使用低温精馏联合高炉和直接还原反应器的方法

文档序号:3398325阅读:122来源:国知局
专利名称:使用低温精馏联合高炉和直接还原反应器的方法
技术领域
本发明一般涉及炼铁和低温精馏,并能将这两种技术以将费用有效地用在炼铁操作的方式组合起来。
在高炉操作中,煤和空气燃烧,然后产生的还原气体用于还原铁矿石以生产铁。由高炉出来的煤气含有某些热值,通常用作燃料发电及产生蒸汽。对于这种气体而言,虽然这已是一种有效的用途,但特别是由于期望减少可通过电网得到的电能的成本,所以希望更好地使用这些煤气。
因此,本发明的目的在于提供一种方法,利用该方法可以有效地使用高炉煤气,以提高炼铁工厂的炼铁能力。
一般说来,本发明用于将高炉和直接还原铁反应器有效地联合,是通过使用低温精馏来实现该联合的。低温精馏改善了高炉操作,并且能够使由高炉出来的煤气被用于直接还原铁反应器。因而,既由于高炉本身,也由于使高炉操作和直接还原铁反应器相联合,结果提高了铁的产量。
在阅读了本说明书后,本领域技术人员会很清楚上述的和其它的发明目的和优点,如下所述即可达到本发明使用低温精馏联合高炉和直接还原反应器的方法,包括(A)在低温空气分离设备中经低温精馏分离空气以产生氧气;(B)将由低温空气分离设备得到的氧气与空气混合,形成含有约22至50摩尔百分数的氧和其余主要由氮组成的鼓风空气;(C)将该鼓风空气通入高炉,并使鼓风空气的氧与烃类燃料燃烧,以产生含氮、一氧化碳和氢的高炉煤气。
(D)使该一氧化碳与蒸汽反应,产生二氧化碳和附加的氢,并且由高炉煤气中去除二氧化碳,产生含氮和氢的强化高炉煤气。
(E)将该强化高炉煤气通入低温精馏设备,并在该低温精馏设备中分离该强化高炉煤气,以产生氢和剩余的氮;和(F)使由低温精馏设备得到的氢与铁矿石在直接还原反应器中反应,以产生铁。
本文所使用的术语“铁矿石”指的是铁的一氧或多氧化物,例如三氧化二铁和氧化亚铁。
本文所使用的术语“塔”指的是蒸馏或分馏塔或区,其中使液相和蒸汽相逆流接触,以实现流体混合物的分离,例如使蒸汽相和液相在固定于塔内的一系列垂直隔开的盘或板上和/或在例如结构填充或不规则填充的填料元件上接触。
本文所使用的术语“低温精馏设备”指的是一种分离设备,其中设备的至少部分操作是在等于或小于150°K的温度下进行。
本文所使用的术语“低温空气分离设备”指的是包括至少一个塔的低温精馏设备,其中空气被分离,产出产物氧和产物氮的至少一种。


图1是代表本发明方法一个优选实施方式的简化的系统方框流程图,其中使用变压吸附装置进行二氧化碳的去除。
图2是代表本发明方法另一个优选实施方式的简化的系统主框流程图,其中使用热碳酸钾系统进行二氧化碳的去除。
以下参照附图详细叙述本发明。
参照图1,主要含氮和氧的空气1被送入低温空气分离设备101,在其中经低温精馏将其分离以产出氧。该低温空气分离设备101可以是任意有效的低温空气分离设备。优选的低温空气分离设备101是包括具有热交换关系的高压塔和低压塔的双塔设备,其中送入的空气在高压塔内通过低温精馏而经受初步分离,成为富氧的流体和富氮的流体,然后将这些流体通入低压塔,其中通过低温精馏使它们经受最终分离,成为产物氧和产物氮。低温空气分离设备也可以使用其它的塔,例如氩侧支塔(argon sidearm column),其中可以生产产物氩。
氮以气流4由低温空气分离设备101被取出,该气流可以全部或部分回收,或释放到大气中。具有氧浓度由富氧空气到高纯范围、即一般在40至99.9摩尔百分数范围的产物氧,以气流6的方式由低温空气分离设备引出。将来自低温空气分离设备的氧与来自气流7的空气混合,产生富氧空气或鼓风空气8。鼓风空气具有氧浓度一般在22至50摩尔百分数的范围,而其余主要含氮。
鼓风空气8在热风炉103中一般被加热到1500至2200°F的温度范围,并且所得到的热鼓风空气10与烃类燃料12一起被通入高炉104,该燃料可以是煤、油或天然气。另外,包括铁矿石、煤和熔剂物质的炉料14也装入高炉104。鼓风空气的氧在高炉内与烃类燃料反应,产生热量并产生还原气体,随着该还原气体通过炉子向上流动而将铁矿石转化成铁。熔铁和渣由炉子104底部沿路线13被排出,通常称为高炉煤气的、并含有氮、一氧化碳、二氧化碳和氢的煤气被收集在高炉104的上部并从炉子104排出,即气流15。
本发明的一个重要方面是,鼓风空气在具有超过空气的氧浓度的同时,也含有显著水平的、较佳约60摩尔百分数或更多的氮。这达到了两个有利的结果。它使得高炉能够在无须对空气作为单独氧源的传统实际操作进行显著改变的情况下进行操作。而且还用作氮源,可以被有利地使用在下游的高炉操作和直接还原铁反应器的联合中。
现在回头参照图1,离开高炉的煤气15的一部分17被通入热风炉103,在其中将它燃烧,以提供热量来加热鼓风空气。高炉出来的煤气15的剩余部分16被通入洗涤塔107下部,将水以流束18通入洗涤塔107的上部,而且对着向上流的高炉煤气而下通过洗涤塔107,在该过程中,高炉煤气中的颗粒状杂质被洗入向下流的水中,而高炉煤气被冷却到一般在40至150°F的范围。洗涤水以流束20由洗涤塔107排除。
冷却后的高炉煤气由洗涤塔107上部以气流22被引出,并通入压缩机110,在其中被压缩至一般在100至500磅/每平方英寸绝对的压力(psia)范围。所得到的加压高炉煤气气流24与压力大致相同的水蒸气混合,形成水煤气转换反应气流28。水蒸汽气流26以这样的速率添加到加压高炉煤气流24中,使得水煤气转换反应气流28中水对一氧化碳的比例处在2至5的范围。优选的是,气流24和26被各自中热到约600°F,然后再将它们混合以形成气流28。
水煤气转换反应气流28被通入转换反应区114,它优选地包括高温和低温转换反应器,在每个转换反应器后串联热交换器。随着水煤气转换反应混合物通过转换反应器,一氧化碳和水蒸汽进行放热反应,产生二氧化碳和氢。然后,使所得到的含氮、二氧化碳和氢的高炉煤气以气流30由水煤气转换反应区114通入变压吸附系统118,它包括一个或多个吸附剂颗粒床,优先吸附二氧化碳。这些吸附剂物质中的一种可称为活性碳和沸石。
随着高炉煤气通过变压吸附系统118,二氧化碳被优先吸附在吸附剂上而由高炉煤气中去除。所得到的含氮和氢的强化高炉煤气以气流32由变压吸附系统被引出。
气流32可能含最多达300ppm的二氧化碳,并且还会含某些水。使气流32通过预提纯器124以除去水和二氧化碳。所得的强化高炉煤气以气流40由预提纯器124引出并与循环气流52结合,形成气流42,再送入低温精馏设备126。较佳的是,低温精馏设备126包括一台热交换器,其中送入的气体被部分冷凝而被相分离,从而实现分离。而且,该设备可以将热交换和相分离与进一步的塔分离相联合,在该低温精馏设备126中,送气42经低温精馏而被分离成富氢流体,它具有的氢浓度一般在70至95摩尔百分数的范围,并且残余为氮,其浓度为98摩尔百分数,其余主要是氢和一氧化碳。
富氢流体由低温精馏设备126以流束46通入氢浓缩器,它在图1所说明的实施方式中是一个薄膜分离器单元129。在薄膜单元129中,氢被浓缩成纯度一般超过95摩尔百分数。含小于85摩尔百分数的氢并处于约200psia的循环流束以流束50由薄膜单元129通入鼓风机134,并由此作为前述的循环气流52进入低温精馏设备126。浓缩的氢气流以流束48与铁矿石54一起被通入直接还原反应器系统132。氢与铁矿石反应,并将铁矿石直接还原成金属铁。产物铁以物流56由直接还原反应器132排出,并且出自该反应器的排气一般在一台预热器中燃烧,再作为烟道气以气流58排离。
残余的氮由低温精馏设备126以流束43被引出,流束43的主要部分44通过变压吸附单元118,在118中它被用于使已经负载二氧化碳的吸附剂由其上脱吸附二氧化碳而再生。流束43的次要部分45通过预提纯器124后进入残余氮流束,在124中它被用于使已经负载水和二氧化碳的吸附剂由其上脱吸附水而再生。由单元118和124所得到的废氮流31和39可以被排放,或者如图1所标明的那样,可以被通入优选的氧化反应器136,在其中来自流束33的氧与某些残余的一氧化碳反应后形成二氧化碳,然后剩余的氮气流以流束35被排放。
本发明的一个重要方面是,用于使二氧化碳去除系统再生的氮是来自低温氮-氢分离,而不是来自空气分离设备。来自空气分离设备的氮可能潜在地将氧引入二氧化碳去除系统,并因而最终进入由其取氢以用于直接还原铁反应的强化高炉煤气。这样一种氧的存在可以证明是危险的,而使用两台分离低温精馏设备的本发明避免了任何这样的潜在危险。
图2说明本发明的另一个实施方式,其中二氧化碳去除系统是一个热碳酸钾系统而不是一个变压吸附系统。对于通用的单元,图2中的数字与图1中的那些相同,而且不再对这些通用单元进行详述。
现在参照图2,高炉煤气流30由水煤气转换反应区114通入酸性气体去除系统117,它包括一台吸附器和洗提器,使用热碳酸钾溶液作为溶剂。该溶剂在一台吸附器塔中由气体混合物30去除二氧化碳。溶剂在洗提器塔中通过使用蒸汽和来自流束44的残余氮而再生,并且所得到的二氧化碳和残氮的混合物以流束34被排放。可含约500ppm二氧化碳的强化高炉煤气以气流32通入甲烷化区120,在其中煤气被预热,然后加入到甲烷化器。在甲烷化器中,全部残余的一氧化碳和二氧化碳与氢反应产出甲烷。来自甲烷化区120的气体混合物以气流36通入干燥器123,它由气体混合物中除去水,然后所得的强化高炉煤气由干燥器123以气流40被引出。干燥器123由残余氮气流45再生,氮和水的混合物以流束38由干燥器123排放。在本实施方式中,残氮含有作为不纯物的氢和甲烷。
虽然本发明已经参照某些优选实施方式被加以详述,但本领域的技术人员将会看出,在权利要求的精神和范围内,本发明还有其它的实施方式。例如,低温空气分离设备不必专用于生产高炉用氧,而且还可以将生产的氧通入一条管线,可由它将氧不仅通往高炉,而且还可以通到其它使用点。进入低温空气分离设备的原料空气可以由为向高炉送风而设计的鼓风机获得。低温精馏设备下游的氢浓缩可以借助于变压吸附单元而不用薄膜单元。
权利要求
1.使用低温精馏使高炉和直接还原反应器联合的方法,包括(A)在低温空气分离设备中经低温精馏分离空气以产生氧气;(B)将由低温空气分离设备得到的氧气与空气混合,形成含有约22至50摩尔百分数的氧和其余主要含氮的鼓风空气;(C)将该鼓风空气通入高炉,并使鼓风空气的氧与烃类燃料燃烧,以产生含氮、一氧化碳和氢的高炉煤气;(D)使该一氧化碳与蒸汽反应,产生二氧化碳和附加的氢,并且由高炉煤气中去除二氧化碳,产出含氮和氢的强化高炉煤气;(E)将该强化高炉煤气通入低温精馏设备,并在该低温精馏设备中分离该强化高炉煤气,以产出氢和剩余的氮;和(F)使由低温精馏设备得到的氢与铁矿石在直接还原反应器中反应,以产出铁。
2.权利要求1所述的方法,进一步包括使用部分由高炉排出的高炉煤气加热鼓风空气,然后将该鼓风空气通入高炉。
3.权利要求1所述的方法,进一步包括以逆流方式使该高炉煤气对着向下流动的水向上流动通过,然后进行蒸汽与一氧化碳的所说反应。
4.权利要求1所述的方法,其中由高炉煤气去除二氧化碳是通过将二氧化碳从高炉煤气中吸附到吸附剂上而进行。
5.权利要求1所述的方法,其中由高炉煤气去除二氧化碳是通过将二氧化碳由高炉煤气中吸附进碳酸钾溶液中而进行。
6.权利要求1所述的方法,其中由高炉煤气去除二氧化碳是经过将二氧化碳通到物料之上而进行,进一步包括以与该物料接触的方式通过残余氮,并使二氧化碳由该物料通进残余氮。
7.权利要求1所述的方法,进一步包括使由低温精馏设备出来的氢通过一台氢浓缩器,以提高由低温精馏设备出来的氢流束中氢的浓度,然后将其通入直接还原反应器。
8.权利要求7所述的方法,进一步包括将出自氢浓缩器的循环气流通入低温精馏设备。
9.权利要求7所述的方法,其中氢浓缩器是一台薄膜单元。
10.权利要求7所述的方法,其中氢浓缩器是一台变压吸附单元。
全文摘要
本发明的方法通过将高炉炼铁与直接还原炼铁相联合以增加铁的产量,其中低温精馏连接两个系统,并对二者产生输入的物料。
文档编号C21B7/00GK1252454SQ9912336
公开日2000年5月10日 申请日期1999年10月26日 优先权日1998年10月28日
发明者M·M·沙阿, R·F·德恩维查 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1