沉积氮化硅的方法和设备与流程

文档序号:20020087发布日期:2020-02-25 11:28阅读:1263来源:国知局
沉积氮化硅的方法和设备与流程

本发明涉及沉积氮化硅的方法。更具体地,本发明涉及通过等离子体增强化学气相沉积(pecvd)将氮化硅沉积到衬底上的方法。本发明还涉及用于将氮化硅沉积到衬底上的等离子体增强化学气相沉积(pecvd)设备。



背景技术:

使用低温等离子体增强化学气相沉积(pecvd)工艺生产的氮化硅膜已应用在半导体和微电子工业中。例如,这种氮化硅膜可以用作薄层以在低温下通过显示应用程序(revealapplication)来控制晶片应力和/或晶片弯曲。必要的是,使这些氮化硅膜具有优异的电性能,同时保持低的热预算。已知的工艺通常使用具有高沉积速率(0.2μm/min至0.6μm/min)的低温pecvd工艺来达到氮化硅膜的期望性能。

然而,据观察,在这种低温pecvd工艺期间形成了不希望的富硅颗粒。图1a和图1b是由聚焦离子束(fib)切取的缺陷的sem图像,示出了在通过pecvd沉积氮化硅期间在衬底的表面上形成的富硅颗粒的示例。这些颗粒也可能会粘结在一起而在衬底的表面上形成颗粒簇(如图2和图3所示)。图4示出了当通过低温pecvd沉积氮化硅时,所形成的直径为3μm至10μm的颗粒在整个衬底的表面上的分布。这些颗粒可能会影响所得膜的电学和热学性质。此外,这些颗粒能够导致衬底形貌的不规则,这是不期望的。期望的是,在通过pecvd沉积氮化硅期间,特别是在低温pecvd期间消除这些颗粒的形成。

为了控制富硅颗粒的存在,已知的方法涉及沉积连续的氮化硅薄层。从而使得在富硅颗粒在粘附到衬底的表面之前便将其抽离。然而,这种方法耗时且成本高。



技术实现要素:

本发明在本发明实施方式的至少一些实施方式中,寻求解决上述问题、期望和需要中的一些。本发明在实施方式的至少一些实施方式中提供了一种用于基本上消除在通过pecvd沉积氮化硅期间形成的不希望的富硅颗粒的形成的方法。

根据本发明的第一方面,提供了一种通过等离子体增强化学气相沉积(pecvd)沉积氮化硅的方法,该方法包括以下步骤:

提供一种pecvd设备,该pecvd设备包括腔室和设置在腔室内的衬底支撑件;

将衬底设置在衬底支撑件上;

将氮气(n2)前体引入到腔室中;

施加高频(hf)rf功率和低频(lf)rf功率以在所述腔室中持续产生等离子体;

在施加hfrf功率和lfrf功率的同时,将硅烷前体引入到腔室中,使得硅烷前体持续形成等离子体的一部分;以及

随后,在继续维持等离子体的同时,去除lfrf功率或减少至少90%的lfrf功率,使得通过pecvd将氮化硅沉积到衬底上。

已经发现,在施加hfrf功率和lfrf功率这两者的同时,将硅烷前体引入腔室中会减少在沉积氮化硅的pecvd工艺期间形成的不希望的富硅颗粒的存在(prevalence)。不希望受任何理论或猜想的束缚,据信,额外的lfrf功率(与hfrf功率结合)有助于形成更稳定的等离子体体系。

在施加hfrf功率和lfrf功率一定时段后,立即引入硅烷前体,其中,该一定时段足以维持等离子体的稳定。该一定时段可以是至少2秒,优选至少3秒。在施加lfrf功率至少2秒的时段后立即引入硅烷有助于使等离子体完全稳定,并从而消除不希望的富硅颗粒的形成。

在可能施加lfrf功率小于约15秒,优选小于约10秒,更优选约5秒的时段后,立即进行将硅烷引入到腔室中的步骤。施加lfrf功率小于约15秒,优选约5秒的时段有助于减少处理时间并增加衬底产量。

可以在从将硅烷前体引入腔室中起约10秒,优选小于约5秒,并且更优选小于约2秒内,去除lfrf功率或减少至少90%的lfrf功率。优选地,在硅烷前体持续形成等离子体的一部分之后,立即或片刻之后去除lfrf功率。例如,一旦硅烷前体的流量达到期望的流量就可以将lfrf功率去除或减少至少90%。将硅烷前体引入到腔室会暂时破坏等离子体的稳定。当使等离子体重新稳定时,可以进行去除或减少lfrf功率的步骤。在不损害所沉积的氮化硅膜性能的情况下,可以优化去除或减少lfrf功率的步骤,以最大限度地使等离子体稳定。优选地,在维持等离子体的同时,将lfrf功率减小至少95%,更优选地减小至少99%,并且最优选地减少100%。即,最优选的是在维持等离子体的同时,完全去除lfrf功率。

可将hfrf功率施加到pecvd设备的进气口。进气口可以是喷头。可将lfrf功率施加到pecvd设备的进气口或衬底支撑件。

高频(hf)功率和低频(lf)功率是射频(rf)功率。hfrf功率的频率可以大于2mhz,并且优选地为约13.56mhz。

lfrf功率的频率可以为300khz至500khz,优选350khz至400khz,并且更优选约360khz至380khz。

例如,当处理300mm直径的衬底时,lfrf功率的频率可具有500w至1200w的功率。所施加的hfrf功率与氮化硅沉积速率相关。优选地,氮化硅沉积速率为约0.2μm/min至0.6μm/min。500w至1200w的hfrf功率可适合于实现该优选的沉积速率。超过1200w的hfrf功率可能引发不希望的气相副反应,从而可能会形成不期望的微观颗粒沉积物。

在施加高频(hf)rf功率和低频(lf)rf功率来维持腔室中的等离子体的步骤期间,低频(lf)rf功率可具有100w至300w的功率。在该范围内的lfrf功率可有利于完全消除富硅颗粒的形成,而不会损害所沉积的氮化硅膜的品质。

硅烷前体可以是sih4。替代性地,硅烷前体可以是具有通式sinh2n+2的高级硅烷,其中n=2至5。从实用的观点来看,优选使用sih4。

该方法进一步可包括将h2引入腔室中的步骤。可以在任何合适的时间将h2引入腔室中。例如,可以在引入氮气(n2)前体或硅烷前体的同时将h2引入腔室中。

该方法可以在低于250℃,优选低于200℃的温度下进行。该方法可以在高于80℃的温度下进行。

该方法进一步可包括以下步骤:将惰性气体引入腔室中;并且在引入氮气(n2)前体之前,产生等离子体;其中惰性气体优选为氩气或氦气。惰性气体可以是运载气体。惰性气体可以是气体混合物。惰性气体可以在任何合适的时间,诸如在引入氮气(n2)的同时引入到腔室中。惰性气体可以促进等离子体的产生。

根据本发明的第二方面,提供了一种用于将氮化硅沉积到衬底上的等离子体增强化学气相沉积(pecvd)设备,该设备包括:

腔室;

设置在腔室内的衬底支撑件;

用于将气体引入腔室中的进气系统;

高频(hf)rf功率供应器,该高频(hf)rf功率供应器配置为向进气系统施加hfrf功率;

低频(lf)rf功率供应器,该低频(lf)rf功率供应器配置为向进气系统或衬底支撑件之一施加lfrf功率;

至进气系统的氮气(n2)前体源;

至进气系统的硅烷前体源;以及

控制器;

其中,在施加hfrf功率和lfrf功率的同时,在使用中,控制器将硅烷前体导引入腔室中,使得硅烷前体能够在腔室中持续形成的等离子体的一部分,并且随后,在继续维持等离子体的同时,去除lfrf功率,使得通过pecvd能够将氮化硅沉积到衬底上。

虽然在上文中描述了本发明,但是本发明可以扩展到上文或下面的描述、附图或权利要求中设置的特征的任何创造性组合。例如,本发明的第一方面公开的任何特征可以与本发明的第二方面的任何特征组合。

附图说明

现将参照附图描述根据本发明的方法的实施方式,在附图中:

图1a和图1b是在pecvd氮化硅期间,由离子束(fib)切取的在衬底上形成的富硅颗粒的聚焦sem图像;

图2是示出了在pecvd氮化硅期间在衬底上形成的富硅颗粒簇的光学显微镜图像;

图3是在pecvd氮化硅期间在衬底上形成的富硅颗粒簇的扫描电子显微(sem)图像;

图4是示出了在pecvd氮化硅期间形成的直径为3μm至10μm的富硅颗粒在整个衬底上的分布的surfscan图像。

图5a和图5b是根据本发明的pecvd设备的示意性横截面视图;

图6是示出了根据第一实施方式的方法中的步骤的流程图;

图7a和图7b是示出了当使用混合的hf功率和lf功率来产生和维持氮气(n2)等离子体时,喷头上的dc偏压随时间稳定的曲线图;

图8是示出了当(仅)使用hf功率来引发和维持等离子体时,喷头上的dc偏压随时间变化的曲线图(现有技术);

图9是示出了富硅颗粒的组成的横截面图;

图10是示出了当在引入硅烷前体之前,施加hf功率和lf功率10秒的时段时,喷头上的dc偏压随时间变化的曲线图;

图11是示出了当在引入硅烷前体之前,施加hf功率和lf功率5秒的时段时,喷头上的dc偏压随时间变化的曲线图;

图12是示出了当在引入硅烷前体之前,施加将hf功率和lf功率2秒的时段时,喷头上的dc偏压随时间的变化的曲线图;以及

图13是示出了当在引入硅烷前体之前,施加hf功率和lf功率施加2秒的时段时,喷头上的dc偏压随时间的变化的曲线图。

具体实施方式

图5a示出了适用于实施本发明方法的pecvd设备50的示意性横截面视图。设备50包括腔室52、为喷头形式的进气系统54以及用于支撑衬底55的衬底支撑件56。高频和低频功率供应器57和58配置为向进气系统54施加高频(hf)和低频(lf)rf功率。高频和低频rf功率供应器57和58分别设置有匹配单元59和510。图5a示出了电接地的衬底支撑件56。然而,根据需要,可方便地向衬底支撑件提供hfrf功率和/或lfrf功率。控制器(未示出)通常用于控制处理气体向腔室52的引入,并且控制hf功率和lf功率的施加。设置泵送出口511以除去多余的反应气体。

图6示出了根据本发明第一实施方式的方法的流程图。本发明的第一实施方式是使用pecvd工艺沉积氮化硅的方法,其中用于pecvd工艺的前体包括氮气(n2)和硅烷,诸如sih4。图5a示出了适用于将至少两种气体(例如sih4和n2)引入到腔室52中的设备50。可选地,氢气(h2)可额外用作反应前体。图5b示出了适用于经由进气口54b将至少三种气体(例如sih4、n2和h2)引入到腔室中的pecvd设备50b的示意性横截面视图。为避免疑义,已使用相同的附图标记来表示相同的特征。优选地,本发明的pecvd工艺不包括氨(nh3)作为前体。然而,本发明在这方面不受限制。

首先,将气体引入到腔室52中并且使等离子体产生。在第一实施方式中,气体是氮气(n2)前体(步骤60)。然而,可方便地使用惰性气体(诸如氩气或氦气)来产生等离子体。惰性气体可以方便地用作运载气体。n2气前体是本发明的pecvd工艺中的反应性起始材料。通常,在产生等离子体之前使气体压力稳定。

在第一实施方式中,通过同时施加混合的高频(hf)功率和低频(lf)rf功率(步骤62)来产生等离子体。然而,等离子体可以使用任何已知方法,诸如通过单独施加hfrf功率,或通过单独施加lfrf功率来产生。本发明对hf功率和lf功率的施加顺序没有限制。hf功率通常被施加到进气口,诸如喷头54。hfrf功率通常具有2mhz以上,并且优选地约13.56mhz的频率。hfrf功率通常具有500w至1200w的幅度。lf功率通常被施加到进气口,诸如喷头54,或被施加到衬底支撑件。lfrf功率通常具有300khz至500khz,优选地350khz至400khz,并且更优选地约360khz至380khz的频率。lfrf功率通常具有100w至300w的幅度。hf功率和lf功率通常是rf功率。

当产生等离子体时,喷头54上的dc偏压可以提供关于等离子体性质的信息。喷头54上基本上稳定的dc偏压表明等离子体保持稳定。喷头54上变动的dc偏压表明要么等离子体在初始等离子体产生之后未完全稳定,要么等离子体的稳定被破坏。图7a和图7b示出了当使用混合的hfrf功率和lfrf功率来产生氮气(n2)等离子体时,喷头上的dc偏压(线70)的变化。线72对应于所施加的lfrf功率(以瓦特为单位)。为避免疑义,已使用相同的附图标记来表示相同的特征。

参照图7a,在虚线a指示的时间点同时施加hfrf功率和lfrf功率,从而产生/激发(ignite)等离子体。随着离子体的激发,喷头上的dc偏压变为更负的偏压(在虚线a和虚线b之间)。随着等离子体稳定,dc偏压达到基本上稳态的电压。等离子体在由虚线b指示的时间点完全稳定。氮气等离子体在hfrf功率和lfrf功率施加约2秒内稳定。

参照图7b,在由虚线c指示的时间点开始施加hfrf功率,从而产生/激发等离子体。在由虚线d指示的时间点开始施加lfrf功率。hfrf功率的施加在lfrf功率之前。随着等离子体激发,喷头上的dc偏压变为更负的偏压,直到该dc偏压达到基本上稳态的电压。等离子体在由虚线b指示的时间点完全稳定。氮气(n2)等离子体在hfrf功率施加约2秒内稳定。

当等离子体稳定时,将硅烷前体引入腔室52中(步骤64)。在氢气(h2)也用作前体的实施方式中,可以方便地在引入硅烷前体的同时,将氢气(h2)引入到腔室52中。使硅烷前体和氮气(n2)前体经受等离子体辅助反应以形成氮化硅,随后该氮化硅被沉积。硅烷前体优选为硅烷(sih4),然而,也可以使用具有式sinh2n+2的高级硅烷,其中n=2至5。在仍然施加hfrf功率和lfrf功率两者的同时,引入硅烷前体。硅烷前体与所维持的等离子体相互作用以形成等离子体的一部分。

当已经建立硅烷前体流时(即,当硅烷前体已经形成等离子体的一部分时),去除lfrf功率(步骤66)。优选地,在硅烷前体流已达到期望流量后,立即去除lf功率。尽管去除了lfrf功率,但通过继续施加hfrf功率并继续使氮气(n2)和硅烷前体流入腔室52中来继续保持等离子体。在去除lfrf功率之后,通过pecvd进行氮化硅的本体沉积(步骤68)。通常,本体沉积(bulkdeposition)步骤68在约80℃至200℃下进行。

在本体沉积步骤68期间施加的hf功率的幅度与氮化硅的沉积速率有关。对于氮化硅的低温pecvd,优选使用高沉积速率,例如约0.2μm/min至0.6μm/min。这通常可以使用幅度为500w至1200w的hf功率来实现。小于约500w的功率通常不能实现足够的沉积速率。超过约1200w的功率通常会导致沉积的膜具有模糊(而非镜面)外观。不希望受任何理论或猜想的束缚,据信约大于1200w的功率会引起气相反应(而不是等离子体辅助反应)发生。气相反应的产物在衬底上形成微观颗粒沉积物,从而导致衬底失去其镜面外观。

在第一实施方式中,在本体沉积步骤68期间不施加lfrf功率。优选将lf功率完全去除,使得在本体沉积步骤68期间仅施加hf功率。

通过(仅)施加hf功率产生和维持的等离子体使得在衬底(例如结合玻璃的薄硅衬底)的整个表面上能够实现均匀的耦合。这使得在本体沉积步骤68期间能够形成氮化硅的均匀沉积。相反地,如果在本体沉积步骤期间仅使用lf功率,则lf功率趋向于通过最小电阻的路径耦合。这通常会导致氮化硅具有不均匀的沉积厚度。该不均匀性在结合衬底上有所加剧。

如果在本体沉积步骤68期间保持lf功率(除了hf功率之外),则衬底在本体沉积期间会经受更大的离子冲击,从而对沉积的氮化硅膜的物理性能产生不利的影响。优选在本体沉积步骤68期间,完全去除lf功率。然而,在本体沉积步骤68期间可以方便地将lfrf功率的幅度基本上减小到标称水平,例如,可以方便地将lfrf功率减小至少90%,优选至少95%,并且更优选至少99%。通常,减小的lfrf功率具有小于30w,优选地小于15w,更优选地小于3w,并且最优选地为0w的功率。

本发明人已经发现,在施加hfrf功率和lfrf功率两者的同时,将硅烷前体引入腔室52中可以令人惊讶地防止在通过pecvd沉积氮化硅期间形成富硅颗粒。

相反地,在整个沉积工艺中仅使用hfrf功率的已知pecvd工艺期间,不断地形成不希望的富硅颗粒。图8示出了根据仅使用hf功率的已知pecvd工艺,喷头上的dc偏压(线80)随着硅烷流(线82)引入到腔室的变化。单纵坐标(y)轴主要示出了dc偏压80(以伏特为单位)。然而,y-轴也代表硅烷流量82(以sccm为单位)。在该示例中,在喷头上的dc偏压完全稳定后,将硅烷前体引入到腔室中。通过已知pecvd沉积氮化硅的方法所产生的富硅颗粒示出在图1至图3中。不希望的颗粒在衬底上通常具有可再现的尺寸、形态和位置。图9是衬底92上的富硅颗粒90的简化示意性横截面图。颗粒90通常具有富硅核94,该富硅核94具有氮化硅涂层96。颗粒90的典型直径为约3μm至5μm,并且与总沉积时间无关。氮化硅涂层96的典型厚度通常为约1μm,并且对应于在整个衬底上沉积的氮化硅的全厚度。

不希望受任何理论或猜想的束缚,据信,富硅颗粒90在沉积工艺的初始等离子体产生阶段期间形成。更具体地,据信,颗粒通过在将硅烷引入处理腔室中时开始的气相反应形成。如果等离子体仅由hf功率产生,则hf等离子体不稳定。由于不稳定的hf等离子体的鞘传导性能,硅烷前体的引入破坏了所维持的等离子体的稳定。这导致不断产生局部不希望的富硅颗粒簇。等离子体的去稳定化(destabilisation)伴随着喷头上的dc偏压的变化。更具体地说,当硅烷前体被引入到腔室中,伴随着喷头上的dc偏压的正(即负的程度变小)尖峰84,形成富硅颗粒(图8)。再一次地,不希望受任何理论或猜想的束缚,据信,dc偏压的正尖峰84是由等离子体的形状变化引起的,该形状变化对应于上部电极(即喷头)相对于下部电极(即衬底支撑件)的耦合区域减小。这伴随着在喷头上的所在位点处的等离子体密度瞬间增加。同样,不希望受任何理论或猜想的束缚,据信喷头的不规则性为富硅颗粒90的初始形成提供成核位点,特别是等离子体密度瞬间增加的位点处。该富硅颗粒90随后很可能是通过从喷头跌落到衬底上而沉积到衬底上。当硅烷前体的流量达到其期望值时,等离子体重新稳定并且不再形成富硅颗粒90。

本发明的方法显著减少了在pecvd期间形成的不希望的富硅颗粒90的存在。不希望受任何理论或猜想的束缚,据信,特别是在建立反应性等离子体状态时,额外的lf功率有利地有助于使在腔室内所维持的等离子体稳定。lf功率的增加有助于建立难以被去稳定化的更稳健的等离子体体系。因此,当将硅烷前体引入到腔室中时,等离子体发生较低程度的去稳定化,并且消除了富硅颗粒90的形成。

如前所述,在本体沉积步骤68期间不期望施加lf功率。优选地,在不损害本体沉积性能的情况下,调节lf功率以使初始等离子体(即,在引入硅烷前体的步骤64之前)最大限度地稳定。通常,在硅烷前体已经建立为等离子体的一部分或者已达到期望的硅烷前体流量之后,立即或片刻后将lf功率去除。

下表1中提供了根据本发明实施方式,通过低温pecvd沉积氮化硅的典型工艺条件。

表1

上部电极(例如喷头)与衬底之间的距离通常为约20mm至25mm。

表2示出了氮化硅厚度和折射率随lf功率(以瓦特为单位)的变化。

表2

本发明人已经发现,富硅颗粒的存在可以通过记录(logged)的rf参数来检测,例如通过在工艺期间监测喷头上的dc偏压来检测富硅颗粒的存在。形成富硅颗粒的特征在于在将硅烷前体引入腔室时,dc偏压出现正(即负的程度变小)电压尖峰。相反地,没有形成富硅颗粒的工艺在引入硅烷前体时,dc偏压表现出负偏移。

仅作为示例,图10示出了在根据本发明的实施例的方法期间喷头上的dc偏压(线100)(以伏特为单位)的变化。线102对应于所施加的lfrf功率(以瓦特为单位)。线104对应于硅烷前体的流量(以sccm为单位)。单纵坐标(y)轴主要示出了喷头上的dc偏压100(以伏特为单位)。然而,y轴也代表所施加的lfrf功率102(以瓦特为单位),以及硅烷前体的流量104(以sccm为单位)。通过向喷头同时施加hfrf功率和lfrf功率来产生等离子体。等离子体的产生伴随着喷头上的dc偏压的负偏移。在hf功率和lf功率已施加10秒的时段后,将硅烷前体引入到腔室中。该时段(也称为“稳定化时段”)使得所形成的等离子体在引入硅烷前体之前能够完全稳定。dc偏压基本上稳定表明等离子体完全稳定。

硅烷前体的引入会使等离子体去稳定化。然而,通过仅在使用hfrf功率和lfrf功率这两者来完全建立并完全稳定等离子体之后将硅烷前体引入到腔室中能够使该去稳定化最小化。这有助于消除富硅颗粒的形成。通常,在硅烷前体已形成等离子体的一部分并且等离子体已重新稳定之后,不再进一步形成富硅颗粒。

在该示例中,硅烷前体的引入伴随着喷头上的dc偏压的进一步负偏移(在虚线64和虚线66之间)。随后,当硅烷的流量已上升到期望的流量时,将lf功率去除。在该示例性实验期间没有形成富硅颗粒。

为了使衬底产量最大化,优选使稳定化时段的持续时间最小化。

在另一示例中,图11示出了在根据本发明的实施例的方法期间,喷头上的dc偏压(线110)(以伏特为单位)的变化。线112对应于lf功率(以瓦特为单位)。线114对应于硅烷前体的流量(以sccm为单位)。单纵坐标(y)轴主要示出了喷头上的dc偏压110(以伏特为单位)。然而,y轴也代表施加的lf功率112(以瓦特为单位),以及硅烷前体的流量114(以sccm为单位)。除了在hfrf功率和lfrf功率已施加5秒的时段(即,已使等离子体稳定)之后将硅烷前体引入腔室中之外,所使用的方法类似于用于图10的方法。硅烷前体的引入伴随着dc偏压的负偏移,这表明在该示例性实验期间没有形成富硅颗粒。

在又一示例中,图12和图13示出了在根据本发明的实施例的方法期间,喷头上的dc偏压(线120和线130)(以伏特为单位)的变化。线122和线132对应于lf功率(以瓦特为单位)。线124和线134对应于硅烷前体的流量(以sccm为单位)。单纵坐标(y)轴主要示出喷头上的dc偏压(以伏特为单位)。然而,y轴也代表施加的lf功率(以瓦特为单位),以及硅烷前体的流量(以sccm为单位)。除了在hfrf功率和lfrf功率已施加2秒的时段(即,已使等离子体稳定)之后将硅烷前体引入腔室中之外,所使用的方法类似于涉及图10和图11的示例中所使用的方法。2秒的稳定化时段会间歇性地产生富硅颗粒。

参照图12,硅烷前体的引入伴随着dc偏压的负偏移(在虚线64和虚线66之间)。在该示例中,没有形成富硅颗粒。

现参照图13,硅烷前体的引入伴随着dc偏压的正(即负的程度变小)尖峰136。dc偏压的正尖峰136对应于富硅颗粒的形成。在增加硅烷前体之后,使等离子体重新稳定之后不再形成富硅颗粒。

不希望受任何理论或猜想的束缚,据信在等离子体完全稳定之前,当引入硅烷前体时,趋向于形成富硅颗粒。在初始等离子体产生之后,等离子体需要约2秒才能完全建立并稳定。稳定化时段取决于工艺参数。在一些情况下,部分等离子体稳定化可能足以抑制富硅颗粒的形成。优选在使所维持的等离子体完全稳定之后再引入硅烷前体。优选地,稳定化时段为至少2秒,或更优选至少3秒。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1