一种用于丝材3D打印的稀土镁合金的制作方法

文档序号:18603747发布日期:2019-09-03 23:05阅读:667来源:国知局
本发明属于金属材料
技术领域
,具体而言,涉及一种用于丝材3d打印的稀土镁合金。
背景技术
:近些年,人们对镁及镁合金的兴趣越来越浓厚,并将其广泛应用于摩托车、汽车、电子设备等方面,然而由于镁合金机械性能的局限性,使其无法被应用到一些更高端的产业中,如交通运输、飞机制造及航空航天等。mg-9%al-2%zn(az92a)合金是一种典型的具有优良强度、成形性和耐腐蚀性的镁合金,但由于其屈服强度通常低于300mpa并且高温性能欠佳、易腐蚀,导致其应用并不广泛。因此,研究解决如何进一步提升az92a合金的性能,使之应用于更多领域是非常有意义的。在过去的30年中,增材制造技术在工业生产中越来越受到瞩目,尤其被用于制造零件模型和原型机。3d打印技术起初被应用于制造高分子聚合物,用于通讯和探测领域,这种使用cad模型在很短的时间就做出原型机的进步显著地缩短了产品的制造流程。为了满足航空航天、汽车发动机、军工等领域的需求,近来3d打印的研究方向集中在打印复杂结构的金属零件上。与传统减材制造(cnc)相比,3d打印可以自动利用三维设计图生成产品,这节约了生产时间和人力成本。虽然cnc也可以利用三维图进行编程生产,但当零件结构过于复杂时,机加工由于设备精度等问题会浪费大量时间。作为金属3d打印中的一种,金属丝材3d打印则是利用金属丝为原料,以激光、电子束或等离子束等能量源为热源采用逐层熔覆的方法进行生产。在生产过程中,由于有大量的热量输入,导致成品材料晶粒尺寸过大,同时易受腐蚀。为了将镁合金更好地应用于丝材3d打印技术并保证3d打印成品材料的综合性能,研发适合3d打印用的镁合金丝成为了一项重要且迫切的课题。技术实现要素:为了解决上述技术问题,本发明提供了一种用于丝材3d打印的稀土镁合金。针对增材制造过程中出现的晶粒粗大及易腐蚀的问题,本发明在mg-9al-2zn合金的基础上,向镁合金中添加稀土元素来细化晶粒、提高抗腐蚀性,优化合金元素含量来提高丝材的抗拉强度和塑性,使镁合金丝更加适用于3d打印。经过理论研究和实验测定,最终确定本发明由以下重量百分比含量的成份组成:pr:0.01%-0.99%,sc:0.7%-1.2%,al:8.3%-9.7%,y:0.01%-2%,ce:1.01%-2%,mn:0.15%-0.5%,zn:1.7%-2.3%,be:0.0002%-0.0008%,cu、fe、ni、si含量均不超过0.005%,其他杂质元素含量小于0.3%,余量为mg。pr元素的加入使az92a中增加了新的al-pr相,柱状al-pr相优先于β相(mg17-al12)和α相(α-mg)生成,减少了可用于形成β相的al元素,并可作为α-mg的形核成核剂达到细化晶粒的目的。同时新生成的金属间相与mg基相电位差更小进而降低了其与阳极mg基相耦合所导致的微电化学腐蚀。sc在镁合金中可形成优于β相的金属间相,细化组织晶粒。sc元素可增加合金凝固反应的温度,使镁合金更早形核,提高形核率。上述一种用于丝材3d打印的稀土镁合金,其特征在于所述的稀土镁合金的组份按重量百分比优选为:pr:0.01%-0.99%,sc:0.7%-1.2%,al:8.5%-9.5%,y:0.01%-2%,ce:1.01%-2%,mn:0.15%-0.4%,zn:1.8%-2.2%,be:0.0002%-0.0008%,cu、fe、ni、si含量均不超过0.005%,其他杂质元素含量小于0.3%,余量为mg。本发明所用y重量百分比0.01%-2%,y元素与al生成al2y,该相可有效阻止晶粒间的位错滑移,显著提高材料的蠕变强度。本发明所用ce重量百分比为1.01%-2%,ce元素与al元素形成al-ce相,新生成相可起到细化晶粒,提高材料力学性能的作用。与现有的技术相比,本发明具有以下优点:添加了一定量的pr和sc元素并优化镁合金各元素含量,极大地细化了α相晶粒,显著提高了镁合金丝的机械性能和耐腐蚀性,为镁丝3d打印提供了良好的技术支持。具体实施方式本发明用于丝材3d打印的稀土镁合金的具体制备过程为:1.根据需要选择合适的原料,按设计成分将所述原料混合熔炼后,使用国内先进的自动化半连续拉铸生产线(电磁搅拌)生产高性能大直径稀土镁合金铸棒;2.将连续拉铸生产的稀土镁合金铸棒进行表面加工,去除表面毛刺和裂纹;3.使用挤压工艺,将稀土镁合金铸棒挤压到1.2mm直径的镁合金丝;4.用打轴机进行密排打轴做成成品轴丝。实施例1按质量百分比计,配料成份(烧损后)为:al:9%,zn:2%,mn:0.3%,pr:0.01%,sc:0.7%,y:0.01%,ce:1.01%,be:0.0004%,余量为mg。将各成分的金属或合金粉末和镁原料粉末混合熔炼后使用国内先进的自动化半连续拉铸生产线(电磁搅拌)生产高性能大直径稀土镁合金铸棒。实施例2按质量百分比计,配料成份(烧损后)为:al:9%,zn:2%,mn:0.3%,pr:0.5%,sc:0.9%,y:1%,ce:1.5%,be:0.0004%,余量为mg。将各成分的金属或合金粉末和镁原料粉末混合熔炼后使用国内先进的自动化半连续拉铸生产线(电磁搅拌)生产高性能大直径稀土镁合金铸棒。实施例3按质量百分比计,配料成份(烧损后)为:al:9%,zn:2%,mn:0.3%,pr:0.99%,sc:1.2%,y:2%,ce:2%,be:0.0004%,余量为mg。将各成分的金属或合金粉末和镁原料粉末混合熔炼后使用国内先进的自动化半连续拉铸生产线(电磁搅拌)生产高性能大直径稀土镁合金铸棒。将实施例1-3中连续拉铸生产的稀土镁合金铸棒进行表面加工,去除表面毛刺和裂纹。使用挤压工艺,将稀土镁合金铸棒挤压到1.2mm直径的镁合金丝。使用镁合金丝为原料打印100mm×50mm×20mm的镁合金板。根据gb/t228.1-2010室温拉伸测试的标准,对各实施例分别进行4组拉伸测试,同时采用线截距粒度测量技术测出α相晶粒尺寸大小,记录各例数据后取平均值,数据记入表1。表1退火态3d打印零件性能对比实施例抗拉强度(mpa)断后伸长率(%)α相晶粒尺寸(µm)普通az92a2312050125523252273222032602122用喷盐腐蚀实验测量镁合金板耐腐蚀性,记录材料表面达到完全腐蚀所需要的时间进行比较对照,数据记入表2。喷盐腐蚀实验的具体步骤如下:1.将塑料支架放入食盐喷雾室中;2.将镁合金板略微倾斜地放在木质支架上,关闭舱门;3.开启喷嘴,将浓度为3.5%的nacl溶液喷雾均匀喷洒在样品表面;4.将喷雾室加热至35℃并保持恒温;5.记录材料表面达到完全腐蚀所需要的时间用以比较材料的抗腐蚀性。表2退火态3d打印零件耐腐蚀性能对比实施例出现腐蚀时间(h)半数表面腐蚀时间(h)表面完全腐蚀时间(h)普通az92a0.2192710.3306020.3357030.33868根据表1,2可知本发明通过向az92a镁合金中添加一定量的pr、sc元素以及优化其他元素的含量,得到了更好的镁合金丝,使用此种镁合金丝打印出来的零件具有更优越的力学性能和耐腐蚀性能,与传统的az92a镁合金相比,本发明的一种用于丝材3d打印的稀土镁合金更适合于3d打印。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1