陶瓷结构体、其制法及半导体制造装置用部件的制作方法

文档序号:11389252阅读:257来源:国知局
陶瓷结构体、其制法及半导体制造装置用部件的制造方法

本发明涉及陶瓷结构体、其制法及半导体制造装置用部件。



背景技术:

在对硅基板、玻璃基板、各种单晶基板等板状的材料进行精密加工、制造半导体等元件、器件时,多数使用附带有加热功能的半导体制造装置用部件。作为该半导体制造装置用部件,专利文献1中公开了在aln陶瓷基体中内置有加热电极的半导体制造装置用部件。该专利文献1中公开:作为加热电极,使用包含碳化钨(wc)的导电糊的烧结物,如果加热电极中包含约5重量%~约30重量%的陶瓷材料,则加热电极与aln陶瓷基体的热膨胀系数相接近,故优选。

现有技术文献

专利文献

专利文献1:日本特许第5032444号公报



技术实现要素:

但是,如果使用含有aln陶瓷的wc作为加热电极的材料,则由于加热电极与aln陶瓷基体的热膨胀系数相接近,所以,虽然能够使得在烧结时不易产生裂纹、开裂,但是存在以下问题。即,使用含有aln陶瓷的wc作为加热电极的材料的情况下,由于aln为绝缘体,所以与不含aln陶瓷的wc相比,加热电极的电阻率提高,即使施加相同的电压,发热量也会减小。

本发明是用于解决以上的课题,其主要目的是提供一种在aln陶瓷基体中内置有以wc为主成分的加热电极的陶瓷结构体,其能够防止产生裂纹、开裂,并且,发热量较大。

本发明的陶瓷结构体是在aln陶瓷基体的表面或内部包含加热电极的陶瓷结构体,其中,所述加热电极是使主成分wc中含有与aln相比电阻率低且热膨胀系数高的金属填料而得到的,所述aln陶瓷基体与所述加热电极在40~1000℃下的热膨胀系数的差值的绝对值为0.35ppm/℃以下。

本发明的半导体制造装置用部件具有上述的陶瓷结构体。

本发明的陶瓷结构体的制法如下:在氮化铝的烧结体、预烧体或成型体亦即第一基体的一面配置使wc含有金属填料而得到的加热电极或加热电极前驱体,在其上层叠氮化铝的烧结体、预烧体或成型体亦即第二基体,制成层叠体,对该层叠体进行热压煅烧,由此,得到陶瓷结构体。

本发明的陶瓷结构体中,具备使主成分wc中含有与aln相比电阻率低且热膨胀系数高的金属填料而得到的加热电极,因此,电阻率为接近于wc的值。因此,能够使对加热电极施加规定的电压时的发热量与由wc形成的加热电极为相同的程度。另外,aln陶瓷基体与加热电极在40~1000℃下的热膨胀系数的差值的绝对值低至0.35ppm/℃以下。因此,能够抑制在烧结时产生裂纹、开裂。

本发明的半导体制造装置用部件具备上述的陶瓷结构体,因此,能够得到与通过该陶瓷结构体得到的效果同样的效果。

本发明的陶瓷结构体的制法适合于制造上述的陶瓷结构体。

附图说明

图1是陶瓷结构体10的立体图。

图2是图1的a-a截面图。

图3是陶瓷结构体10的制造工序图。

图4是实验例3的截面sem照片。

图5是实验例6的截面sem照片。

符号说明

10-陶瓷结构体、12-陶瓷基体、14-加热电极、21-第一基体、22-第二基体、24-加热电极前驱体。

具体实施方式

本发明的陶瓷结构体在aln陶瓷基体的表面或内部具备加热电极。

aln陶瓷基体是以aln为主成分的烧结体,热膨胀系数在40~1000℃下为5.5~6.0ppm/℃,优选为5.6~5.8ppm/℃。aln陶瓷基体除包含aln以外,还可以包含源自于烧结助剂的成分。作为aln的烧结助剂,例如可以举出稀土金属氧化物。作为稀土金属氧化物,优选y2o3、yb2o3。应予说明,所谓“主成分”,是指占50体积%以上(优选为70体积%以上,更优选为85体积%以上)的成分或全部成分中体积比例最高的成分(以下相同)。

加热电极是包含金属填料的wc电极。该加热电极的主成分wc中含有金属填料,但是,通常金属填料的电阻率比aln低。因此,该加热电极的电阻率为接近于wc的值(优选为wc的0.5~2倍、更优选为wc的0.8~1.5倍),施加规定的电压时的发热量与由wc形成的加热电极为相同的程度。wc的热膨胀系数在40~1000℃下为5.2~5.4ppm/℃。金属填料的含量设定为:陶瓷基体与包含金属填料的wc电极在40~1000℃下的热膨胀系数的差值的绝对值|δcte|优选为0.35ppm/℃以下,更优选为0.25ppm/℃以下。作为金属填料,优选热膨胀系数在40~1000℃下为7.0ppm/℃以上的高熔点的金属填料。这是因为这样容易将|δcte|调整为0.35ppm/℃以下。作为金属填料,并没有特别限定,除选自由ru、ta、nb、rh及pt构成的组中的金属、其合金等,可以举出将这些金属、合金中种类不同的2个以上混合而得到的混合物等。其中,作为金属,优选ru,作为合金,优选ru合金。这是因为ru、ru合金更容易将|δcte|调整为0.35ppm/℃以下,并且,电阻率也较低,容易更接近于wc本身的电阻率。作为ru合金,可以举出:rual、ruti、ruzr等,但是,优选rual。以ru作为金属填料的wc粉末在煅烧时wc和ru容易分离为层状,加热电极内的热膨胀系数、电阻率有时稍微不均匀,相对于此,包含rual的wc粉末在煅烧时不会像这样分离,作为填料的rual能够在wc电极内分散存在,因此,加热电极内的热膨胀系数、电阻率的均匀性提高。加热电极在室温下的电阻率优选为3.0×10-5ωcm以下,更优选为2.5×10-5ωcm以下。上述的金属填料的具体例还适合于将加热电极在室温下的电阻率设定为上述的数值范围。

将本发明的陶瓷结构体的一个实施方式示于图1及图2。图1是陶瓷结构体10的立体图,图2是a-a截面图。陶瓷结构体10在圆盘状的aln陶瓷基体12的内部内置有加热电极14。加热电极14可以形成为片状,也可以以在整个面上扩展的方式按一笔画的要领形成图案。进而,可以形成多个被形成为片状或图案状的电极。将该陶瓷结构体10的制法之一例示于图3。该制法中,首先,准备aln陶瓷烧结体作为第一基体21(参照图3(a))。接下来,在第一基体21的上表面按规定的电极图案印刷电极糊而形成加热电极前驱体24(参照图3(b))。电极糊是在wc粉末和金属填料的混合粉末中加入有机溶剂和粘结剂,进行混合、混炼而得到的。接下来,以覆盖加热电极前驱体24的方式,层叠作为第二基体22的aln陶瓷成型体22,制成层叠体20(参照图3(c))。然后,对该层叠体20进行热压煅烧,使aln陶瓷成型体22、加热电极前驱体24烧结,由此,第一基体21、第二基体22以及加热电极14成为一体,完成陶瓷结构体10(参照图3(d))。热压煅烧的煅烧温度(最高温度)优选设定为1700~2000℃,更优选设定为1750~1900℃。压制压力优选设定为50~300kgf/cm2。煅烧时的气氛优选为对原料的煅烧不造成影响的气氛,例如优选为氮气氛、氩气氛等不活泼性气氛、真空气氛。成型时的压力没有特别限制,只要适当设定为能够保持形状的压力即可。

该制法中,可以使第一基体21为aln陶瓷预烧体或成型体而代替aln陶瓷烧结体。另外,可以使第二基体22为aln陶瓷预烧体或aln陶瓷烧结体而代替aln陶瓷成型体。使第一及第二基体21、22为aln预烧体的情况下,与混合粉末的成型体的情形相比,能够提高保形性,能够使其容易操作(把持)。因此,容易在预烧体表面印刷涂布电极前驱体,或者配置电极本身,能够以一次热压煅烧或者较少的煅烧次数制作陶瓷结构体、陶瓷层叠体。另外,可以使用通过冲压等切断加工而成为规定形状的加热电极14本身来代替加热电极前驱体24。进而,通过使用陶瓷结构体10、层叠体20代替第一基体21,能够制作包含多层电极的陶瓷结构体。应予说明,关于陶瓷结构体10,例示了在陶瓷基体12的内部内置有加热电极14的陶瓷结构体10,但是,还可以在陶瓷基体12的表面配置加热电极14。另外,陶瓷结构体10除了内置加热电极14以外,还可以内置静电卡盘电极、高频电极等。

本发明的半导体制造装置用部件具备上述的陶瓷结构体。作为半导体制造装置用部件,并没有特别限定,但是,例如可以举出:陶瓷加热器、静电卡盘加热器等。

实施例

(1)陶瓷结构体的制法

(1-1)第一基体的准备

(1-1-1)原料粉末的调制

aln原料使用市场销售的高纯度微粒粉末(含氧量0.9%、除氧以外的杂质成分含量0.1%以下、平均粒径1.1μm)。y2o3原料使用市场销售的高纯度微粒粉末(纯度99.9%以上、平均粒径1μm)。按以质量比计为95:5~100:0的范围称量aln原料和y2o3原料,放入尼龙制的锅中,与此同时插入的含铁芯尼龙球石,以醇为溶剂,进行4小时的湿式混合。混合后,取出浆料,于氮气流110℃进行干燥。然后,过30目的筛子,制成调合粉末。

(1-1-2)圆盘状成型体的制作

将上述(1-1-1)中调合而成的粉末以200kgf/cm2的压力进行单轴加压成型,制作直径50mm、厚度10mm左右的圆盘状成型体。将该成型体用作实验例1~22的第二基体。

(1-1-3)圆盘状成型体的煅烧

将上述(1-1-2)中制作的圆盘状成型体收纳于热压用的石墨模具中,然后,安置在热压炉中,使压制压力为200kgf/cm2,于煅烧温度(最高温度)1750~1900℃保持4小时,制作烧结体。使升温速度及降温速度均为300℃/hr,升温过程中抽真空直至达到1000℃,然后,导入氮气。将导入后的气体压力维持在1.5atm左右。降温时,于1400℃停止温度控制,进行炉冷。将得到的烧结体加工成直径50mm、厚度5mm左右,用作实验例1~22的第一基体。

(1-1-4)圆盘状预烧体的制作

以与上述(1-1-2)同样的方法制作圆盘状成型体,在不活泼性气氛下,于800~1000℃左右进行1小时左右的加热处理,制作圆盘状预烧体。使预烧体的外径为厚度为10mm左右。将该预烧体用作实验例23~25的第一基体及第二基体。应予说明,预烧体只要适当采用对在原料粉末中添加有机粘结剂等成型助剂而保形的成型体进行加热处理加以制作等已知的方法即可,其制作条件并不限定于上述条件。

(1-2)电极糊的制作

作为加热电极的主成分中使用的wc粉末,使用纯度99.9%且平均粒径0.8μm左右的市场销售品。另外,关于添加到加热电极中的成分,使用如下物质。作为ru,使用将ru的市场销售品进行湿式粉碎至平均粒径2μm而得到的粉末。作为al,使用纯度99.7%以上且平均粒径10μm左右的市场销售品。作为rual合金,使用如下得到的粉末,该粉末是按以摩尔比计为1:1称量ru和al的上述粉末,进行混合后,于1100℃、ar气氛制作rual合金,进行湿式粉碎至平均粒径2μm而得到的。电极糊是在各实验例中按规定的配合将wc粉末和添加成分充分混合后,将该混合粉末混入有机溶剂和粘结剂中,进行混炼而制作的。作为有机溶剂,使用丁基卡必醇,作为粘结剂,使用聚甲基丙烯酸正丁酯。将制作的电极糊通过丝网以宽度5mm×长度15mm的尺寸于第一基体的上表面印刷并形成多个。此时,电极糊的厚度为60~70μm左右。印刷后,在大气中,使电极糊干燥1小时左右。

(1-3)第二基体的配置

在上述(1-2)中制作的第一基体的电极糊印刷面上重叠第二基体,由此,制成层叠体。第一基体为上述(1-1-3)中制作的煅烧体的情况下,作为第二基体,使用上述(1-1-2)中制作的成型体。第一基体为上述(1-1-4)中制作的预烧体的情况下,作为第二基体,使用与第一基体同样的预烧体。

(1-4)陶瓷基体和电极的共同煅烧

将上述(1-3)中制作的层叠体插入热压炉中,以与上述(1-1-3)同样的条件进行热压煅烧使其一体化,得到陶瓷结构体。应予说明,各实验例的煅烧温度(最高温度)示于表1。

(2)陶瓷结构体的评价项目

(2-1)热膨胀系数

(2-1-1)单体的热膨胀系数

关于wc、ru、rual合金的热膨胀系数,将用于加热电极的市场销售的粉末以与上述(1-1-3)大致相同的条件进行热压煅烧,由此,制作块状材料,使用该块状材料利用依据jis-r1618的方法在40~1000℃的范围内进行测定。关于aln的热膨胀系数,使用从aln陶瓷基体上切出的烧结体试样,利用依据jis-r1618的方法,在40~1000℃的范围内进行测定。

(2-1-2)加热电极的热膨胀系数

加热电极在40~1000℃下的热膨胀系数是基于上述(2-1-1)中测定得到的单体在40~1000℃下的热膨胀系数和加热电极的调合比例通过计算而求出的。

(2-2)加热电极的电阻率

以成为宽度9mm×长度9mm×厚度9mm左右的长方体状且在中央的宽度5mm×长度9mm左右内置有电极的方式,从制作的陶瓷结构体上切出试验片。应予说明,电极的端面在试验片的两端面以宽度5mm暴露出来,通过光学显微镜测量电极的宽度和厚度,求出电极端面的截面积s(cm2)。另外,通过游标卡尺测定电极的长度l(cm),用于计算电阻率。在电极的两端面涂布导电性糊后连接导线构成电阻测定用的电路,在大气中,于室温使微电流i(ma)以0~150ma的范围流过,测定此时产生的微电压值v(mv),由r=v/i求出电极的电阻r(ω)。然后,由ρ=r×s/l计算出电极的电阻率ρ(ωcm)。各实验例中的电极的电阻率采用测定得到的4~6个的平均值。

(2-3)陶瓷结构体的微结构

对制作的陶瓷结构体的电极暴露出来的切断面进行镜面研磨后,使用扫描型电子显微镜(sem)及电子探针微量分析仪(epma),进行电极、陶瓷基体的界面及其周边等的微结构的观察、映射分析。

(2-4)电极中的成分

从制作的陶瓷结构体上除去一个陶瓷基体,使电极面暴露出来,对电极面进行研磨后,利用x射线衍射装置(xrd)鉴定电极的结晶相。测定条件:cukα、40kv、40ma、2θ=5-70°、测定的步长0.02°。

(3)陶瓷结构体的评价结果

以下,对各实验例的评价结果进行说明。另外,关于使用的第一基体和第二基体的组合,实验例1~22使用烧结体和成型体,实验例23~25使用预烧体和预烧体。各实验例中使用的aln陶瓷基体、加热电极的组成、特性等汇总于表1。

表1

·实验例1~3

实验例1~3中,加热电极的材料使用以wc为主成分且添加了ru的wc/ru复合材料。ru的热膨胀系数测定为7.64ppm/℃,大于aln、wc。另外,文献中ru的电阻率在室温下为8×10-6ωcm,电阻率较低。作为电极组成,实验例1中按wc/2.5vol%ru(表示ru的体积相对于整体的体积的比例为2.5%)、实验例2中按wc/7.5vol%ru、实验例3中按wc/16vol%ru进行配合,以自下而上依次为第一基体、电极糊、第二基体的方式进行层叠后,在氮气氛下以压制压力200kgf/cm2、最高温度1825℃保持4小时,进行煅烧,由此,制作各实验例的样品。实验例1中,加热电极的热膨胀系数为5.35ppm/℃,aln的热膨胀系数与加热电极的热膨胀系数的差值的绝对值|δcte|为低至0.35ppm/℃的值。电阻率为2.2×10-5ωcm,与wc单独的电阻率(2.1×10-5ωcm、参照比较例4)为相同的程度,电阻率较低。实验例2、3中,使ru含量增加,但是,|δcte|分别为0.23ppm/℃、0.04ppm/℃,更接近于aln的热膨胀系数,电阻率分别为2.5×10-5ωcm、3.0×10-5ωcm,维持低电阻率。由此,关于ru,如果添加量在2.5~16vol%的范围,则能够减小|δcte|,并且,能够实现低电阻率。另外,实验例1~3中,利用sem观察了截面。结果,在界面及其附近没有确认到裂纹等,在aln陶瓷基体内的埋设状态良好,但是,在加热电极的上部和下部确认到组成差异(参照图4)。即,图4中,像带一样左右延伸的明亮部分为加热电极,其上下的黑色部分为aln陶瓷烧结体。关于图4的加热电极部,认为:发白的部分为wc,淡淡的灰色部分为ru,如图所示,确认了:存在较多wc的下部的层和其上部看上去为淡淡的灰色的ru较多的层。由此推测:仅以ru为填料的实验例中,加热电极内的热膨胀系数稍微不均匀。

·实验例4~8

实验例4~8中,加热电极的材料使用在wc中添加了rual的wc/rual复合材料。rual的热膨胀系数进一步大于ru,测定为10.3ppm/℃。因此,能够以比ru的情形少的添加量提高wc电极的热膨胀系数,容易匹配aln陶瓷基体。|δcte|在这些所有的实验例中均满足在0.35ppm/℃以内。电阻率在所有的实验例中均为3.0×10-5ωcm以下。因此,rual的情况下,如果添加量在1.2~15vol%的范围,则能够减小|δcte|,并且,能够维持低电阻率。利用sem观察截面,在界面及其附近没有确认到裂纹等,良好,在仅添加了ru时所看到的加热电极内,也没有确认到组成以层状形式存在差异这样的现象。作为代表,将实验例6的截面sem照片示于图5。图5中,像带一样左右延伸的明亮部分为加热电极,其上下的黑色部分为aln陶瓷烧结体。该照片中,确认到在明亮部分的加热电极内以亚微米级至2微米左右的大小的灰色分散的相,由epma的元素映射分析确认到这些相与ru和al的分布一致。进而,使实验例6的煅烧后试样的电极面暴露出来,对该面进行xrd测定,结果可知:在电极材料中包含wc和rual,并且,ru没有以除rual以外的结晶相的形式被鉴定出来。根据这些结果,可以说在wc电极材料内分散存在rual结晶,能够作用于电极材料的热膨胀系数的调整。由以上结果可知:在wc中添加1.2~15vol%左右的rual作为填料的方法是最理想的。

·实验例9~22

实验例9~12中,使wc/rual复合材料的rual添加量为4.0vol%、8.2vol%、12vol%、15vol%,于1850℃进行煅烧。实验例13~16中,使wc/rual复合材料的rual添加量为4.0vol%、8.2vol%、12vol%、15vol%,于1800℃进行煅烧。实验例17~20中,使wc/rual复合材料的rual添加量为4.0vol%、8.2vol%、12vol%、15vol%,于1750℃进行煅烧。实验例21、22中,使aln气体中的y2o3的含量分别为0wt%、0.5wt%,使wc/rual复合材料的rual添加量为4.2vol%,于1900℃进行煅烧。结果,当rual添加量为4.0vol%时,电阻率为2.0×10-5~2.2×10-5ωcm;当rual添加量为8.2vol%时,电阻率为2.3×10-5~2.4×10-5ωcm;当rual添加量为12vol%时,电阻率为2.4×10-5~2.5×10-5ωcm;当rual添加量为15vol%时,电阻率为2.8×10-5~3.0×10-5ωcm。即使像这样变更煅烧温度的情况下,电阻率也维持在低至3.0×10-5ωcm以下的值。

·实验例23~25

实验例23~25中,使第一及第二基体均为aln预烧体,使wc/rual复合材料的rual添加量为4.0vol%、8.2vol%、12vol%,使煅烧温度为1825℃,此外,以依据上述(1-1-3)的方法进行煅烧。结果,电阻率为2.0~2.3×10-5ωcm,为3.0×10-5ωcm以下的低值。另外,这些结构体在利用sem、epma观察截面以及利用xrd解析结晶相时,也确认为与实验例6所代表的结构体同样的状态。即,即使煅烧前的aln基体使用预烧体的情况下,wc/rual复合电极材料也得到特性良好的aln陶瓷结构体。

·比较例1~4

作为加热电极的材料,比较例1中使用mo,比较例2中使用mo2c,比较例3中使用w,比较例4中使用wc,均没有添加填料。将其结果示于表2。如比较例1、2那样使加热电极的主成分为mo、mo2c的情况下,|δcte|分别为0.41、1.14ppm/℃,超过0.35ppm/℃。像比较例3那样使加热电极的材料为w的情况下,|δcte|为0.41ppm/℃,超过0.35ppm/℃。另外,制作3次比较例3的陶瓷结构体,结果,3个个体的电阻率为2.0~3.6×10-5ωcm,偏差较大。观察该比较例3的材料的截面,看到电极材料的一部分被碳化的情况,并且,可知其程度因个体而不同。因此,认为这些电极材料的不均匀性与电阻率的偏差有关。像比较例4那样使加热电极的材料为wc的情况下,电阻率低至2.1×10-5ωcm,但是,|δcte|为0.39ppm/℃,超过0.35ppm/℃。这些比较例1~4不是热膨胀系数与aln陶瓷基体接近、并且具有低电阻率的加热电极。

表2

※1cte表示在40~1000℃下的热膨胀系数。

※2|δcte|表示aln陶瓷基体与加热电极在40~1000℃下的热膨胀系数的差值的绝对值。

本发明不限定于上述实施例,只要属于本发明的技术范围,当然就可以以各种方式进行实施。

本申请以2016年2月29日所申请的日本专利申请第2016-037658号为主张优先权的基础,通过引用使得其所有内容包含在本说明书中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1