半导体装置和半导体装置的制造方法与流程

文档序号:11235702
半导体装置和半导体装置的制造方法与流程

本发明涉及半导体装置和半导体装置的制造方法,特别涉及在同一硅衬底上形成用于检测紫外线那样的短波长的光的半导体受光元件和MOS晶体管的半导体装置的制造方法。



背景技术:

半导体受光元件有各个种类。其中,使用了硅衬底的受光元件通过在同一衬底上制作使用了MOS晶体管等的集成电路,能够在一个芯片上进行从受光到信号处理的过程,所以在较多的用途中被使用。

硅中的光的穿透深度(入射到硅中的光的强度由于吸收而衰减为1/e的深度)具有如图7的波长依赖性,在紫外线(UVA:320~400nm、UVB:280~320nm)的情况下,大部分的光在几nm~几十nm的区域中被吸收。在专利文献1和非专利文献1中示出了用于使用具有这样的特征的硅来检测紫外线的构造。

具体而言,将pn结的深度减小为几十~100nm左右,以检测通过紫外线照射而产生的电子-空穴对来作为光电流。此外,通过形成为使硅最表面的杂质浓度为1019cm-3以上且浓度相对于深度方向逐渐降低的杂质分布,产生基于浓度梯度的电场,使电子-空穴对高效分离而获得光电流。

并且,在这种硅受光元件构造中,如非专利文献2所记载地那样,在通过紫外线照射而在硅上的绝缘膜上俘获有电荷时,对pn结的能带结构产生影响,而受光元件的感光度特性发生变动。因此,需要使与硅表面接触的绝缘膜形成为电荷阱较少的热二氧化硅膜。使硅最表面的杂质浓度成为高浓度还具有屏蔽绝缘膜中的固定电荷的影响的优点。

另一方面,例如在专利文献2中公开了与MOS晶体管一起形成使用了硅的紫外线受光元件的以往的方法。图8和图9是按照工序顺序示出以往的制造方法的剖视图。在图中,PD是形成受光元件的受光元件形成区域,TR是形成PMOS晶体管的MOS晶体管形成区域。

首先,如图8的(a)所示,在p型的硅衬底101的表面形成N阱区域102和元件分离区域103,在根据需要进行用于调节晶体管的阈值电压的离子注入以后,通过热氧化形成栅氧化膜104。

接着,如图8的(b)所示,堆叠作为栅电极材料的多晶硅膜105,并通过蚀刻进行构图,从而形成栅电极106(图8的(c))。

然后,在用第1光致抗蚀剂膜(未图示)对受光元件形成区域PD上进行了掩蔽的状态下,对MOS晶体管形成区域TR进行离子注入,形成LDD(Lightly Doped Drain:轻掺杂漏)区域109(图8的(d))。

在去除第1光致抗蚀剂膜以后,在整个面上堆叠绝缘膜110(图9的(a)),以不去除受光元件形成区域PD上的栅氧化膜104的方式,在用第2光致抗蚀剂膜(未图示)对受光元件形成区域PD进行了掩蔽的状态下进行各向异性蚀刻。由此,在栅电极106的侧面形成侧壁111,并且在受光元件形成区域PD上残留有栅氧化膜104和绝缘膜110(图9的(b))。

接着,对MOS晶体管形成区域TR进行离子注入,形成源漏区域112(图9的(c))。

然后,对受光元件形成区域PD进行用于形成浅结的离子注入,形成杂质区域108(图9的(d))。

这样,根据以往的制造方法,能够在同一硅衬底一起形成具有使用了硅的pn结的紫外线受光元件和MOS晶体管。

专利文献1:日本特许第5692880号公报

专利文献2:日本特开2014-154793号公报

非专利文献1:ITE Trans.On MTA Vol.2 No.2 pp.123-130(2014)

非专利文献2:SPIE-IS&T/Vol.8298 82980M-1~8(2012)

在图8和图9所示的以往的制造方法中,虽然与受光元件形成区域PD的硅衬底表面直接接触的绝缘膜是热氧化膜,但是由于是在用于形成栅电极的构图后残留的栅氧化膜104,所以可能产生由栅构图时的蚀刻损伤等引起的膜质量下降。如上所述,为了抑制受光元件的感光度特性的变动,与硅表面接触的绝缘膜需要是电荷阱少的热二氧化硅膜,所以膜质量下降的栅氧化膜104与硅表面接触的受光元件的可靠性较低。

此外,为形成侧壁111而进行堆叠的绝缘膜110通常比栅氧化膜104厚(例如在专利文献2中,栅氧化膜厚度为10nm~50nm、侧壁用绝缘膜厚度为200nm~500nm),所以为了穿过栅氧化膜104和侧壁用绝缘膜110的层叠膜对受光元件形成区域PD进行离子注入,而使得杂质区域108成为期望的浓度,需要超过1016cm-2的较高的剂量。

如果一次注入该剂量,则存在抗蚀剂烧毁等制造上的障碍,所以通常分为两次以上进行注入,生产能力下降。此外,结深也会成为200nm左右,不会成为原本为了高感光度地检测紫外线所需的100nm以下的浅结。并且,还需要使硅最表面的杂质浓度为1019cm-3以上。



技术实现要素:

本发明的课题在于提供一种能够在同一硅衬底上一起形成可靠性高的受光元件和MOS晶体管的半导体装置和半导体装置的制造方法。

本发明一个实施方式的半导体装置的制造方法的特征在于,具有以下工序:第一工序,在具有受光元件形成区域和MOS晶体管形成区域的硅衬底表面上,形成作为MOS晶体管的栅氧化膜的第一热氧化膜;第二工序,在所述第一热氧化膜上形成多晶硅膜;第三工序,对所述多晶硅膜进行构图,在所述MOS晶体管形成区域形成所述MOS晶体管的栅电极;第四工序,去除所述第一热氧化膜中的、除所述栅电极的下部以外的所述第一热氧化膜;第五工序,在所述硅衬底表面形成第二热氧化膜;以及第六工序,穿过所述第二热氧化膜,对所述受光元件形成区域离子注入杂质而形成杂质区域。

根据本发明的实施方式,由于在去除了除栅电极的下部以外的第一热氧化膜以后,重新形成第二热氧化膜,所以能够使与受光元件形成区域的硅衬底表面直接接触的绝缘膜为不会受到由多晶硅膜的构图引起的蚀刻损伤的热氧化膜。此外,第二热氧化膜的膜厚能够与栅氧化膜的膜厚无关地进行设定。因此,以适当的厚度(例如厚度为30nm以下)形成电荷阱少的第二热氧化膜,穿过该第二热氧化膜对受光元件形成区域进行离子注入而形成杂质区域,由此能够将离子注入的剂量抑制得较低,且能够形成具有浅结的受光元件,在该受光元件中,杂质区域的硅衬底的最表面的杂质浓度为1019cm-3以上,杂质区域的杂质浓度成为1017cm-3以下时的、距硅衬底表面的深度为100nm以下。

附图说明

图1是按照工序顺序示出本发明第一实施方式的半导体装置的制造方法的剖视图。

图2是按照工序顺序示出本发明第一实施方式的半导体装置的制造方法的剖视图。

图3是按照工序顺序示出本发明第二实施方式的半导体装置的制造方法的剖视图。

图4是按照工序顺序示出本发明第三实施方式的半导体装置的制造方法的剖视图。

图5是示出穿过膜厚10nm的热氧化膜而注入了BF2时的硼的浓度分布的图。

图6是示出穿过膜厚30nm的热氧化膜而注入了BF2时的硼的浓度分布的图。

图7是示出在光入射到了硅中时光穿透的深度的波长依赖性的图。

图8是按照工序顺序示出以往的半导体装置的制造方法的剖视图。

图9是按照工序顺序示出以往的半导体装置的制造方法的剖视图。

标号说明

1:硅衬底;2:N阱区域;3:元件分离区域;4:栅氧化膜;5:多晶硅膜;6:栅电极;7:热氧化膜;8:杂质区域;9:LDD区域;10、10a、10b:绝缘膜;11、11b:侧壁;12:源漏区域;R:掩模层。

具体实施方式

[第一实施方式]

图1和图2是按照工序顺序示出本发明第一实施方式的半导体装置的制造方法的剖视图。

在图中,PD是形成受光元件的受光元件形成区域,TR是形成PMOS晶体管的MOS晶体管形成区域。

首先,如图1的(a)所示,在p型的硅衬底1的表面形成N阱区域2和元件分离区域3,并根据需要进行用于调节晶体管的阈值电压的离子注入。

然后,通过对硅衬底1的整个面进行热氧化,形成栅氧化膜(也称作“第一热氧化膜”))4。栅氧化膜4的厚度例如是10nm。

接着,堆叠作为栅电极材料的多晶硅膜5(图1的(b)),并通过蚀刻对其进行构图,从而形成栅电极6。这里,为了清除在蚀刻后残留的异物等,进行湿法处理,去除栅电极6的下部以外的区域的栅氧化膜4(图1的(c))。

然后,通过对整个面进行热氧化,在硅衬底1的表面、栅电极6的侧面和上表面上形成热氧化膜(也称作“第二热氧化膜”))7(图1的(d))。该热氧化膜7的厚度在例如受光元件形成区域PD上是10nm。另外,在该工序中,对栅电极6的侧面进行热氧化起到如下等作用:去除栅电极6的构图时的蚀刻损伤;防止之后工序的源漏区域形成用的离子注入中的离子对栅电极6的穿通。

接着,穿过热氧化膜7,对受光元件形成区域PD的N阱区域2进行p型杂质的离子注入,形成p型杂质区域8(图1的(e))。该注入条件例如是BF2、10keV、5.0×1013cm-2。由此,形成了浅的pn结。这里,热氧化膜7不是栅氧化膜(第一热氧化膜)4,而是在去除栅氧化膜4以后新形成的热氧化膜,所以不会受到蚀刻损伤等。并且,能够在热氧化膜7上未形成其他绝缘膜的状态下进行离子注入。

因此,能够如上述那样将离子注入的剂量抑制得较低,且能够形成具有浅结的可靠性高的受光元件,在该受光元件中,杂质区域的硅衬底的最表面的杂质浓度为1019cm-3以上,杂质区域的杂质浓度成为1017cm-3以下时的、距硅衬底表面的深度为100nm以下。

接着,在MOS晶体管形成区域TR,以栅电极6和设置于栅电极6的侧面的第二热氧化膜为掩模,进行p型杂质的离子注入,自对准地形成LDD(Lightly Doped Drain:轻掺杂漏)区域9(图2的(a))。

接着,在整个面上堆叠绝缘膜10(图2的(b))。该绝缘膜10的厚度例如是300nm。接着,在通过由抗蚀剂构成的掩模层R覆盖了受光元件形成区域PD的状态下进行各向异性蚀刻,并在栅电极6的侧面形成侧壁11(图2的(c))。这时,在MOS晶体管形成区域TR的LDD区域9表面,被去除至热氧化膜7,但是受光元件形成区域PD被掩模层R覆盖,所以残留有绝缘膜10,由此,蚀刻损伤难以进入到与硅衬底1的表面直接接触的热氧化膜7。

然后,如图2的(d)所示,对MOS晶体管形成区域TR进行p型杂质的离子注入,形成源漏区域12。而且,进行例如950℃、1秒这样的高温短时间的活化退火,使得不损害受光元件形成区域PD的浅结。

图5示出如上述那样形成的受光元件形成区域PD的硼的浓度分布。如上所述,受光元件形成区域PD上的热氧化膜7的厚度是10nm,离子注入条件是BF2、10keV、5.0×1013cm-2

如图5所示,硅最表面的硼浓度为2×1019cm-3,硼浓度成为1017cm-3以下时的、距硅表面的深度是55nm,实现了以高感光度检测紫外线所需的杂质分布。

这样,根据本实施方式,由于杂质区域8形成用的离子注入的剂量是1013cm-2左右,所以不存在如在以往的制造方法中产生的制造上的障碍,而能够通过与MOS晶体管的制造工序匹配的制造方法,与MOS晶体管一起形成具有如图5所示的杂质分布的可靠性高的受光元件。

[第二实施方式]

图3是按照工序顺序示出本发明第二实施方式的半导体装置的制造方法的剖视图。图3的(a)示出了与图1的(d)相同的工序,由于直到该工序为止与第一实施方式相同,因此省略说明。但是,在本实施方式中,使热氧化膜7的厚度比第一实施方式厚,为30nm。

在该状态下,如图3的(b)所示,在受光元件形成区域PD进行浅结形成用的离子注入。离子注入条件例如是BF2、15keV、5.3×1014cm-2。该离子注入还在MOS晶体管形成区域TR同时进行而形成LDD区域9。

在图3的(b)的工序以后经过与图2的(b)之后相同的工序,由此能够在同一硅表面上形成PMOS晶体管和受光元件。

在使用本实施方式的方法时,受光元件形成区域PD的杂质区域8的形成、即浅结形成用的离子注入兼顾了MOS晶体管的LDD区域9形成用的离子注入,所以与第一实施方式相比能够削减工序数量。

图6示出本实施方式中的受光元件形成区域PD的硼的浓度分布。如上所述,受光元件形成区域PD上的热氧化膜7的厚度是30nm、离子注入条件是BF2、15keV、5.0×1014cm-2

如图6所示,硅最表面的硼浓度为2×1019cm-3,硼浓度成为1017cm-3以下时的、硅表面的深度是65nm,实现了以高感光度检测紫外线所需的杂质分布。

根据图5和图6可知,在穿过氧化膜进行离子注入的情况下,如果将氧化膜厚从10nm变为30nm,则为了使硅最表面的硼浓度成为1019cm-3以上,需要将注入剂量增大一个数量级。此外,在增厚氧化膜时,还需要提高注入能量,难以控制性良好地形成浅结。因此,氧化膜的厚度优选为30nm以下。

[第三实施方式]

图4是按照工序顺序示出本发明第三实施方式的半导体装置的制造方法的剖视图。图4的(a)示出了与图2的(a)相同的工序,由于直到该工序为止与第一实施方式相同,因此省略说明。

接着,如图4的(b)所示,堆叠侧壁形成用的绝缘膜10a和10b。这里,绝缘膜10a是厚度为20nm的氮化硅膜,绝缘膜10b是厚度为280nm的二氧化硅膜。此外,受光元件形成区域表面上的热氧化膜7的厚度是30nm以下。

接着,如图4的(c)所示,使用各向异性蚀刻而在栅电极6的侧面上形成由绝缘膜(二氧化硅膜)10b构成的侧壁11b。这时,通过使用氧化膜的蚀刻速率较快而氮化膜的蚀刻速率较慢的蚀刻条件,绝缘膜(氮化硅膜)10a作为蚀刻阻挡层而残留。由此,能够减轻对与受光元件形成区域PD的硅表面直接接触的热氧化膜7的蚀刻损伤。在形成侧壁11b后进行离子注入从而形成源漏区域12(图4的(d))。

如上所述,能够在同一硅衬底上一起形成MOS晶体管和受光元件。

使用本实施方式的方法,在形成侧壁11b时,无需通过抗蚀剂覆盖受光元件形成区域PD上的绝缘膜,所以能够削减工序数量。另外,虽然在本实施方式中,使用了氮化膜10a和氧化膜10b的层叠构造,但在氮化膜存在于硅表面附近时,作为电荷阱发挥作用,有时对受光元件特性和MOS晶体管特性产生影响。在这样的情况下,还能够形成为如氧化膜/氮化膜/氧化膜的三层以上的构造。

此外,通过对存在于受光元件形成区域PD上的氮化膜和氧化膜的层叠构造分别最优地设计膜厚,能够对特定的光的波长区域选择性地提高透射率,因此能够制作在特定的波长区域中具有高感光度的受光元件。

以上,对本发明的实施方式进行了说明,但本发明并不受上述实施方式限定,当然能够在不脱离本发明的宗旨的范围内进行各种变更。

例如,在上述各实施方式中,示出了在N阱区域上制作PMOS晶体管和最表面为p型的受光元件的例子,但是当然也能够在P阱区域上制作NMOS晶体管和最表面为n型的受光元件。在该情况下,在用于形成浅的pn结的离子注入中使用砷、磷、锑等离子种类。

此外,在上述各实施方式中,离子注入的离子种类使用了BF2,但也可以在离子注入中使用硼单体或包含硼的簇离子等。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1