1、12%Al、16%Ba的硅铝钡140kg,铁合金粒度均为10~80mm,进行脱氧合金化。
[0032]脱氧合金化完成时钢水成分检验结果为C:0.14%,S1:0.22%,Mn:0.71%,P:0.013%,S:0.024%,其它为Fe和残留元素。
[0033]钢水出钢。
[0034]2.LF 炉精炼
转炉出钢后送精炼炉精炼处理,使用的设备为LF炉。电弧升温化渣结束后,按照0.9kg/t加入硅钙钡合金108kg进行处理。
[0035]采用喂入硼线方式在钢中添加15g/t的硼。以芯部含硼量70%的13mm规格包芯线硼线为例,按照LF炉钢水量计,加入0.2m/t硼线,硼元素收得率为75%,折合成芯部重量为29g/t,共喂入24m硼线,使120吨钢水含硼1800g。使用喂线机使硼线垂直插入液面,当硼线规格及芯部硼含量不同时,上述加入长度、重量、收得率须根据实际情况计算。
[0036]精炼过程全程吹氩搅拌,使钢水成分、温度均匀化。处理后钢水的化学成分检验结果为 C:0.14%, Si:0.22%, Mn:0.71%, P:0.013%, S:0.003%, B:0.0015%,其它为 Fe 和残留元素。
[0037]3.连续铸造
精炼达标钢水,送板坯连铸机浇铸成220X1580断面连铸板坯。钢水液相线温度为1520°C,实际浇铸温度为1547°C,采用拉速0.8m/min的拉速完成浇铸,钢坯表面检查结果全部合格,送轧线轧制成品钢板。
[0038]4.钢坯加热
钢坯轧制前需加热,采用三段连续式板坯加热炉,轧制不同厚度的钢板时,加热炉各段加热温度略有不同,炉温控制为:均热段1170°C,加热段1310°C,入炉段1140°C。
[0039]5.轧制
将加热好的钢坯经高压水除鳞后,送入2800_四辊可逆式中厚板轧机进行轧制,采用横-纵轧制方式轧制到成品所需厚度,轧制的钢板厚度规格为18mm,宽度规格为2200mm,轧制参数控制为:开轧温度1080°C,终轧温度980°C,精除鳞共计3道次。
[0040]6.控制冷却 轧制后的钢板,经汽雾式快冷装置进行控制冷却,冷却参数控制为:终冷温度840°C,棍道速度1.lm/so
[0041]7.精整
经控制冷却后的钢板,用十一辊矫直机进行矫直,矫直温度控制在600°C。再经辊盘式冷床空冷至200°C以下,切边、切头尾、定尺、取样检验、表面检查、综合判定等工序,等到最终的高强屈比普通热轧钢板。在770°C矫直后上冷床空冷,下冷床后在双边剪测量其表面温度为180°C,经切边、切头尾、取样检验产品质量合格,其强屈比达到1.87。
[0042]图1为B元素检验值低于5PPM的18mm厚度SS400钢板金相照片;图2为B元素检验值15PPM的18mm厚度SS400钢板金相照片。
[0043]将图1和图2相比较,其晶粒度、组织组成、组织形态等均无明显差异,显然添加B元素对这一产品金相组织无影响。
[0044]实施例2
厚度为40 mm的SS400高强屈比普通热轧钢板,按照质量百分比计的化学成分为:C:0.22%, Si:0.24%, Mn:0.87%, P:0.016%, S:0.010%, B:0.0020%,其它为 Fe 和残留元素。其力学性能检验结果为屈服强度为255MPa,抗拉强度为480MPa,延伸率为28%,强屈比为1.882。
[0045]本发明提供的厚度为40 mm的SS400高强屈比普通热轧钢板的生产方法,其工艺流程为:转炉冶炼一LF炉精炼一连铸一板坯加热一轧制一控制冷却一精整,包括以下步骤:
1.转炉冶炼
在120吨公称容量的转炉内兑入铁水98吨,废钢17吨,其中铁水温度为1246°C,按照质量百分比计的化学成分为,S1:0.42%、P:0.084%、S:0.035%,其它为Fe和残留元素。[0046]加入1400kg石灰、600kg白云石,然后供氧吹炼,吹炼结束后,吹炼结束后检验终点成份为C:0.17%,P:0.016%, S:0.029%,其它为Fe和残留元素。
[0047]加入含76%Si 的硅铁 40kg,含 18.5%S1、68.5%Mn 的硅锰 1120kg (残锰 0.20%),含40%S1、12%Al、16%Ba的硅铝钡135kg,铁合金粒度均为10~80mm,进行脱氧合金化。
[0048]脱氧合金化完成时钢水成分检验结果为C:0.19%,S1:0.24%,Mn:0.87%,P:
0.016%,S:0.029%,其它为Fe和残留元素。
[0049]2.LF 炉精炼
转炉出钢后送精炼炉精炼处理,使用的设备为120吨LF炉。电弧升温化渣结束后,按照0.9kg/t加入硅钙钡合金108kg进行处理。
[0050]采用喂入硼线方式在钢中添加20g/t的硼。以芯部含硼量70%的13mm规格包芯线硼线为例,按照LF炉钢水量计,加入0.25m/t硼线,硼元素收得率为75%,折合成芯部重量为38g/t,共喂入31m硼线,使115吨钢水含硼2300g。使用喂线机使硼线垂直插入液面,当硼线规格及芯部硼含量不同时,上述加入长度、重量、收得率须根据实际情况计算。
[0051]精炼过程全程吹氩搅拌,使钢水成分、温度均匀化。处理后钢水的化学成分检验结果为 C:0.22%, Si:0.24%, Mn:0.87%, P:0.016%, S:0.010%, B:0.0020%,其它为 Fe 和残留元素。
[0052]3.连续铸造
精炼达标钢水送板坯连铸机浇铸成220X1580断面连铸板坯。钢水液相线温度为1518°C,实际浇铸温度为1542°C,采用拉速0.8m/min的拉速完成浇铸,钢坯表面检查结果全部合格,送轧线轧制成品钢板。
[0053]4.钢坯加热
炉温控制为:均热段1160°C,加热段1300°C,入炉段1140°C。
[0054]5.轧制
将加热好的钢坯经高压水除鳞后送入2800_四辊可逆式中厚板轧机进行轧制,采用横-纵轧制方式轧制到成品所需厚度,轧制的钢板厚度规格为40mm,宽度规格为2200mm,轧制参数控制为:开轧温度1070°C,终轧温度970°C,精除鳞共计3道次。
[0055]6.控制冷却
轧制后的钢板,经汽雾式快冷装置进行控制冷却,冷却参数控制为:终冷温度820°C,棍道速度0.6m/S。
[0056]7.精整
经控制冷却后的钢板,用十一辊矫直机进行矫直,矫直温度控制在600°C。再经辊盘式冷床空冷至200°C以下,切边、切头尾、定尺、取样检验、表面检查、综合判定等工序,等到最终的高强屈比普通热轧钢板。在770°C矫直后上冷床空冷,下冷床后在双边剪测量其表面温度为190°C,经切边、切头尾、取样检验产品质量合格,其强屈比达到1.88。
[0057]图3为B元素检验值低于5PPM的40mm厚度SS400钢板金相照片,图4为B元素检验值20PPM的40mm厚度SS400钢板金相照片。
[0058]将图3和图4相比较,其晶粒度、组织组成、组织形态等均无明显差异,显然添加B元素对这一产品金相组织无影响。
[0059]实施例3:厚度为12mm的Q235B高强屈比普通热轧钢板,按照质量百分比计的化学成分为:C:0.12%, Si:0.15%, Mn:0.33%, P:0.0213%, S:0.018%, B:0.0010%,其它为 Fe 和残留元素。其力学性能检验结果为屈服强度为235MPa,抗拉强度为410MPa,延伸率为33%,强屈比为1.745。
[0060]本发明提供的厚度为12mm的Q235B高强屈比普通热轧钢板的生产方法,其工艺流程为:转炉冶炼一LF炉精炼一连铸一板还加热一轧制一控制冷却一精整,包括以下步骤:
1.转炉冶炼
在120吨公称容量的转炉内兑入铁水100吨,废钢20吨,其中铁水温度为1250°C,按照质量百分比计的化学成分为,S1:0.45%、P:0.080%、S:0.039%,其它为Fe和残留元素。
[0061]加入1400kg石灰、550kg白云石,然后供氧吹炼,吹炼结束后,吹炼结束后检验终点成份为C:0.10%, P:0.021%, S:0.030%,其它为Fe和残留元素。
[0062]加入含76%Si 的硅铁 20kg,含 18.5%S1、68.5%Mn 的硅锰 230kg (残锰 0.20%),含40%S1、12%Al、16%Ba的硅铝钡140kg,铁合金粒度均为10~80mm,进行脱氧合金化。
[0063]脱氧合金化完成时钢水成分检验结果为C:0.10%, S1:0.15%,Mn:0.33%,P:
0.021%,S:0.030%,其它为Fe和残留元素。
[0064]2.LF 炉精炼
转炉出钢后送精炼炉精炼处理,使用的设备为120吨LF炉。电弧升温化渣结束后,按照0.9kg/t加入硅钙钡合金108kg进行处理。
[0065]采用喂入硼线方式在钢中添加10g/t的硼。以芯部含硼量70%的13mm规格包芯线硼线为例,按照LF炉钢水量计,加入0.15m/t硼线,硼元素收得率为75%,折合成芯部重量为19g/t,共喂入16m硼线,使120吨钢水含硼1200g。使用喂线机使硼线垂直插入液面,当硼线规格及芯部硼含量不同时,上述加入长度、重量、收得率须根据实际情况计算。
[0066]精炼过程全程吹氩搅拌,使钢水成分、温度均匀化。处理后钢水的化学成分检验结果为 C:0.12%, Si:0.15%, Mn:0.33%, P:0.021%, S:0.018%, B:0.0010%,其它为 Fe 和残留元素。
[0067]3.连续铸造
精炼达标钢水送板坯连铸机浇铸成220X1580断面连铸板坯。钢水液相线温度为1522°C,实际浇铸温度为1548°C,采用拉速0.8m/min的拉速完成浇铸,钢坯表面检查结果全部合格,送轧线轧制成品钢板。
[0068]4.钢坯加热
炉温控制为:均热段1200°C,加热段1320°C,入炉段1120°C。
[0069]5.轧制
轧制的钢板厚度规格为12mm,宽度规格为2200mm,轧制参数控制为:开轧温度1080°C,终轧温度960°C,精除鳞共计3道次。
[0070]6.控制冷却
冷却参数控制为:终冷温度780°C,辊道速度1.6m/s。
[0071]7.精整
720°C矫直后上冷床空冷,下冷床后在双边剪测量其表面温度为170°C,经切边、切头尾、取样检验产品质量合格,其强屈比达到1.745。[0072]图5为B元素检验值低于5ppm的12mm厚度Q235B钢板金相照片,图6为B元素检验值IOppm的12mm厚度Q235B钢板金相照片。
[0073]将图5和图6相比较,其晶粒度、组织组成、组织形态等均无明显差异,显然添加B元素对这一产品金相组织无影响。
[0074]采用本发明提供的高强屈比普通热轧钢板制造方法生产的高强屈比普通热轧钢板,具有以下特点:
1.提高了钢板的强屈比。
[0075]酒钢120吨转炉+120吨LF精炼炉+2800mm中厚板轧机按照上述工艺生产的SS400、Q235B钢板,在精炼过程不喂入硼线的条件下,硼元素含量检验值低于5PPM(不含硼)时,其强屈比在1.40~1.60之间。
[0076]按照完全相同的工艺,但是精炼过程喂入硼线,使成品硼含量达到10~20PPM时,强屈比提高到1.70~1.90,提高幅度达到0.3,从普通光学显微镜下看,金相组织无明显变化。
[0077]选取与上述实例相同牌号、相同规格、相同工艺路线且C、S1、Mn接近的产品与上
述实例进行对比,检验结果如下表所示。
[0078]
【权利要求】
1.一种高强屈比普通热轧钢板,其特征在于,按照质量百分比计的化学成分为:C:0.12 ~0.22%, Si:0.12 ~0.30%, Mn:0.30 ~0.90%, P ≤ 0.025%, S≤ 0.025%, B:0.0010~0.0020%,其它为Fe和残留元素。
2.根据权利要求1所述的高强屈比普通热轧钢板,其特征在于,按照质量百分比计的化学成分为:C:0.15%, Si:0.22%,Mn:0.71%,P:0.013%, S:0.003%,B:0.0015%,其它为 Fe 和残留元素。
3.根据权利要求1所述的高强屈比普通热轧钢板,其特征在于,按照质量百分比计的化学成分为:C:0.22%, Si:0.24%,Mn:0.87%,P:0.016%, S:0.010%,B:0.0020%,其它为 Fe 和残留元素。
4.根据权利要求1所述的高强屈比普通热轧钢板,其特征在于,按照质量百分比计的化学成分为:C:0.12%, Si:0.15%,Mn:0.33%,P:0.021%, S:0.018%,B:0.0010%,其它为 Fe 和残留元素。
5.根据权利要求2所述的高强屈比普通热轧钢板,其特征在于,所述高强屈比普通热轧钢板厚度为18mm的SS400,其屈服强度为240MPa,抗拉强度为450MPa,延伸率为29%,强屈比为1.875。
6.根据权利要求3所述的高强屈比普通热轧钢板,其特征在于,所述高强屈比普通热轧钢板厚度为40mm的SS400,其 屈服强度为255MPa,抗拉强度为480MPa,延伸率为28%,强屈比为1.882。
7.根据权利要求4所述的高强屈比普通热轧钢板,其特征在于,所述高强屈比普通热轧钢板厚度为12mm的Q235B,其屈服强度为235MPa,抗拉强度为410MPa,延伸率为33%,强屈比为1.745。
8.根据权利要求1所述的高强屈比普通热轧钢板的制造方法,其特征在于,包括以下步骤: a.转炉冶炼:在转炉内兑入铁水和废钢;铁水满足温度1235~1270°C,按照质量百分比计的化学成分为,S1:0.30~0.60%,P ( 0.10%,S ( 0.04%,其它为Fe和残留元素;废钢为总装入量的10~20% ;加入石灰、白云石,然后供氧吹炼;吹炼结束后,加入硅铁、硅锰、硅铝钡进行脱氧合金化;当钢水化学成分按照质量百分比计为C:0.12~0.17%,S1:0.10~0.25%, Mn:0.55~0.75%, P≤0.025%, S≤0.040%,其它为Fe和残留元素时,钢水出钢; b.LF炉精炼:转炉出钢后送入LF炉,电弧升温化渣,按照0.8~1.0kg/t钢水加入硅钙钡合金,10~20g/t钢水加入硼;精炼过程全程吹氩搅拌;处理后钢水的化学成分满足C:0.12 ~0.22%, Si:0.12 ~0.30%, Mn:0.30 ~0.90%,P ≤ 0.025%,S ≤ 0.025%, B:0.0010 ~0.0020%,其它为Fe和残留元素; c.连铸:钢水在1535~1555°C进行浇铸,板坯连铸机的拉速为0.8 m/min ; d.板坯加热:采用连续式板坯加热炉进行加热,加热到完全奥氏体化; e.轧制:加热好的钢坯经高压水除鳞后送入2800_四辊可逆式中厚板轧机在奥氏体再结晶区进行轧制; f.控制冷却:轧制后的钢板,经汽雾式快冷装置快速冷却到相变区附近; g.精整:经控制冷却后的钢板,用矫直机进行矫直;再经辊盘式冷床空冷、切边、切头尾、定尺、取样检验、表面检查、综合判定等工序,得到的高强屈比普通热轧钢板。
【文档编号】C22C38/04GK103469056SQ201310355304
【公开日】2013年12月25日 申请日期:2013年8月15日 优先权日:2013年8月15日
【发明者】王耀山, 刘国良, 姜军 申请人:甘肃酒钢集团宏兴钢铁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1