罐用钢板及罐用钢板的制造方法与流程

文档序号:11446374阅读:252来源:国知局
本发明涉及主要用于食物罐、饮料罐中所用的罐容器材料的罐用钢板及其制造方法。
背景技术
:从近年来的环境负荷降低及成本降低的观点考虑,需要减少食物罐、饮料罐中使用的钢板的使用量,且无论是二片罐,还是三片罐,均进行着钢板的薄壁化。此外,为了补偿由薄壁化而导致的罐体强度的降低,对罐身部进行焊缝加工、或赋予了几何形状的异形罐的应用正在增多。对于二片罐的异形罐而言,在经过拉深加工、拉薄加工(ironing)而进行了加工度较高的成型之后,进一步对罐身部进行加工,因此,要求钢板具有更高的成型性。另一方面,关于加工度低的罐底部,由于由加工硬化引起的强度提高小,因此经薄壁化后的情况下,需要增加钢板的强度。特别是,当罐底部的形状平坦时,即加工度极小的情况下,需要进一步增加强度。此外,在制罐加工中,拉伸变形(起皱)的发生会导致外观不良,因此需要钢板的屈服伸长率足够小。一般而言,钢板随着强度变高而成型性降低。对于这样的问题,为了获得高强度且成型性良好的钢板,研究了使用硬质的第二相的钢板。专利文献1中公开了一种制罐用高强度良加工性冷轧钢板,所述冷轧钢板具有如下组成,所述组成含有c:0.15重量%以下、si:0.10重量%以下、mn:3.00重量%以下、al:0.150重量%以下、p:0.100重量%以下、s:0.010重量%以下及n:0.0100重量%以下,且余部为铁及不可避免的杂质,且钢板组织具有铁素体、马氏体或贝氏体的混合组织,所述冷轧钢板的ts为40kgf/mm2以上、e1为15%以上且bh为5kgf/mm2以上。专利文献2中公开了制罐用高强度薄钢板,其特征在于,在制品板厚t为0.1-0.5mm的制罐用高强度薄钢板中,具有如下钢组成,以质量%计,所述钢组成含有c:0.04-0.13、si:大于0.01且小于等于0.03、mn:0.1-0.6、p:0.02以下、s:0.02以下、al:0.01-0.2、n:0.001-0.02,且余部为fe及不可避免的杂质,钢板组织为以铁素体相为主体的、铁素体相与马氏体相的复合组织,且马氏体相百分数设为5%以上且小于30%,马氏体粒径d(μm)与制品板厚t(mm)满足下述式(a),30t硬度为60以上。1.0<(1-exp(-t*3.0))*4/d......式(a)现有技术文献专利文献专利文献1:日本特开平4-337049号公报专利文献2:日本特开2009-84687号公报技术实现要素:发明所要解决的问题但是所述以往技术中,可举出下述问题。对于专利文献1中记载的发明而言,由于经两次冷轧、两次退火从而制造钢板,因此能量成本上升。而且,稳定地抑制拉伸变形是困难的、也就说获得低屈服伸长率是困难的。对于专利文献2中记载的发明而言,由于在退火工序中需要急冷,因此钢板内的温度不均易于变大,难以稳定地获得良好的成型性。此外,还存在mn含量低至0.1-0.6%因此不能充分降低屈服伸长率的问题。本发明鉴于上述情况而做出,本发明要解决的问题为,提供具有高强度及优异的成型性的罐用钢板及罐用钢板的制造方法。特别地,本发明要解决的问题为,提供能够优选用于2片异形罐的成型的罐用钢板及罐用钢板的制造方法。用于解决问题的手段为了解决上述问题,本申请的发明人进行了潜心研究。具体而言,为了同时具有罐底部所要求的高强度、和罐身部所要求的优异的成型性,而进行了潜心研究。结果发现,当将成分组成、钢板组织、拉伸强度(以下,也称为ts)、总伸长率,和屈服伸长率(以下,也称为yp-el)调节至特定的范围内时,能够解决上述问题,基于上述发现,本申请的发明人完成了本发明。此外,本申请的发明人还对制造条件进行了潜心研究,结果发现,从组织控制的观点考虑,特别优选将退火条件及二次冷轧条件控制在特定的范围内。本发明的主要内容如下所述。[1]一种罐用钢板,具有下述成分组成:以质量%计,含有c:0.015%以上且0.150%以下、si:0.04%以下、mn:1.0%以上且2.0%以下、p:0.025%以下、s:0.015%以下、al:0.01%以上且0.10%以下、n:0.0005%以上且小于0.0050%、ti:0.003%以上且0.015%以下、b:0.0010%以上且0.0040%以下,且余部由fe及不可避免的杂质构成,并且具有下述钢板组织:以铁素体相为主相,且含有面积百分数的总计为1.0%以上的第二相,所述第二相包含马氏体相和残余奥氏体相中的至少一者,拉伸强度为480mpa以上,总伸长率为12%以上,屈服伸长率为2.0%以下。[2][1]所述的罐用钢板,除了所述成分组成以外,还含有cr:0.03%以上且0.30%以下、mo:0.01%以上且0.10%以下的一种以上。[3]一种罐用钢板的制造方法,将具有[1]或[2]中所述的成分组成的钢坯于1130℃以上的加热温度进行加热、并以820℃以上且930℃以下的终轧温度进行热轧,之后,于640℃以下的卷绕温度进行卷绕,进行酸洗,以85%以上的压下率进行一次冷轧,于720℃以上且780℃以下的退火温度进行连续退火,以1.0%以上且10%以下的压下率进行二次冷轧。[4]根据[3]所述的罐用钢板的制造方法,在所述连续退火之后,以2℃/秒以上且小于70℃/秒的冷却速度,从所述退火温度冷却至400℃,之后,进行所述二次冷轧。发明效果本发明的罐用钢板具有高强度及优异的成型性。此外,使用本发明的罐用钢板,能够容易地制造2片异形罐。根据本发明,能够实现食物罐、饮料罐等中使用的钢板的进一步的薄壁化、进一步节省资源、降低成本,在产业上产生格外的效果。具体实施方式以下,详细地说明本发明。需要说明的是,本发明不限于以下实施方式。本发明的罐用钢板具有下述成分组成:以质量%计,含有c:0.015%以上且0.150%以下、si:0.04%以下、mn:1.0%以上且2.0%以下、p:0.025%以下、s:0.015%以下、al:0.01%以上且0.10%以下、n:0.0005%以上且小于0.0050%、ti:0.003%以上且0.015%以下、b:0.0010%以上且0.0040%以下,且余部由fe及不可避免的杂质构成,并且具有下述钢板组织:以铁素体相为主相,且含有面积百分数的总计为1.0%以上的第二相,所述第二相包含马氏体相和残余奥氏体相中的至少一者,拉伸强度为480mpa以上,总伸长率为12%以上,屈服伸长率为2.0%以下。并且,适于制造罐用钢板的本发明的制造方法为如下罐用钢板的制造方法:将具有上述成分的钢坯于1130℃以上的加热温度进行加热、并以820℃以上且930℃以下的终轧温度进行热轧,之后,于640℃以下的卷绕温度进行卷绕,进行酸洗,以85%以上的压下率进行一次冷轧,于720℃以上且780℃以下的退火温度进行连续退火,以1.0%以上且10%以下的压下率进行二次冷轧。以下,依次对本发明的罐用钢板的成分组成、钢板组织、钢板特性、制造方法进行说明。首先,对本发明的罐用钢板的成分组成进行说明。在成分组成的说明中,各成分的含量为质量%。c:0.015%以上且0.150%以下c是对钢板组织中的第二相的形成及拉伸强度提高而言重要的元素,通过将其含量设为0.015%以上,能够使第二相为1.0%以上,使拉伸强度为480mpa以上。此外,通过生成第二相,能够使yp-el降低至2.0%以下。c含量越多,第二相越为增加,从而有助于高强度化,因此优选含有0.030%以上的c。另一方面,若c含量大于0.150%,则总伸长率降低至小于12%,并且屈服伸长率变大,成型性降低。为此,需要将c含量的上限设为0.150%。从成型性的观点考虑,c含量优选为0.080%以下,更优选为0.060%以下。si:0.04%以下若大量添加si的话,则表面处理性由于表面富集而变差,耐腐蚀性降低,因此需要将含量设为0.04%以下。si含量优选为0.03%以下。mn:1.0%以上且2.0%以下mn是对于生成第二相、高强度化而言重要的元素。另外,通过减少退火过程中的固溶c,还具有降低屈服伸长率的效果。为了获得如上所述的效果,需要将mn含量设为1.0%以上。从稳定地生成第二相的观点考虑,优选含有1.5%以上的mn。更优选为1.6%以上。若含有大于2.0%的mn的话,则中心偏析变得显著、总伸长率降低,因此mn含量设为2.0%以下。p:0.025%以下若添加大量的p的话,则成型性由于过剩的硬质化、中心偏析而降低,另外,耐腐蚀性降低。因此,p含量的上限设为0.025%。p含量优选为0.020%以下。p提高淬透性、且有助于第二相的生成,因此优选含有0.010%以上。s:0.015%以下s在钢中形成硫化物从而使热轧性降低。因而,s含量设为0.015%以下。s含量优选为0.012%以下。al:0.01%以上且0.10%以下al作为脱氧元素是有用的,因此需要含有0.01%以上。若过剩地含有的话,则氧化铝大量产生从而残留在钢板内、从而使成型性降低,因此需要将al含量设为0.10%以下。al含量优选为0.08%以下。n:0.0005%以上且小于0.0050%n若以固溶n的形式存在的话,屈服伸长率增加且成型性降低,因此需要将含量设为小于0.0050%。n含量优选为0.0040%以下,进一步优选为0.0030%以下。更加优选的是,除上述全部n量以外、还规定固溶n量,并将该固溶n量设为小于0.001%。固溶n量能够从全部n量减去利用10%br甲醇而进行的萃取分析而测得的nas氮化物量来评价。另一方面,稳定地使全部n量小于0.0005%是困难的,制造成本也会上升,因此含量的下限设为0.0005%。ti:0.003%以上且0.015%以下ti具有将n固定为tin、从而降低yp-el的效果。另外,由于还具有通过优先生成tin从而抑制bn的生成、确保固溶b从而有助于第二相的生成的效果,因此需要含有0.003%以上的ti。ti含量优选为0.005%以上。若含有大于0.015%的ti的话,则c以tic的形式而固定、第二相的面积百分数降低,铁素体相的再结晶温度上升从而不能在退火中充分地再结晶、总伸长率降低。因此,需要将ti含量设为0.015%以下。b:0.0010%以上且0.0040%以下b不仅具有与n形成bn从而减小固溶n、使屈服伸长率降低的效果,通过以固溶b的形式存在,还会提高淬透性从而有助于第二相的形成,因此需要含有0.0010%以上。即便过剩地含有b,然而不仅上述的效果会发生饱和,而且总伸长率还会降低,除此以外,各向异性变差从而成型性降低,因此需要将b含量的上限设为0.0040%。除以上以外,罐用钢板还优选含有cr:0.03%以上且0.30%以下、mo:0.01%以上且0.10%以下中的一种以上。cr:0.03%以上且0.30%以下cr提高淬透性从而有助于第二相的生成、对于高强度化、yp-el的降低是有效的。因此,优选含有0.03%以上的cr。即便含有大于0.30%的cr,不仅效果会发生饱和,而且耐腐蚀性也会降低,因此优选将cr的含量设为0.30%以下。mo:0.01%以上且0.10%以下mo提高淬透性从而有助于第二相的生成,对于高强度化、yp-el的降低是有效的。因此,优选含有0.01%以上的mo。即便添加大于0.10%的mo,不仅效果会发生饱和,而且铁素体相的再结晶温度上升、从而阻碍退火时的再结晶、总伸长率有时降低,因此优选将mo含量设为0.10%以下。罐用钢板中的成分组成的余部为fe及不可避免的杂质。接下来,对本发明的罐用钢板的钢板组织进行说明。主相的铁素体相在本发明的罐用钢板中,铁素体相为主相。从成型性的观点考虑,铁素体相的面积百分数优选为80%以上,更优选为90%以上,进一步优选为95%以上。作为第二相,含有面积百分数的总计为1.0%以上的、包含马氏体相和残余奥氏体相中的至少一者本发明的罐用钢板以铁素体相为主相,以马氏体相和残余奥氏体相中的至少一者为第二相。本发明的罐用钢板以面积百分数计含有1.0%以上的第二相。通过将第二相设为1.0%以上,能够实现拉伸强度480mpa以上的高强度化、和屈服伸长率2.0%以下的低屈服伸长率化。第二相优选以面积百分数计为2.0%以上。第二相的上限没有特别限定,但若第二相变得过多,则成型性有降低的潜在可能性,因此优选将第二相的面积百分数设为20%以下,更优选设为10%以下。本发明的罐用钢板也可以是钢板组织由铁素体相、马氏体相、及残余奥氏体相形成的钢板。另一方面,也可以不是铁素体相、马氏体相、及残余奥氏体相,例如也可以含有渗碳体、贝氏体相等其他的相,但该其他的相的面积百分数小于第二相。例如,该其他的相优选面积百分数的总计为小于1.0%。本发明中,以能够观察到与钢板的轧制方向平行的垂直截面的方式,切出样品并填充树脂,研磨后,通过硝酸乙醇腐蚀从而露出组织,之后通过扫描型电子显微镜对钢板组织进行拍照,通过图像处理来测定铁素体相及第二相(马氏体相及残余奥氏体相的总计)等的钢板组织的面积百分数。接下来,对本发明的罐用钢板的钢板特性进行说明。拉伸强度:480mpa以上,总伸长率:12%以上,屈服伸长率:2.0%以下为了确保罐底部的充分的强度,需要将钢板的拉伸强度设为480mpa以上。拉伸强度优选为490mpa以上。除了拉深·拉薄加工以外,为了确保焊缝(bead)等罐身加工性,总伸长率需要为12%以上。总伸长率优选为15%以上。为了防止制罐时的拉伸变形,需要将屈服伸长率设为2.0%以下。屈服伸长率优选为1.0%以下。本发明中,拉伸强度、总伸长率、及屈服伸长率通过从轧制方向取出jis5号拉伸试验片并根据jisz2241来评价。本发明的罐用钢板的板厚没有特别限定,优选为0.40mm以下。由于本发明的罐用钢板能够实现将其厚度降低至极薄,因此从省资源化及低成本化的观点考虑,更优选将板厚设为0.10~0.20mm。接下来,对本发明的罐用钢板的制造方法进行说明。本发明的罐用钢板的制造方法没有特别限定,优选为采用以下所记载的条件来制造罐用钢板。需要说明的是,也可以适宜地进行实施镀sn、镀ni、镀cr等的镀敷工序、化学转换处理工序、层压体等的树脂膜被覆工序等的工序。加热温度:1130℃以上若热轧前的钢坯的加热温度过低的话,tin的一部分没有溶解,成型性降低,这可能成为粗大tin的生成主要原因,因此将加热温度设为1130℃以上。加热温度优选为1150℃以上。上限没有特别限定,但若钢坯的加热温度过高的话,氧化皮过剩地发生、从而成为制品表面的缺陷,因此上限优选设为1260℃。热轧的终轧温度:820℃以上且930℃以下若热轧的终轧温度高于930℃的话,则存在促进氧化皮的生成、表面性状变差的潜在可能性。因此,将终轧温度的上限设为930℃。若热轧的终轧温度小于820℃的话,则存在拉伸特性的各向异性变大、成型性降低的潜在可能性,因此将终轧温度的下限设为820℃。终轧温度的更优选的下限为860℃。卷绕温度:640℃以下若卷绕温度大于640℃的话,则热轧钢板中形成粗大的碳化物、在退火时该粗大的碳化物成为未固溶的状态从而阻碍第二相的生成,存在导致拉伸强度的降低、yp-el的增加的潜在可能性。因此,卷绕温度设为640℃以下。从将碳化物微细地分散在钢板中的观点考虑,优选将卷绕温度设为600℃以下,进一步优选设为550℃以下。对卷绕温度的下限没有特别限定,但若过低的话,则存在热轧钢板过剩地硬化从而阻碍冷轧的作业性的潜在可能性,卷绕温度优选设为400℃以上。关于酸洗条件,只要能够除去钢板的表层氧化皮即可,对条件没有特别规定。能够通过常规方法而进行酸洗。一次冷轧的压下率:85%以上通过冷轧,能够获得导入位错、退火中的奥氏体转变得以促进,且促进第二相的生成的效果。为了获得上述效果,将一次冷轧的压下率设为85%以上。另外,通过增大一次冷轧的压下率,铁素体相的晶粒变细,第二相也变得微细,因此能够提高拉伸强度与加工性的平衡。若一次冷轧的压下率变得过大,则拉伸特性的各向异性变大,成型性有降低的潜在可能性。因此,一次冷轧的压下率优选设为93%以下。退火条件退火温度:720℃以上且780℃以下为了获得高拉伸强度和高总伸长率、以及低yp-el,重要的是,在退火过程中生成第二相。对于第二相的生成而言,重要是的,使奥氏体相在铁素体+奥氏体2相区变得稳定,通过于720℃以上且780℃以下对钢板进行退火,从而能够生成第二相。为了确保成型性,需要在退火中使铁素体相充分地再结晶,退火温度设为720℃以上。另一方面,若退火温度过高的话,则铁素体粒径变得粗大,因此设为780℃以下。关于退火方法,从材质的均匀性的观点考虑,优选连续退火法。退火时间没有特别限定,但优选10s以上且60s以下。退火温度开始到400℃为止的冷却速度:2℃/秒以上且小于70℃/秒为了稳定地生成第二相,优选调节退火后的冷却速度,通过设为2℃/秒以上,易于生成面积百分数1.0%以上的第二相。在过剩的冷却速度下,由于钢板内的冷却偏差从而不能稳定地获得高总伸长率,另外,在通过板卷(coil)时变得不稳定,有效制造存在变得困难的潜在可能性,因此从退火温度开始至400℃为止的冷却速度优选设为小于70℃/秒。二次冷轧(dr)的压下率:1.0%以上且10%以下退火后的钢板经二次冷轧而强度变高,且二次冷轧具有降低钢板的屈服伸长率的效果。为了获得上述效果,将二次冷轧的压下率设为1.0%以上。若二次冷轧的压下率过高,则成型性变差,因此,设为10%以下。特别是当要求成型性的情况下,优选将二次冷轧的压下率设为4%以下。实施例以下,说明本发明的实施例。本发明的技术范围不限于以下实施例。将含有表1所示的钢编号a~v的成分、且余部由fe及不可避免的杂质构成的钢熔制,从而获得钢坯。将所得钢坯在表2所示的条件下加热后,进行热轧、卷绕、并进行酸洗从而除去氧化皮,之后进行一次冷轧,通过连续退火炉而在表2所示的退火温度下进行15s的退火,通过表2所示的冷却速度而冷却至400℃,从400℃以20℃/秒冷却至室温,之后通过表2所示的压下率而进行二次冷轧,获得板厚为0.16~0.22mm的钢板(钢板编号1~33)。对该钢板进行镀铬(不含锡)处理作为表面处理,之后制作被覆了有机皮膜的层压体钢板。(拉伸强度、总伸长率、屈服伸长率的评价)通过浓硫酸从所述层压体钢板除去有机被膜后,从轧制方向取出jis5号拉伸试验片并根据jisz2241来评价拉伸强度、总伸长率、屈服伸长率。这里,为了测定板厚而除去了有机被膜,但没有除去镀覆层。这是由于,镀覆层薄,在测定板厚时的误差范围内,即便不除去镀覆层也对拉伸强度几乎没有影响。需要说明的是,拉伸强度、总伸长率、屈服伸长率也可以在除去镀覆层的一部分或者全部之后来进行评价。评价结果如表3中所记载的那样。(钢板组织的面积百分数的测定)以能够观察到与钢板的轧制方向平行的垂直截面的方式,切出样品并填充树脂,研磨后,通过硝酸乙醇腐蚀从而露出组织,之后通过扫描型电子显微镜对钢板组织进行拍照,通过图像处理来测定铁素体相及第二相(马氏体相及残余奥氏体相的总计)的面积百分数。测定结果记载于表3。(固溶n量的测定)在通过浓硫酸而从钢板除去有机被膜及镀覆层后,通过利用10%br甲醇的萃取分析而测定nas氮化物量,从全部n量中减去从而测定固溶n量。测定结果记载于表3。(成型性评价)为了评价成型性,在将所述的层压体钢板冲制成圆形(尺寸:)后,实施深拉深加工、拉薄加工等,从而制成有底的圆筒形(尺寸:)的罐之后,对罐身部的高度中央、及距高度中央上下10mm、上下20mm的总计5处的罐周方向进行焊缝加工,从而将与应用于饮料罐的二片罐相同的罐体进行成型。按照以下基准,通过目视进行评价,将评价结果记载于表3。-基准-将制罐时没有破罐、没有观察到拉伸变形的评价为◎,将虽然没有破罐,但辨认到在实用上没有问题的轻微的拉伸变形评价为○,将属于存在破罐、拉伸变形显著中的任一者的情况评价为×。表1均为质量%钢编号csimnpsalntibcrmo备注a0.0300.011.700.0200.0090.050.00300.0060.0021--发明例b0.0400.021.700.0180.0100.040.00280.0080.00250.10-发明例c0.0150.011.800.0200.0080.070.00250.0090.0010--发明例d0.0800.021.500.0150.0100.070.00220.0060.00310.05-发明例e0.0280.031.200.0150.0090.050.00350.0120.0036-0.10发明例f0.0500.011.950.0100.0060.080.00260.0030.0031-0.02发明例g0.0400.011.650.0160.0090.010.00300.0130.00180.30-发明例h0.0600.021.600.0100.0080.060.00250.0060.00200.080.03发明例i0.0100.021.550.0140.0080.060.00360.0100.0016--比较例j0.0350.020.500.0160.0110.050.00260.0060.00200.15-比较例k0.0350.022.300.0160.0080.060.00400.0070.0023--比较例l0.0600.011.700.0150.0080.040.00310.0010.0015--比较例m0.0170.011.500.0150.0100.040.00200.0200.0014--比较例n0.0540.011.700.0150.0100.060.00360.0080.0046--比较例o0.0410.011.620.0120.0080.060.00290.0080.0006--比较例p0.0350.020.800.0200.0090.050.00230.0100.0024--比较例q0.0260.011.600.0100.0090.050.00640.0070.0018--比较例r0.1500.011.700.0150.0110.040.00260.0070.0021--发明例s0.1360.011.600.0190.0110.040.00310.0100.00260.07-发明例t0.1050.011.950.0170.0120.050.00180.0080.0018-0.05发明例u0.1290.011.700.0160.0110.060.00290.0070.0023--发明例v0.1710.011.800.0160.0080.030.00310.0090.0020--比较例发明例均为拉伸强度为480mpa以上、且总伸长率为12%以上、屈服伸长率为2.0%以下,且铁素体相为主相,第二相的面积百分数为1.0%以上。因而,其为总伸长率高、屈服伸长率低的高强度的罐用钢板。并且,关于发明例,任意一者均为在制罐后、也在罐底部确保了充分的强度。另一方面,比较例中,拉伸强度、总伸长率、屈服伸长率、第二相的面积百分数中的任一者以上变差且成型性不充分。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1