一种轻质高熵合金及其制备方法与流程

文档序号:22177746发布日期:2020-09-11 21:33阅读:264来源:国知局

本发明涉及高熵合金材料技术领域,尤其涉及一种轻质高熵合金及其制备方法。



背景技术:

目前,对高熵合金广泛的定义是指由5~13种主要元素所组成的合金。多组元高熵合金因为其独特的相结构,全新的设计理念和优异的合金性能,现在已经成为金属材料领域新的研究热点,并与橡胶金属和大块金属玻璃共同被称为合金化理论领域近年来的三大突破。

已有的研究发现,高熵合金独特的固溶体结构往往会使其具有一些传统合金无法比拟的优异性能,如高强度,高硬度,高耐磨耐腐蚀性,高热阻等。这些性能可以满足航空航天材料制造的零件在超高温,超低温,高真空,高应力,强腐蚀等极端条件下的工作需要。

目前,已经得到广泛研究的高熵合金体系主要由co、cr、fe、ni、cu、mn、ti等拥有原子核外3d亚层电子的过渡族金属元素组成。然而,大量的过渡族金属元素的添加也给高熵合金作为航空航天结构材料的应用带来了一些问题。比如:密度大(密度一般在8.0g/cm3以上),航空航天材料的特殊工作条件要求材料的比强度高,即要求材料不但强度高而且密度小,但是过渡族金属元素往往具有较大的密度,这势必会导致多组元高熵合金的密度较大。

因此,有必要提供一种新的轻质高熵合金来解决上述问题。



技术实现要素:

本发明的目的是提供一种轻质高熵合金及其制备方法。

为实现上述目的,本发明采用的一个技术方案是:一种轻质高熵合金,其合金成分的原子百分比表达式为alamgbznccrdcuetif,其中15≤a=b≤20,20≤c=d=e≤23,0≤f≤5,且a+b+c+d+e+f=100。

进一步,其合金成分的原子百分比表达式为alamgbznccrdcuetif,其中16≤a=b≤18,c=d=e=21,1≤f≤5,且a+b+c+d+e+f=100。

为实现上述目的,本发明还采用的一个技术方案是:一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:将al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式alamgbznccrdcuetif分别称取各原料进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,将电磁炉抽真空;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

进一步,步骤3抽真空的具体过程为,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空。

进一步,步骤3抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa。

进一步,步骤3中的感应线圈为螺旋状的铜管。

与现有技术相比,本发明一种含有ti和c的高熵合金及其制备方法的有益效果在于:

1、本发明选择密度较低的al、mg、ti轻金属元素加上cu、zn、cr等熔点较低的元素作为高熵合金的元素,可以得到密度较低且强度较高的轻质高熵合金;

2、本发明利用真空感应熔炼并直接浇铸得到合金铸锭,制备过程无污染,低能耗,成本低,使轻质块体高熵合金得制备成为可能。

具体实施方式

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

本发明一种轻质高熵合金,其合金成分的原子百分比表达式为alamgbznccrdcuetif,其中15≤a=b≤20,20≤c=d=e≤23,0≤f≤5,且a+b+c+d+e+f=100。

具体地,其合金成分的原子百分比表达式为alamgbznccrdcuetif,其中16≤a=b≤18,c=d=e=21,1≤f≤5,且a+b+c+d+e+f=100。

实施例1:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al15mg15zn22cr22cu22ti4,分别称取15gal粉、15gmg粉、22gzn粉、22gcr粉、22gcu粉、4gti粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

实施例2:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al15mg15zn23cr23cu23ti1,分别称取15gal粉、15gmg粉、23gzn粉、23gcr粉、23gcu粉、1gti粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

实施例3:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al16mg16zn22cr22cu22ti2,分别称取16gal粉、16gmg粉、22gzn粉、22gcr粉、22gcu粉、2gti粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

实施例4:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al16mg16zn21cr21cu21ti5,分别称取16gal粉、16gmg粉、21gzn粉、21gcr粉、21gcu粉、5gti粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

实施例5:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al17mg17zn21cr21cu21ti3,分别称取17gal粉、17gmg粉、21gzn粉、21gcr粉、21gcu粉、3gti粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

实施例6:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al18mg18zn20cr20cu20ti4,分别称取18gal粉、18gmg粉、20gzn粉、20gcr粉、20gcu粉、4gti粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

实施例7:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al18mg18zn21cr21cu21ti1,分别称取18gal粉、18gmg粉、21gzn粉、21gcr粉、21gcu粉、1gti粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

实施例8:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al19mg19zn20cr20cu20ti2,分别称取19gal粉、19gmg粉、20gzn粉、20gcr粉、20gcu粉、2gti粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

实施例9:

本发明一种轻质高熵合金的制备方法,包括以下步骤:

步骤1:用砂轮机将一定量的al粉、mg粉、zn粉、cr粉、cu粉、ti粉表面的氧化膜分别去除,按照原子百分比表达式al20mg20zn20cr20cu20,分别称取20gal粉、20gmg粉、20gzn粉、20gcr粉、20gcu粉共计100g进行配料;

步骤2:将配好的原料按照熔点由低到高的顺序依次放进石墨坩埚中,易挥发的金属原料置底,熔点和沸点均较高的金属原料放于上方;

步骤3:将装好各原料的石墨坩埚放进电磁感应炉的感应线圈中,感应线圈为螺旋状的铜管,将电磁炉抽真空,电磁感应炉中的压强达到5×10-2pa时,通入氩气,使其内压强恢复至0.03mpa,之后关闭氩气阀继续抽真空,抽真空的具体过程至少反复4次后,对电磁感应炉重新通入氩气至0.03mpa;

步骤4:启动电磁感应炉的感应控制按钮,适当调整感应电流,控制熔炼温度,待各原料完全熔化后,关闭电磁感应炉的感应控制按钮,合金熔融状态在电磁感应炉中冷却40min,得到合金熔体;

步骤5:将步骤4得到的合金熔体倒置于石墨坩埚中重新熔炼,按照步骤1至步骤4反复3次,将合金熔体浇铸到钢模具中,冷却后得到合金铸锭。

按照本发明实施例1-9制得若干不同的高熵合金,并通过测试得到其密度值、抗压强度值、维氏硬度值以及压缩率,通过计算得出其比强度值,如表1所示。

表1

通过表1中提供的数据,确认本发明的高熵合金,具有较高的比强度,达到2.1(n/m2)/(kg/m3)以上,选择较优的技术方案,比强度可以达到3.1(n/m2)/(kg/m3)以上,即密度较低且强度较高。

当然,本技术领域内的一般技术人员应当认识到,上述实施例仅是用来说明本发明,而并非用作对本发明的限定,只要在本发明的实质精神范围内,对上述实施例的变化、变型都将落在本发明权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1