一种提高低碳硬质合金碳势的方法与流程

文档序号:11146921阅读:845来源:国知局
一种提高低碳硬质合金碳势的方法与制造工艺

本发明涉及提高硬质合金制品碳势(磁饱和)的方法,用于地质勘探、凿岩、掘煤、矿山开采用硬质合金柱齿等产品磁饱和的提高。



背景技术:

低钴WC-Co硬质合金在使用中强调韧性,其磁饱和应控制在135 emu/g-160emu/g以上。由于低钴WC-Co硬质合金WC-γ两相区较窄(8%Co以下),存在碳平衡较难控制的问题,容易出现石墨相、缺碳相(η相)缺陷,尤其是η相,合金的磁饱和一般低于125 emu/g,这将严重降低材料的力学性能。目前消除η相的方法是将树脂粉用有机溶剂浸湿,并与存在缺碳相的硬质合金产品表面充分涂敷,通过二次烧结使硬质合金产品组织恢复正常。该方法对于消除出现η相的硬质合金产品比较有效,但对于未出现η相的低碳硬质合金产品基本无效果(磁饱和为125-135emu/g)。此外,该方法需要将每颗硬质合金产品都涂上树脂,费工费时,并且产品表面易存在小凹坑。



技术实现要素:

本发明的目的是提供一种提高低碳硬质合金碳势的方法,对出现η相和未出现η相的碳硬质合金产品均能提高其碳势。

为达到上述目的,本发明采用的技术方案是:一种提高低碳硬质合金碳势的方法,对低碳硬质合金进行气体渗碳处理,该气体渗碳处理包括以下步骤:

第一步,将低碳硬质合金装入石墨舟置入烧结炉中,从室温升温至1340-1400℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内以脉冲方式通入H2与CH4的混合气体,所述脉冲方式是指通入的H2与CH4的混合气体是以高压、低压这两种压力交替切换,先高压后低压,所述高压为200-800mbar,所述低压为10-50mbar,高压阶段和低压阶段所采用的H2与CH4的混合气体的气体碳势相同;并且,所述脉冲周期为5-10min,高压阶段和低压阶段的时间比为2:1至4:1;

第二步,冷却至1270-1330℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内通入压力为1000-2000mbar的惰性气体;

第三步,冷却到室温,产品出炉。

上述方案中,所述低碳硬质合金是WC-Co硬质合金或WC-TiC-Co硬质合金。所述WC-Co硬质合金是指硬化相为碳化钨,粘结金属为钴的硬质合金;所述WC-TiC-Co硬质合金是指硬化相为碳化钨与碳化钛,粘结金属为钴的硬质合金。再进一步,适用的WC-Co硬质合金或WC-TiC-Co硬质合金中的Co的重量百分比含量为2%-30%。

上述方案中,所述烧结炉为真空气氛一体炉。

本发明原理是:本发明核心是针对低碳硬质合金进行气体渗碳返烧处理,先升温至1340-1400℃并保温,此时合金处于WC+液相钴两相区,碳原子通过液相钴由表面向中间、心部扩散,由于具体是采用脉冲方式通入H2与CH4的混合气体,在一个脉冲周期内,先在高压力的H2与CH4的混合气体作用下进行渗碳,然后在低压力的H2与CH4的混合气体作用下进行碳扩散,并且高压力解决了后续脉冲周期内合金中碳势升高而导致渗碳困难的问题,从而使整个脉冲周期实现了边渗碳边扩散,使得合金内部碳浓度分布均匀;然后,冷却至1270-1330℃并保温,此时合金处于WC+液相钴+固相钴三相区,在高压的惰性气体的驱动力下,碳原子通过液相钴由表面向中间、心部继续扩散,使产品内部区域碳势更加均匀化,从而提高硬质合金磁饱和,同时避免出现石墨相,最后就冷却至室温出炉。

与现有涂覆树脂后二次烧结的方法相比,本发明省时、省工,同时能保证缺碳、低碳硬质合金的磁饱和达到正常标准,避免产品报废。

附图说明

图1为本发明实施例处理前产品的金相图;

图2为本发明实施例处理后产品的金相图。

具体实施方式

下面结合附图及实施例对本发明作进一步描述:

实施例:

一种提高低碳硬质合金碳势的方法,对低碳硬质合金进行气体渗碳处理,该气体渗碳处理包括以下步骤:

第一步,将低碳硬质合金装入石墨舟置入烧结炉中,从室温升温至1340-1400℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内以脉冲方式通入H2与CH4的混合气体,所述脉冲方式是指通入的H2与CH4的混合气体是以高压、低压这两种压力交替切换,先高压后低压,所述高压为200-800mbar,所述低压为10-50mbar,高压阶段和低压阶段所采用的H2与CH4的混合气体的气体碳势相同;并且,所述脉冲周期为5-10min,高压阶段和低压阶段的时间比为2:1至4:1;

第二步,冷却至1270-1330℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内通入压力为1000-2000mbar的惰性气体;

第三步,冷却到室温,产品出炉。

下面以JZ06牌号硬质合金产品为例:

处理前产品的磁饱和为123 emu/g,存在η相,见图1。对该JZ06硬质合金产品进行气体渗碳处理,在第一步中具体是升温到1370℃并保温120min, 此阶段脉冲方式通入H2和CH4的混合气体,所述高压压力选择600mbar,所述低压压力选择为30mbar,一个脉冲周期为8min,高压阶段维持时间为6min,低压阶段维持时间为2min。在第二步中,冷却至1310℃保温70 min,通入惰性气体为Ar,压力为1600mbar。处理后的JZ06合金磁饱和为136 emu/g,金相见图2。

下面以JZ08牌号硬质合金产品为例:

处理前产品的磁饱和为130 emu/g,但不存在η相。对该JZ08硬质合金产品进行气体渗碳处理,在第一步中具体是升温到1350℃并保温60min, 此阶段脉冲方式通入H2和CH4的混合气体,所述高压压力选择300mbar,所述低压压力选择为20mbar,一个脉冲周期为6min,高压阶段维持时间为4min,低压阶段维持时间为2min。在第二步中,冷却至1290℃保温40 min,通入惰性气体为Ar,压力为1300mbar。处理后的JZ08合金磁饱和为139 emu/g,金相组织正常。

以上为举例,在第二步中通入的气体除Ar外,也可采用其他惰性气体。

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1