从硫化物矿石和精矿回收贱金属的制作方法

文档序号:9634850阅读:405来源:国知局
从硫化物矿石和精矿回收贱金属的制作方法
【专利说明】从硫化物矿石和精矿回收贱金属
[0001] 本申请案主张2012年7月23日申请的标题为"从硫化物矿石和精矿回收贱金属 (Recovery of Base Metals from Sulphide Ores and Concentrates)',的第 61/674, 624 号美国专利申请案的优先权,所述专利申请案的全部内容以引用的方式并入本文中。
【背景技术】
[0002] 本发明涉及从硫化物矿石和精矿回收贱金属。
[0003] 贱金属硫化物矿石的传统加工包括例如精矿熔炼的浮选作用和高温冶金技术。
[0004] US4, 283, 017描述一种方黄铜矿和黄铜矿从铜/镍矿化岩石的选择性浮选。所述 工艺的缺点在于矿石选矿工艺,其需要高能耗方能达到极细颗粒。本发明可供应粗颗粒。
[0005] US3, 919, 079描述一种从含硫化物矿石浮选硫化物矿物的工艺。所述工艺的缺点 在于使用以下复杂试剂的浮选工艺:分散剂、收集剂、碱、絮凝剂。由于所述用于浮选的复杂 试剂的分解需要化学氧,因此这些试剂会产生环境影响。本发明不需要复杂的试剂。
[0006] US5, 281,252描述非铁硫化物的转化,其需要吹入硫化铜颗粒,且所述工艺需要综 合控制搅拌水平和固体/液体接触。另外,其需要控制内部气氛以确保用于反应的铜的还 原和电力供应。
[0007] US4, 308, 058描述一种用于氧化熔融低铁金属冰铜以产生粗金属的工艺。然而,所 述工艺需多炉操作和涉及高能耗的高温(> l〇〇〇°C )。
[0008] 然而,这些常规工艺在处理杂质(如氯和氟)含量高的低品级材料和矿石时变得 极为昂贵。高温冶金处理的另一问题是新建厂房、环境问题和高能耗的高资本成本。
[0009] 通常,当处理杂质含量高的低品级材料和矿石时,必须在将SO2送到硫酸工厂前处 理所述工艺所产生的气体(灰尘;C0 2;N0x ;H20)。替代方法包括燃烧精矿。

【发明内容】

[0010] 按照上述问题和未满足的需求,本发明提供一种使呈硫化物形式的贱金属间接和 选择性硫酸盐化的有利且有效的工艺。所述工艺可应用于精矿或低品级硫化物矿石两者; 更着重于后者。低品级硫化物矿石通常达不到精矿中的理想含量;且当低品级硫化物要达 到精矿理想含量时,就会产生巨大损失。杂质为主要问题。为此,已提出本文所述的工艺。 [0011] 更具体来说,本发明揭示一种从硫化物矿石和精矿回收贱金属的回收,其包括将 贱金属矿石和铁盐混合,所述铁盐对贱金属的比例介于50 %与200 %之间,将所述混合物 加热到介于400°C与600°C之间的温度,并保持2到8小时的时段;添加水以形成矿浆,然后 搅拌并过滤所述矿浆。
[0012] 本发明的这些方面的其他优点和新颖特征将部分展示于随后描述中,且部分将在 所属领域的技术人员检查下文后或通过实践本发明学习后变得更明了。
【具体实施方式】
[0013] 以下详细描述并不希望以任何方式限制本发明的范围、适用性或配置。更准确地, 以下描述提供用于实施示范性形式的必要知识。当使用本文所提供的教示时,所属领域的 技术人员将了解在未外推本发明范围下可使用的适宜替代物。
[0014] 本发明工艺涉及在螺旋混合机中混合含贱金属的矿石、精矿或其它硫化物材料和 硫酸铁或氯化铁。所述盐可以水合或无水形式加入。所述混合物的硫化物材料与无水盐可 具有1 : 0.001到1 : 1000的比例。如果使用水合盐,那么所述比例可按比例变化。
[0015] 针对无水形式而言,考虑到化学计量比,相对于贱金属的优选比例介于50%与 200 %之间,优选介于90与120 %之间。一旦硫化物内容物的沉积较低,且通过浮选的精选 无法产生高质量精矿,则其是尤其具吸引力的工艺。如果氟和氯的浓度高于规格极限,那么 其也是有效的。
[0016] 随后将所述最终混合物放入窑、炉或所属领域的技术人员已知的任何其它设备 中,条件是在任何类型的混合装置中于大气压力下可提供足够热以达到优选介于400°c与 600 °C之间,更优选介于400 °C与500 °C之间的温度。在所述温度下,一般贱金属硫化物发生 以下反应:
[0017] 3MS+Fe2 (SO4) 3+4. 502= 3NiS0 4+Fe203+3S02
[0018] (其中M代表贱金属)。
[0019] 贱金属优选为铜、镍和锌,更优选为镍。
[0020] 硫酸铁是用作一实例,在改变反应化学计量比的情况下,也可使用氯化铁。据估 计,滞留时间优选介于2与8小时之间,更优选为5到6小时的时段。
[0021] 所属领域的技术人员可以若干方式生产硫酸铁。
[0022] 或者,还可将氧化物材料添加到所述混合物中,得到以下反应:
[0023] MS+3M0+Fe2 (SO4) 3+202= 4NiS0 4+Fe203
[0024] (其中M代表贱金属)。
[0025] 贱金属优选为铜、镍和锌,更优选为镍。
[0026] 上述反应会捕集SO2,避免气体洗涤。为捕集呈固体形式的氟或氯,可添加硼酸盐 来源(例如,例如硼酸)、非晶硅石或所属领域的技术人员已知的任何其它试剂。
[0027] 使来自所述窑的最终产物进入溶解阶段,以便溶解多数或全部贱金属盐。使其与 水混合,以形成具有10%-33%固体(优选介于20%与30%之间的固体)的矿浆。应使所 述矿浆维持在搅拌下1-5小时的时段,优选介于2与4小时之间。从此刻起,可挑选也为所 属领域的技术人员所知的任何下游选择,以供进一步加工和纯化所述贱金属。
[0028] 因此,本发明工艺的方面涉及在介于400°C与600°C之间的温度下混合盐(例如氯 化铁或硫酸铁)与镍精矿并并保持2到8小时的时段。
[0029] 在本发明的优选实施例中,在介于400°C与500°C之间的温度下混合盐(例如氯化 铁或硫酸铁)与镍精矿并并保持5到6小时的时段,以得到进入溶解阶段的硫酸镍或氯化 镍。根据各种方面,硫酸镍和氯化镍可直接进入溶解阶段。所述工艺可得到极为稳定的残 余物(赤铁矿),并实现盐的快速溶解。
[0030] 据估计,效率介于80%与95%之间。
[0031] 任选地,在本发明工艺之后,可使用常规下游工艺(例如生产MHP和电解),以得到 任何类型的所要产物。
[0032] 用户决定是生产高纯度产物(例如电解镍)或是中间产物(如MHP)。这些选项并 未详尽,而只是下游工艺的实例。由于不再需要从溶液移除杂质(例如Fe和Al)的步骤, 所以此下游工艺可大大简化。
[0033] 本发明工艺的优点很多,且可包括:
[0034] -更好的沉积勘探,包括以就常规浮选工艺而言在经济上不可行的低品级硫化物 的沉积;
[0035] -减少酸消耗;
[0036] -矿浆的沉降性质更好;
[0037] -减少絮凝剂消耗;
[0038] -尚浓度氣和氯在本发明工艺中将不是问题;
[0039] -本工艺对贱金属具有选择性。因此,例如铁和铝的杂质不会被溶解,而这些杂质 在常规工艺下游会产生极为大量且难以倾析的氢氧化物。当这些元素为稳定氧化物(就铁 而言,预期会成为赤铁矿稳定状态)时,由于倾析固体的容易程度将加快,固体的形成量将 较少,从而减少絮凝剂的消耗;
[0040] -所得溶液的酸度低,从而减少对中和的需求。
[0041] -以下显示(针对镍和铜)所提出的反应的热力学数据。
[0042] 3CuS+Fe2(S04)3+4. 502(g) = 3CuS04+Fe203+3S02(g)
[0044] NiS+3Ni0+Fe2(S04)3+202(g) = 4NiS04+Fe203
[0046] CuS+3Cu0+Fe2 (S04)3+202 (g) = 4CuS04+Fe203
[0047]
[0048] 如所见,以上数据显示,所述反应在热力学上是有利的。
[0049] 实例1.按200克矿石对2. 5克无水硫酸铁(化学计量)的比例混合Jaguar矿石 与硫酸铁,Jaguar矿石具有下表中所述的组成。在适当均质化后,使所述混合物经受500°C 的温度,并保持3小时。在所述材料完全冷却后,添加水以形成具有30%固体的矿浆,并搅 拌所述混合物1小时。过滤所述矿浆,并对残余物和PLS的样品进行化学分析。结果显示, 镍萃取率为85 %,铜萃取率为77 %,而钴萃取率为88 %。铁和其它杂质低于1 %,锰例外, 其萃取率为97%。
[0050]
[0051] 实例2.按200克矿石对2· 5克无水硫酸铁(化学计量的120 % )的比例混合 Jaguar矿石与硫酸铁,Jaguar矿石具有下表中所述的组成。在适当均质化后,使所述混合 物经受600°C的温度,并保持2小时。在所述材料完全冷却后,添加水以形成具有30%固体 的矿浆,并搅拌所述混合物1小时。过滤所述矿浆,并对残余物和PLS的样品进行化学分 析。结果表明,镍萃取率为92%,铜萃取率为79%,而钴萃取率为93 %。铁和其它杂质低于 1 %,锰例外,其萃取率为99 %。
[0052]
[0053] 实例3.按200克矿石对2· 5克无水硫酸铁(化学计量的130 % )的比例混合 Jaguar矿石与硫酸铁,Jaguar矿石具有下表中所述的组成。在适当均质化后,使所述混合 物经受600°C的温度,并保持2小时。在所述材料完全冷却后,添加水以形成具有30%固体 的矿浆,并搅拌所述混合物1小时。过滤所述矿浆,并对残余物和PLS的样品进行化学分 析。结果表明,镍萃取率为98%,铜萃取率为82%,而钴萃取率为94%。铁和其它杂质低于 1 %,锰例外,其萃取率为99 %。
【主权项】
1. 一种从硫化物矿石和精矿回收贱金属的回收,其中所述回收包括:混合贱金属矿 石和铁盐,所述铁盐相对贱金属的比例介于50%与200%之间,将所述混合物加热到介于 400°C与600°C之间的温度并保持2到8小时的时段;添加水以形成矿浆;搅拌并过滤所述 矿浆。2. 根据权利要求1所述的从硫化物矿石和精矿回收贱金属的回收,其中所述贱金属优 选为铜、镍和锌。3. 根据权利要求1和2所述的从硫化物矿石和精矿回收贱金属的回收,其中所述贱金 属为镍。4. 根据权利要求1所述的从硫化物矿石和精矿回收贱金属的回收,其中所述铁盐包括 硫化铁、氯化铁或其混合物。5. 根据权利要求1所述的从硫化物矿石和精矿回收贱金属的回收,其中所述铁盐相对 贱金属的比例介于90%与120%之间。6. 根据权利要求1所述的从硫化物矿石和精矿回收贱金属的回收,其中所述混合物经 加热到介于400°C与500°C之间的温度并保持5到6小时的时段。7. 根据权利要求1所述的从硫化物矿石和精矿回收贱金属的回收,其中添加到所述混 合物的所述水形成具有10%到33%固体的矿浆。8. 根据权利要求1和7所述的从硫化物矿石和精矿回收贱金属的回收,其中添加到所 述混合物的所述水形成具有20%到30%固体的矿浆。9. 根据权利要求1所述的从硫化物矿石和精矿回收贱金属的回收,其中所述矿浆在搅 拌下持续1到5小时的时段。10. 根据权利要求1和9所述的从硫化物矿石和精矿回收贱金属的回收,其中所述矿浆 在搅拌下持续2到4小时的时段。
【专利摘要】本发明揭示一种从硫化物矿石和精矿回收贱金属的新颖性回收,其包括混合贱金属矿石和铁盐,加热所述混合物;添加水以形成矿浆,搅拌并过滤所述矿浆。
【IPC分类】C22B1/08, C22B23/00, C22B1/06
【公开号】CN105392907
【申请号】CN201380039461
【发明人】提亚哥·瓦伦丁·伯尼, 安东尼欧·克莱勒帝·裴瑞拉, 菲利普·荷赖里欧·圭马雷思
【申请人】淡水河谷公司
【公开日】2016年3月9日
【申请日】2013年7月22日
【公告号】CA2879877A1, EP2875160A1, US9169534, US20140020510, WO2014015402A1
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1