室温玻璃到玻璃、玻璃到塑料及玻璃到陶瓷/半导体结合的制作方法

文档序号:11928169阅读:259来源:国知局
室温玻璃到玻璃、玻璃到塑料及玻璃到陶瓷/半导体结合的制作方法与工艺

领域

本披露的实施例总体上涉及透明衬底结合领域,并且更具体地涉及用于将第一激光波长可透衬底通过一个中间吸热层在室温下激光结合到一个第二衬底上的一种方法。

背景

玻璃到玻璃衬底以及用于生物玻片和微流体应用以及其他应用的透明与不透明衬底的其他组合的结合典型地要求对这些衬底进行加热以便获得这些材料横跨衬底边界的结合扩散,除非使用了粘合剂。目前结合惯例的不同实例为熔融结合、富钠玻璃到半导体的阳极键合、以及粘合剂结合。

玻璃到玻璃的熔融结合在经抛光的或低粗糙度的玻璃表面上是有效的。为了实现强力的无气泡的结合,典型地表面光洁度应该在几埃RA的量级上。这个过程总体上涉及将这两个玻璃衬底放置为彼此接触接着施加压力和热量。压力的范围可以上从上部玻璃衬底的重物到该玻璃顶部上放置的一个荷载。必须使用特殊材料以防止该重物粘到玻璃上。该本体衬底通常被带到至少该玻璃的第一转变温度(软化温度)。对于所有实际目的而言,这些玻璃表面融合在一起并且变为一体。这个过程对于在清洁室内环境中常见的环境颗粒而言不是非常稳健的。例如,一个50nm直径的颗粒会导致玻璃在该具体区域中不结合并且导致由于牛顿环的存在而变得明显的玻璃气泡。

这个过程可以通过以下方式来辅助:用离子(如钙)来处理这个表面并且用氢氟酸来活化该表面。这样的处理趋向于降低结合温度但是加重了污染问题。污染变得更难,因为该微粒不能使玻璃变形,因而该污染颗粒将凹陷而不挡路并且不将这两个表面分开。

熔接具有两个相竞争的问题,这些问题造成了低产率;玻璃表面必须是绝对干净的以便不在低温下产生空气气泡,并且当使用更高温度时,虽然空气空隙变得较不成问题,但玻璃的表面变得扭曲并且必须重新处理以便再次使得它是光学上透明的。更高温度还可能致使玻璃变得有雾或变黄。

虽然存在少许例外,但总体上不可能用阳极键合工艺来进行玻璃到玻璃的结合。这个工艺通常专用于将玻璃结合到硅上。阳极键合通常是使用具有钠作为其组分之一的玻璃衬底来进行的。温度通常被升高至大约400摄氏度。然后施加一个电势差以驱动钠原子跨越该玻璃-硅组件的边界。这个过程跨越该边界产生了一种钠-氧化物键。这个过程通常留下透明且光滑的玻璃表面。然而,大家认为这个键合过程是在一个通道附近发生的,来自玻璃的表面、在键合的界面层附近的这些钠原子耗尽,留下了富含钠的玻璃。这个表面于是带正电。玻璃表面上的这种电荷可以容易地在该芯片的使用过程中干扰下游工艺。

存在专门被设计用于结合玻璃与玻璃的粘合剂。当粘合剂容易施加时,非常难形成无气泡的接点。而且非常难将粘合剂图案化,这样使得结合线是完整的但没有从被结合的表面之间被挤出并且进入一个相邻通道中。粘合剂会对下游工艺有害。某些粘合剂组合物能杀死该部件被制造成用于容纳的生物。

以上结合工艺均不能得到一个化学上惰性的结合工艺。在每种情况下,结合线对于强浓度的酸或碱而言不是稳健的。它们趋向于以比本体表面高得多的速率进行蚀刻。这种更高的蚀刻速率可能造成小裂口,这些小裂口是难以清洁的或者在微流体情况下对于通道组件中的液体流动是有害的。

由于上述各个工艺典型地要求热量,因此必须使每种材料的热膨胀系数相匹配。如果不做到这一点,当材料返回室温时,已结合的部件将歪曲和/或破裂。如果使用温度与该结合温度不相同,则这个粘合剂接点将在剪切或剥离时失效;粘合剂剪切强度通常很低。

因此希望的是提供一种玻璃到玻璃或其他衬底的结合工艺,该结合工艺对于阳极键合或热扩散结合而言提供了与几小时不同、在几分钟的范围内的结合时间。进一步希望的是提供具有污物耐受性的结合工艺,该工艺可以穿过100nm直径的颗粒进行结合。还希望的是该结合工艺提供宽度可选择的、10μm到100μm的结合线宽度,其中已结合与未结合的区分为1μm。另外,希望的是该结合工艺是惰性的并且不在HF/Sulfuric/KOH(如同关于扩散结合)中进行过度蚀刻、并且不改变玻璃表面上的电荷(如同对于阳极键合)。还希望的是,结合线是几乎透明的并且该结合工艺可以将该结合线连同导体和非导体构造在结合后的结构内的同一平面上。最后,希望的是,结合可以在载有活的培养体如酵母、炭疽或其他生物材料的一个流体装置上完成而不损害它们。

概要

在此披露的实施例提供了一种用于进行室温衬底结合的方法,其中选择了基本上可透过一个激光波长的一个第一衬底。接着选择了用于在一个界面处与该第一衬底相配合的一个第二衬底。在该界面处产生了透射指数变化并且该第一衬底和第二衬底在该界面处相配合。接着基本上集中在该界面处用具有该透过波长的激光照射该第一衬底,并且在该界面处由该激光所供应的能量产生了一个局部高温。通过跨过该界面的扩散作用在紧邻该界面处软化该第一衬底和该第二衬底以便熔化这些衬底。

在多个示例性实施例中,这种透射率变化可以通过在该界面处、在一个衬底的表面上沉积一个阻挡性吸热涂层来实现。在多个替代性实施例中,这种透射率变化可以通过使这些衬底本身的透射率不相同而实现。

一种用于进行室温激光结合的设备的示例性实施例具有安装至一个底座上的一个x轴运动台板、以及安装至该x轴运动台板上的一个y轴运动台板。一个衬底对准夹具被安装在该y轴运动台板上、被适配成用于将至少两个衬底与一个作为工件的相互界面进行对齐和固定。一个台架被安装至该底座上并且支撑着对准光学器件,该对准光学器件用于使一个激光器聚焦在该对准夹具中的工件上。一个控制器提供该x轴运动台板和y轴运动台板的平移,以获得聚焦在该工件上的激光器的运动。

本发明还涉及以下项目:

(1)一种用于进行室温衬底结合的方法,该方法包括:选择基本上可透过一个激光波长的一个第一衬底;选择在一个界面处与该第一衬底相配合的一个第二衬底;在该界面处产生一种透射率变化;使该第一衬底和该第二衬底相配合;用具有该激光波长的激光照射该第一衬底;在该界面处由该激光所供应的能量产生一个局部高温;通过跨过该界面的扩散作用在紧邻该界面处软化该第一衬底和该第二衬底以便熔化这些衬底。

(2)如项目(1)所述的方法,其中在该界面处产生一种透射率变化的该步骤包括在该配合界面处该第一或第二衬底的表面的至少一部分上沉积一个阻挡性吸热涂层,并且在该界面处产生局部高温的该步骤包括由该吸热涂层和高温等离子体产生一种等离子体;并且通过跨过该界面的扩散作用在紧邻该界面处软化该第一衬底和该第二衬底的该步骤包括使该吸热涂层等离子体扩散进入该第一衬底和该第二衬底中。

(3)如项目(2)所述的方法,其中该第二衬底也是基本上可透过该激光波长的,并且使该吸热涂层等离子体扩散的步骤对该方法进行自调节并且终止通过该激光照射进行的加热。

(4)如项目(1)所述的方法,其中照射步骤进一步包括使相配合的第一衬底和第二衬底平移以便邻近于该第一衬底和第二衬底的多个特征来提供一个预定的激光照射路径。

(5)如项目(2)所述的方法,其中所选择的第一衬底和第二衬底是玻璃。

(6)如项目(2)所述的方法,其中该阻挡性吸热涂层是选自金属、半导体或陶瓷材料的组中。

(7)如项目(2)所述的方法,其中所选择的第一衬底是玻璃并且所选择的第二衬底是塑料,并且该阻挡性吸热涂层是金-锡共晶体。

(8)如项目(1)所述的方法,其中所选择的第一衬底是硅,所选择的第二衬底是玻璃,并且该激光是器是一个CO2激光器,并且产生一种透射率变化的该步骤是通过该硅衬底与玻璃衬底之间的透射率差异实现的。

(9)如项目(4)所述的方法,其中这些特征包括多个微流体通道,并且沉积该阻挡性吸热涂层的该步骤包括邻近于这些微流体通道来沉积该阻挡性吸热涂层。

(10)如项目(4)所述的方法,其中该平移步骤进一步包括建立该预定的激光照射路径而留下该阻挡性吸热涂层的多个选定的不被照射部分来充当导电引线。

(11)如项目(9)所述的方法,进一步包括:将该第一衬底进行金属化以用作一个蚀刻停止层;将该微流体通道进行图案化和蚀刻;去除蚀刻掩膜而保留金属层;将该完全金属化的第一衬底与一个包覆性的第二衬底组装在一起;并且通过在该预定的激光照射路径上的平移以实现激光冲击,来对与该带通道的第一衬底组装在一起的该包覆性的第二衬底进行激光结合,留下未被扩散的金属痕迹以形成穿过该界面的多条引线。

(12)如项目(10)所述的方法,其中该包覆性的第二衬底被构造成具有一个入口和出口过孔。

(13)如项目(3)所述的方法,进一步包括:将该阻挡性吸热涂层沉积为具有厚度的层,以使得热扩散长度(Lfi)小于光学穿透深度(a-1);选择为获得大于50%的透射率的一个激光辐射波长;选择与该热扩散长度(Lfi)一致的一个激光辐射脉冲宽度,选择一个激光辐射功率以获得该阻挡性吸热涂层汽化点;并且控制台板平移速率以确保在激光辐射脉冲速率下存在小于50%的脉冲与脉冲重叠率。

(14)一种用于进行室温激光结合的设备,该设备包括:安装至一个底座上的一个x轴运动台板;安装至该x轴运动台板上的一个y轴运动台板;安装在该y轴运动台板上的一个衬底对准夹具,所述对准夹具被适配成用于将至少两个衬底与一个作为工件的相互界面进行对齐和固定;一个台架,该台架被安装至该底座上并且支撑着对准光学器件,该对准光学器件用于使激光聚焦在该对准夹具中的工件上;以及一个控制器,该控制器用于平移该x轴运动台板和y轴运动台板,以实现聚焦的激光在该工件上的运动。

(15)如项目(14)所述的设备,其中该衬底对准夹具包括:用于将该对准夹具安装至该y轴运动台板上的一个安装结构;一个竖直平移的接合滑块,该接合滑块被从该安装结构延伸的多个平移杆支撑;一个膨胀装置,该膨胀装置被定位成紧邻该接合滑块以及该安装结构以对该接合滑块进行竖直调节;用于支撑该工件的一个工件保持框架;多个立管,这些立管从该安装结构向上延伸以用于接收有待定位在该保持框架上方的一个光学平板;安装有多个间隔件的一个紧固板,用于将该光学平板紧固至这些立管上;其中,该膨胀装置的缩回使得该接合滑块降低,从而允许该保持框架在该接合滑块上插入就位,并且该膨胀装置的充气将该接合滑块和保持框架向上推,从而将该工件挤压在该光学平板上。

(16)如项目(15)所述的设备,其中该保持框架包括一个基部、一个夹紧结构以及一个衬底载体。

(17)如项目(16)所述的设备,其中该夹紧结构具有一个包壳,该包壳携带了一个横向夹子和一个纵向夹子,并且该衬底载体具有一个凹凸部,该凹凸部的大小被确定以便紧密接纳该工件的这些衬底,从而在一个顺应性表面上支撑下部的衬底。

(18)如项目(17)所述的设备,其中该横向夹子具有邻近于该凹凸部、延伸穿过该衬底载体中的第一和第二带槽开孔的第一和第二竖直臂,该横向夹子被弹簧加载以通过压下一个按钮而允许这些臂向外移位从而将这些衬底插入该凹凸部中,在释放该按钮时所述这些臂接合了这些衬底的侧面并且将这些衬底推靠在该凹凸部的与这些带槽开孔相反的壁上。

(19)如项目(17)所述的设备,其中该纵向夹子具有邻近于该凹凸部、延伸穿过该衬底载体中的第三带槽开孔的一个第三臂,所述纵向夹子被弹簧加载以通过压下一个第二按钮而允许该第三臂向外移位从而将这些衬底插入该凹凸部中,在释放该第二按钮时该第三臂接合了这些衬底的末端并且将这些衬底推靠在该凹凸部的与该第三带槽开孔相反的壁上,由此将这些衬底抵靠该凹凸部的两个垂直表面进行牢固地定位。

(20)如项目(14)所述的设备,其中每个运动台板具有一个驱动马达,该驱动马达带有相关联的螺杆驱动器。

(21)如项目(14)所述的设备,进一步包括一个z轴运动台板,用于光学系统和测量系统相对于该对准夹具的竖直定位。

(22)如项目(15)所述的设备,其中该光学平板是可透过该激光的。

(23)如项目(22)所述的设备,其中该光学平板是一种熔融硅石。

(24)如项目(15)所述的设备,其中该膨胀装置是气动的。

已讨论的这些特征、功能和优点可以在本披露的不同实施例中独立地实现、或者可以组合在另外的其他实施例中,这些其他实施例的进一步细节通过参照以下说明和附图可以看到。

附图简要说明

图1是一个实施例的示意性绘图展示;

图2是用于进行室温衬底结合的方法的流程图;

图3A是用于保持相配合的衬底并且提供激光路径引导的一个夹持和平移系统的绘图视图;

图3B是该衬底对准夹具的详图;

图3C是图3B的对准夹具的分解视图;

图3D是该衬底保持框架的详图;

图3E是该衬底保持框架的分解视图;

图4是用于进行室温衬底结合的方法控制步骤的流程图;并且

图5是用于一体进行导线处理和衬底结合的示例性实施例的流程图。

详细说明

在此披露的实施例提供了用于结合多个类似的衬底例如玻璃与玻璃以及不相似的衬底例如玻璃与玻璃(具有不同的材料特性,例如热膨胀系数(CTE))、玻璃与塑料、玻璃与硅以及玻璃与陶瓷的结合的方法和设备。参见图1,衬底10、12的结合是使用激光14来完成的,该激光具有一个波长而使得这些衬底中的至少一个(用于所示实例的衬底10)是可透过该波长的。这些层之间的一个界面15提供了透射指数或者光学透射率的变化,这个变化导致了在该界面处的激光能量吸收以及局部加热从而产生结合。在一个第一实施例中,在这些衬底中的至少一个(用于所示实例的衬底12)的配合表面18上沉积了一个吸热层16,该吸热层对于该激光波长是不透明的或阻挡性的并且具有扩散到这些衬底之中的亲和性。在用于本文的玻璃与玻璃以及其他衬底的结合的多个示例性实施例中该吸热层可以是金属、半导体或陶瓷材料。然而,在多个替代性实施例中,可以采用具有适当的波长吸收和扩散亲和性特征的其他材料。该吸热层的厚度可以薄至并且如所希望的厚以便补偿表面粗糙的或者控制将随后更详细描述的该工艺的定时和温度。

界面处的所希望的透射率变化也可以通过使用以下衬底材料来实现,这些衬底材料具有一个不透明的衬底(对该激光波长具有低透射率)或者一个具有与初始衬底不匹配的透视指数的液体膜。

如图2所示,参照图1中关于玻璃与玻璃的结合的第一实例所披露的这些要素来完成该结合工艺,其中任何类型的、基本上可透过所使用的激光14的波长的一个玻璃衬底10被选择作为第一衬底(202)。以第一实施例为例,使用施加至第一衬底10或有待结合的第二衬底12上的一个吸热层16而在界面15处产生了透射率变化(204)。该吸热层可以是连续的或是分段式条带,这些分段式条带在这些衬底中包围了多个特征,例如微流体通道。然后将这两个衬底布置成彼此接触,其中该吸热层被布置成使得它是在这两个衬底之间的界面中(206)。这些表面可以是或者可以不是被极好抛光的。该吸热层的厚度可以加厚以便补偿表面粗糙度。然后将组装后的这些衬底夹紧在一个夹具中(208),将随后对该夹具进行更详细的描述并且该夹具是所使用的激光能量的波长可透过的。然后使该激光大致聚焦在该夹具中的这些组装好的衬底的界面上(210)。然后向被结合的这些衬底施加该激光能量(212)。

该激光能量穿透该第一衬底12并且撞击在该吸热层上(214)。该吸热层将继续吸收该能量,直到形成等离子体并且该吸热层的温度升高到一个扩散温度(216)。然而,在该吸热层扩散之前,紧邻该吸热层的表面的这些玻璃表面软化(218),直到该吸热层扩散到玻璃中(220)。在扩散到玻璃中时,来自该吸热层的材料变成是该激光能量可透过的(222)。一旦该吸热层扩散,该等离子体崩解并且已软化的玻璃熔融到一起而形成一个永久结合接点(224)。重要的是要注意,该吸热层应在高于玻璃的第一转变温度的温度下扩散,以便确保玻璃变软并且结合到相邻玻璃上。这个途径获得了最稳健、对微粒最不敏感的结合接点。

在这种玻璃与玻璃结合的第一实例中,整个过程的发生使得,本体材料保持在室温下并且仅该吸热层以及这些衬底的紧邻结合线本身的材料被升高到一个温度,在该温度下该吸热层通过激光而扩散到玻璃之中。单一结合线的宽度可以从大致0.001μm变化到100μm或更大,并且结合线进入该结构的每个部件之中的深度标称地为500nm。然而,它可以从几分之一微米变化到几微米。

所披露的方法利用了金属、陶瓷和半导体在升高的温度下扩散进入玻璃中的亲和性,从而使得结合线在可见光谱内并且对于该激光辐射波长是基本上透明的。因此,该方法是自调节的。当该吸热层已完全扩散到玻璃中时,激光能量穿透玻璃而没有进一步的加热,并且该反应停止。因此,玻璃绝不会被激光融化或过度加热。

激光将穿透的这一个或多个衬底的材料透明性在处于该激光能量波长的波长下应该为至少70%。这允许足够的功率穿透该玻璃到达该吸热层的深度。如果激光辐射被吸收,玻璃可能开裂并且吸热层可能不扩散,从而导致不完全的结合或者根本不产生结合。虽然对于激光将穿透的这个层而言激光透过性是所希望的,但对于这个堆叠中的第二衬底而言可以不必的是被有效地结合到该第一衬底上。

在图3A至图3D中示出了在激光结合加工过程中用于支撑这些相配合的衬底的一个示例性夹具。一个定位系统30具有安装至一个底座33上的一个x轴运动台板32、以及安装至该x轴运动台板上的一个y轴运动台板34。对于所示实施例,一个衬底对准夹具36被安装在该y轴运动台板上。然而,在多个替代性实施例中,这些运动台板可以在竖直堆叠中被颠倒,并且该对准夹具可以安装在x轴台板上。每个运动台板都具有一个驱动马达38以及相关联的螺杆驱动器40或类似的平移机构。为了操作员的安全性,多个覆盖件42遮盖了这些运动台板的操作元件。一个台架44对用于激光14的对准光学器件46、最终聚焦光学器件48、相机50以及为了监测和控制该结合操作而需要的其他仪器系统提供支撑。对于所示实施例,一个功率计52被安装至x轴运动台板上以便定位在该激光光学系统的下方,用于在该对准夹具在该激光光学器件下方移动以进行衬底结合之前测量和/或校准激光功率。在所示实施例中,提供了一个z轴运动台板54,用于这些光学系统和测量系统相对于该对准夹具的竖直定位。一个计算机控制器55是可编程的,用于平移该x轴、y轴和z轴运动台板,以实现激光在工件上的平移。可以采用单一激光,以通过采用多个分束器并且将光学系统聚焦到多个定位系统上来照射多个单独定位系统中的多个衬底工件。还有可能用带有X-Y扫描器和Z-自动聚焦器的f-theta透镜本身或者与一个大行程X-Y定位系统一起来替换该固定的透镜。

图3B和图3C中示出了对准夹具36的细节。提供了一个安装结构56以用于将该对准夹具安装至该y轴台板上。对于所示实施例,该安装结构是由附接板58、间隔件60和接合支撑板62制作而成。一个竖直平移的接合滑块64被接收在多个衬套67中的多个平移杆66所支撑。邻近于该接合滑块64以及该接合支撑板62定位的一个气动膨胀装置68对该接合滑块提供竖直调节,如随后将描述的。一个工件保持框架70支撑了由这些相配合的衬底10、12组成的一个工件71,如将参照图3C详细描述的。多个立管72从该接合支撑板62向上延伸以用于接收有待定位在该保持框架上方的一个光学平板74。安装有多个间隔件78的一个紧固板76将该光学平板紧固至这些立管上。该光学平板是激光可透过的并且可以是熔融硅石或类似材料。

该气动膨胀装置68的放气使该接合滑块64降低,从而允许该保持框架70在该接合滑块上插入就位。一个接收框架79将该保持框架进行定位。该气动膨胀装置的充气将该接合滑块和该保持框架向上推,从而将衬底10压靠在该光学平板74上。

如图3D和图3E所示的保持框架70包括一个基部80、一个夹紧结构82以及一个衬底载体84。该夹紧结构具有一个包壳,该包壳携带了一个横向夹子88和一个纵向夹子90。该衬底载体84具有一个凹凸部92,该凹凸部的大小被确定以便紧密接纳这些衬底10、12,从而在与该凹凸部92为一体的或插入其中的一个顺应性表面94上支撑该下部衬底。该顺应性表面可以采用硅橡胶或类似材料以便在该气动膨胀装置充气之后将这些衬底弹性地夹紧在该光学平板上。对于所示实施例,该横向夹子88具有两个竖直臂96,这两个竖直臂延伸穿过该衬底载体中的邻近于该凹凸部92的多个带槽开孔98。该横向夹子被弹簧加载以便通过压下按钮100而允许这些臂96向外移位,从而将这些衬底插入该凹凸部中。在释放了按钮100时,这些臂接合这些衬底的侧面并且将这些衬底推靠在该凹凸部的与这些带槽开孔相反的壁上。类似地,该纵向夹子90具有一个单一臂102,这个臂延伸穿过该衬底载体中的邻近于凹凸部92的一个带槽开孔104。该纵向夹子被弹簧加载以便通过压下按钮106而允许臂102向外移位,从而将这些衬底插入该凹凸部中。在释放了按钮106时,该臂接合这些衬底的末端并且将这些衬底推靠在该凹凸部的与这个带槽开孔相反的壁上。这些衬底抵靠该凹凸部的两个垂直表面被牢固地定位。

安装在x轴运动台板32和y轴运动台板34上的该对准夹具36允许该衬底工件71在从该最终光学器件发出的激光束下方平移,以便暴露出该吸热层。可以将一个追踪路径编程到用于多个运动台板附接至该保持工具上的这个控制器55中,以允许撞击在这些相配合的衬底上的激光束遵循这些衬底中的特征,例如微流体通道,如图2中的步骤213所示。虽然对于所描述的实施例采用了该衬底保持夹具的平移,但多个替代性实施例可以采用一个静止的保持夹具,其中激光或激光束具有穿过光学器件的平移运动。

在该结合夹具中要求一个激光光阱,这样使得激光能量不会烧毁该夹具或者反映并损坏该部件的某些其他方面。对于所披露的实施例,该硅橡胶顺应性表面94吸收激光并且不会烧毁。替代地可以采用聚四氟乙烯(PTFE)层例如或者可以将在玻璃芯片下在物理上限定的光阱,例如由纽约州纽约市206路435的索雷博公司(Thorlabs,435Route 206North Newton,NJ 07860)提供的那些引入该夹具中。

以下提供了该方法的另外实施例。

实例1具有不同热膨胀系数(TCE)的衬底:

传统结合工艺典型地在高温下进行,其中非常不同的TCE下结合后的组件冷却时产生了严重的热变形。然而,对于在此披露的激光结合工艺,有可能在该温度下结合多种TCE不相似的材料。由于被结合的材料的整体温度可以设定为使用温度,TCE虽然仍不相同,但不会使衬底材料产生应力或者使其以其他方式扭曲,因为没有看到温度变化。

例如,当熔接两个直径为150mm而在100℃温度下的TCE相差7ppm/℃的衬底时。从顶部衬底到底部衬底的长度的差分变化产生了0.07%的工程应变,转化为底部衬底中54.6Mpa(7.92kpsi)的拉伸应力。例如,大多数玻璃在没有被稳定时将落在1kpsi至2kpsi的张力内。

当将7ppm/℃玻璃阳离子键合到硅上时,通常该玻璃的结合温度为400℃。这样的温度将导致超过200Mpa的拉伸应力。这将使该玻璃碎裂。然而,采用所描述的方法的一个经室温激光结合的衬底堆叠将绝不暴露于这样大的温度变化中并且因此在该结合方法的过程将不碎裂。结合之后,这些可能处于晶片形式的衬底将被切成更小的部件。当发生长度减小时,由于该部件与该晶片的长度相比而言的长度减小,应力被减小,即见面对100℃的、为10mm长的一个部件将经历5.5Mpa的应力(0.8kpi)。玻璃将容易忍受这个应力。

实例2类似激光辐射波长下的不同透光率

将玻璃包装物结合至硅芯片上是一种常见的做法。当进行这个过程时,通常必须使各种材料的CTE匹配并且使用具有的钠原子可以在该高温结合过程中迁移的一种玻璃材料。虽然存在展现出此类特性的市售玻璃材料,但它们在引入过孔这样的步骤中难以加工。光敏性玻璃陶瓷材料(例如Forturan)是容易构造的,然而它具有10ppm/℃的CTE并且不包含钠离子。这两种属性使得它几乎不可能阳离子键合至硅上。虽然它可以被熔接,但它要求被加热到500℃。这样的高温变化将致使该玻璃-硅组件在冷却过程中碎裂。

虽然扩散或将Forturan阳离子键合至硅上是不实际的,但在此描述的激光结合方法可以用于结构化的Fortruan到硅或许多其他的陶瓷或金属。由于该室温激光结合方法要求在界面处的透射率变化以产生一个吸热层,因此按照与两个透明衬底非常相同的方式采用了透明玻璃板与一个第二衬底或对于该激光波长不透明的阻挡性材料板。然而,当将一个完全阻挡性板结合到一个透明板上时,该方法将不是自调节的并且要求该方法必须受到非常仔细的控制,以使得该阻挡板不暴露于太多能量中而使得表面变得融化。这是通过控制激光能量密度以使得在界面处第二衬底的表面被加热到远超过玻璃的第一转变温度而控制的,这样使得玻璃在被该第二衬底所吸收的激光辐射的作用下软化。这将确保在冷却过程中,将在界面处形成二氧化硅键并且将这些部件彼此粘附。这种方法对于玻璃到硅、玻璃到陶瓷、玻璃到金属和玻璃到塑料的结合是起作用的。

在图4中示出了该激光结合方法在应用于实例2所示的材料上时的一个过程控制实例,其中初始步骤是选择用于该阻挡性吸热层的材料(402)。然后将该阻挡性吸热材料的一个层沉积为具有一个厚度的层,以使得热扩散长度(Lfi)小于光学穿透深度(a-1)(404)。这个层可以沉积在第一或第二衬底上的接界表面上。然后选择为获得大于70%的透射率的一个激光辐射波长(406)。选择与该热扩散长度(Lfi)一致的一个激光辐射脉冲宽度(408)。选择一个激光辐射功率以实现该阻挡层汽化点(410)。控制该台板平移速率以确保在该激光辐射脉冲速率下存在小于50%的脉冲与脉冲重叠率(412)。然后平移该保持工具以在这些相配合的衬底上实现所希望的激光路径从而完成结合(414)。

实例3玻璃到塑料的结合:

玻璃到塑料的结合非常类似于以上方法,但具有一个限制因素;该阻挡层应该是一种相对低温扩散材料,而使得它不使被附接至玻璃上的聚合物融化。具有低扩散温度的一种特别好的材料是AuSn(金-锡共晶体)。一个金-锡阻挡性吸热层具有280℃的扩散温度。另一个有用的属性是,激光脉冲宽度接近该阻挡性吸热层的热时间常数,即在毫微微秒方案中。脉冲长度越短,在将该高融化温度的玻璃材料结合到较低融化温度的塑料材料上之前烧毁或融化该聚合物的可能性就越小。还有可能在没有中间层的情况下使用红外激光辐射并且在这个波长下使用该聚合物的阻挡性质来进行结合。

实例4硅到玻璃的结合:

在之前的方法说明中,激光透视波长被选择为使得,允许激光传输通过该可透过可见光的衬底而到达该阻挡可见光的衬底。然而,这并不总是可能的、所希望的也不是所要求的。例如,硅在lμm与l0μm的波长之间具有55%的透光率,而Bk-7玻璃在3μm波长以上具有接近零的透射率。这使得能够使用CO2激光器来穿透硅但不穿透玻璃。这样的方法可以用于将硅的背面附接到玻璃正面上,同时使激光对准这些衬底之间的界面处的结合位置。激光穿透硅、撞击玻璃/金属阻挡层并且进行结合。

在某些情况下,例如在提供带有预载有微流体通道的衬底的结合时,必须的是或者所希望的是对一个或这两个衬底中的衬底表面或通道分别用10nm至100nm厚的涂层或生物活性流体进行预涂覆或预填充。对于将衬底加热到室温以上的当前结合方法,这些膜或流体将被渗碳或超级加热由此毁坏这些膜、将流体煮沸并且杀死活的培养体。在此描述的激光结合方法没有升高本体衬底的温度并且因此不会损伤该表面涂层、煮沸通道中的流体或者杀死活的培养体。这个在激光结合中受热影响的区域为大致lum。还已经显示它穿透100nm厚的特氟龙(Teflon)、Paraline和其他聚合物层进行结合。

另外,在此描述的室温激光结合方法的一种独特属性是能够在被结合的同一界面层中形成结构的导电引线。这些引线的结构是在结合时刻由这些相配合的衬底上的激光追踪形成的。因此,没有必要将该结合层进行图案化来产生一个接触引线结构。这还通过避免目前需要的沉积和蚀刻过程而给出了一种非常绿色的工艺。

例如,如果一个电解通道阵列需要到各个通道的多个连接件以驱动这个过程,则这些连接件可以在该结合过程的同时形成。如图5所示,整个第一衬底都被金属化(502)并且被用作一个蚀刻停止层。然后将这个通道进行图案化和蚀刻(504)。然后去除蚀刻掩膜而保留该金属层(506)。该金属层构成了该阻挡性吸热层。然后将这个完全金属化的第一衬底与一个包覆性第二衬底组装在一起,该第二衬底可以具有或者可以不具有入口或出口过孔的结构(508)。然后通过在该预定路径上的平移以实现激光冲击,来对与该带通道的第一衬底组装在一起的该包覆性第二衬底进行激光结合,留下未被扩散的金属痕迹以形成直直穿过该界面层的多条引线(510)。

这些引线不会泄露,即使它们穿过了结合界面,因为该结合方法使得该界面在冷却时处于压缩状态下。这使得该通道衬底向下夹紧在衬底表面上从而产生了紧密的密封。当该引线需要较宽时,可以将该引线分为多个区段,以使得对一个窄条施加压缩力而该引线本身在导电方面保持宽的。还有可能将这些痕迹结合至相邻玻璃上而完全不使该金属扩散到玻璃之中。这些未扩散的金属痕迹可以用更短的脉冲长度进行激光结合并且因此将使金属层结合而不是完全扩散到玻璃之中。留下了结合的但仍旧导电的玻璃。

最后这种方法可以同时作用于多个衬底界面上。由于该激光方法是自调节的并且衬底和该阻挡性吸热层在该吸热层扩散时变为是该激光辐射可透过的,因此激光将穿透第一界面而到达下一个界面并且同时将其结合。虽然不必将界面个数限制为一个具体数字,但实验数据表明,可以同时结合多达七个界面的层,而在每个界面中留下多个接触引线。

对于所描述的这些实施例,当将一个衬底结合至另一个衬底上时,最好是以有待结合的各个衬底的接界表面上至少100nm Ra的表面光洁度开始。有可能所有衬底都为lμm Ra粗糙度;然而,这种结合的密封性质将是成问题的,除非该阻挡/金属层上实质性更厚的。该衬底必须进行清洁并且不含污物,正如阳极键合或熔接的情况。然而,由于这种结合方法不要求在整个表面上的100%结合而是可以进行接缝密封,因此将一种良好结合的统计性在更大产率的方向是而不是典型结合工艺的方向上进行加权。

当结合两个透明衬底时,必须在其中一个衬底的表面上施加一个金属/阻挡层。对于典型的Ra表面光洁度,100nm的Cr作为阻挡性吸热层上足够的。

这些衬底在与朝向相邻透明衬底沉积的该阻挡层组装之前应该干净到所建议的小于100nm颗粒/10mm的污染。在薄衬底的情况下,必须向各个衬底的外表面施加压力,由此将这些衬底夹紧在一起以使得它们之间不存在空隙。夹紧可以使用如针对这些示例性支撑夹具所描述的物理的外部接触力、或者通过施加真空来从这些衬底表面之间抽出空气而发生。

当使用物理夹紧时,将一个顺应性层例如硅酮橡胶布置在一个衬底的外表面上并且将一个相对硬的(熔融硅石)透明表面施加在相对的外衬底上。多个示例性实施例采用138kPa(20psi)作为足量的压力,以确保这些内部相邻表面之间的紧密接触。

当施加真空以夹紧更厚的衬底时,可以使用本领域已知的典型晶片对准器的方法。然而,不使用全面曝光灯(blanket expose light)来将一种光敏性化合物曝光,而是使用激光来使该阻挡层扩散。

在这些衬底表面紧密接触的情况下,组装后的工件可以被加载到该类型的一个运动平台中,由此要么该台板将衬底定位在激光束下方,要么一个使用f-theta透镜的扫描器将激光束定位在衬底上方;任一种方法均可以分别用于精确性或速度的目的。

需要控制软件来定位该台板、扫描器或台板/扫描器组件。对于多个示例性实施例,三维计算机辅助设计软件产生该结合路径,该结合路径接着被计算机辅助制造软件转化为G代码并且接着再次将其后处理成为运动板位置指令。

当结合薄衬底时,必须小心不过度写入之前已结合的路径。这是因为一旦该阻挡层被吸收到玻璃中,激光穿透衬底的传输发生改变。典型地,这种传输被减小并且因此将致使衬底吸收足够的激光能量而导致温度局部升高(在激光辐射束下)并且因此由于该材料的CTE而在较薄衬底中产生不适当的应力并且潜在地使该组件碎裂。由于不穿过开孔的激光辐射束典型地具有高斯分布,因此最好是在第一次通过的尾射束与主射束之间插入第二次通过的尾射束。这通常将确保衬底不会碎裂。

现已对本披露的不同实施例进行了详细说明,本领域技术人员将认识到在此披露的具体实施例的改变和替代。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1