多孔质陶瓷结构体的制作方法

文档序号:13903881阅读:124来源:国知局
多孔质陶瓷结构体的制作方法

本发明涉及多孔质陶瓷结构体。更详细而言,涉及能够用于汽车尾气净化用催化剂载体等各种用途的多孔质陶瓷结构体。



背景技术:

以往,多孔质陶瓷结构体被用于汽车尾气净化用催化剂载体、柴油机微粒除去过滤器或者燃烧装置用蓄热体等广泛的用途。特别是多数使用具有隔壁的蜂窝形状的多孔质陶瓷结构体(以下称为“蜂窝结构体”。),该隔壁区划形成成为从一方端面延伸至另一方端面的流体流路的多个隔室。该蜂窝结构体是经过挤出成型工序和烧成工序而制造得到的,挤出成型工序中,调制多个陶瓷原料,使用挤出成型机将坯土化的成型原料挤出成型,烧成工序中,使挤出成型后的蜂窝成型体干燥后,在规定的烧成条件下进行烧成。

作为构成多孔质陶瓷结构体的陶瓷材料,例如使用:碳化硅、硅-碳化硅系复合材料、堇青石、多铝红柱石、氧化铝、尖晶石、碳化硅-堇青石系复合材料、硅酸铝锂以及钛酸铝等。

如果蜂窝结构体的隔壁表面等的比表面积较小,则无法担载足够量的催化剂,在该状态下有时无法发挥高催化活性。因此,以γ-氧化铝对蜂窝结构体进行涂覆处理,以便增大比表面积。由此,能够增大比表面积,从而,蜂窝结构体能够担载用于发挥高催化活性的足够量的催化剂(例如参见专利文献1。)。

另一方面,近年来,严格强化了对由柴油发动机等排出的尾气的各种限制。因此,要求用作汽车尾气净化用催化剂载体的蜂窝结构体等多孔质陶瓷结构体的高性能化。例如,对蜂窝结构体的隔壁进行薄壁化,由此,降低蜂窝结构体整体的热容量,迅速升温至发挥催化剂的催化活性的温度,或者使隔壁成为高气孔率结构。如果蜂窝结构体的气孔率降低,则存在压力损失增大而导致发动机的燃油效率降低等问题(参见专利文献2)。

如上所述,利用γ-氧化铝对蜂窝结构体进行涂覆处理有可能堵塞多孔质性的隔壁而导致气孔率降低。因此,研究一种无需利用γ-氧化铝进行涂覆处理就能够担载足够量的催化剂的方法。例如已知:对堇青石的蜂窝结构体进行酸处理,于600℃~1000℃进行热处理,然后,担载催化剂成分(参见专利文献3)。由此,能够使比表面积增加,并且,可以不需要利用γ-氧化铝的涂覆处理(所谓“湿法涂覆”)的工序。

现有技术文献

专利文献

专利文献1:日本特许第4046925号公报

专利文献2:国际公开第2013/047908号

专利文献3:日本特公平5-40338号公报



技术实现要素:

如上所述,涂覆处理γ-氧化铝的方法会堵塞蜂窝结构体(多孔质陶瓷结构体)的气孔而导致气孔率降低。因此,具有压力损失增大的问题。

另一方面,如专利文献3所示的、对多孔质陶瓷结构体进行酸处理及热处理,由于不需要利用γ-氧化铝进行涂覆处理,所以能够实现多孔质陶瓷结构体的轻量化及耐热冲击性的提高。但是,有可能破坏晶格自身,多孔质陶瓷结构体的强度有可能降低。因此,希望开发一种无需利用γ-氧化铝进行涂覆处理、且不会导致强度降低、而能够担载对于维持高催化活性而言足够量的催化剂的多孔质陶瓷结构体。上述课题不限于使用了堇青石陶瓷材料的多孔质陶瓷结构体,即便在使用了碳化硅、硅-碳化硅系复合材料等陶瓷材料的情况下也是同样的。

因此,本发明是鉴于上述实际情况而实施的,其课题是提供一种能够担载对于维持催化活性而言足够量的催化剂的多孔质陶瓷结构体。

根据本发明,提供一种解决了上述课题的多孔质陶瓷结构体。

[1]一种多孔质陶瓷结构体,其是由陶瓷材料形成且结构体内部具有气孔的多孔质陶瓷结构体,其中,所述多孔质陶瓷结构体包含二氧化铈,所述二氧化铈中的至少一部分被引入到所述结构体内部,且至少一部分暴露在所述气孔的气孔表面,暴露出来的所述二氧化铈中的至少一部分在表面和/或内部存在铁氧化物。

[2]根据所述[1]中记载的多孔质陶瓷结构体,其中,所述铁氧化物固溶于所述二氧化铈。

[3]根据所述[1]或[2]中记载的多孔质陶瓷结构体,其中,所述二氧化铈的平均粒径为0.1μm~1.0μm的范围。

[4]根据所述[1]~[3]中的任意一项中记载的多孔质陶瓷结构体,其中,所述二氧化铈在所述陶瓷材料中所占的比率为0.1质量%~5.0质量%的范围。

[5]根据所述[1]~[4]中的任意一项中记载的多孔质陶瓷结构体,其中,所述铁氧化物在所述陶瓷材料中所占的比率为0.02质量%~0.6质量%的范围。

[6]根据所述[1]~[5]中的任意一项中记载的多孔质陶瓷结构体,其中,所述二氧化铈除了包含所述铁氧化物以外,还包含锰、锶及铝中的至少任意一种金属的氧化物。

[7]根据所述[1]~[6]中的任意一项中记载的多孔质陶瓷结构体,其中,所述陶瓷材料以堇青石或硅-碳化硅中的任意一方为主成分。

[8]根据所述[1]~[7]中的任意一项中记载的多孔质陶瓷结构体,其中,所述多孔质陶瓷结构体为蜂窝结构体。

根据本发明的多孔质陶瓷结构体,在表面等存在铁氧化物的二氧化铈中的至少一部分暴露在气孔表面,由此,无需对用于维持催化活性的足够量的催化剂进行涂覆处理,就能够发挥高催化性能。此外,没有使用贵金属系催化剂,可期待大幅降低催化剂的成本。

附图说明

图1是表示蜂窝结构体的构成之一例的立体图。

图2a是示意性地表示含有氧化物的二氧化铈(固溶有氧化物的二氧化铈)的构成的说明图。

图2b是示意性地表示含有氧化物的二氧化铈(附着有氧化物的二氧化铈)的构成的说明图。

图3是示意性地表示暴露在气孔表面的含有氧化物的二氧化铈的放大剖视简图。

图4是表示多孔质陶瓷结构体的截面之一例的电子显微镜图像。

图5是表示图4的电子显微镜图像中的铈元素分布的分布图。

图6是表示图4的电子显微镜图像中的铁元素分布的分布图。

符号说明

1蜂窝结构体(多孔质陶瓷结构体)、2a一方端面、2b另一方端面、3隔室、4隔壁、5气孔、5a气孔表面、6二氧化铈、7铁氧化物、8含有氧化物的二氧化铈、8a固溶有氧化物的二氧化铈粒子、8b附着有氧化物的二氧化铈粒子。

具体实施方式

以下,参照附图,对本发明的多孔质陶瓷结构体的实施方式进行详细说明。应予说明,本发明的多孔质陶瓷结构体并不限定于以下的实施方式,只要不脱离本发明的范围,就可以进行各种设计的变更、修改及改良等。

如图1~3所示,本发明的一个实施方式的多孔质陶瓷结构体为具有格子状的隔壁4的蜂窝形状的呈大致圆柱状的多孔质陶瓷蜂窝结构体(以下简称为“蜂窝结构体1”。),该隔壁4区划形成多个隔室3,该多个隔室3形成为从一方端面2a延伸至另一方端面2b的流体流路。

更具体地进行说明:蜂窝结构体1的隔壁4由陶瓷材料形成,在该隔壁4的内部存在多个气孔5(例如参照图3)。进而,在该蜂窝结构体1的结构体内部引入有二氧化铈6(ceo2),并形成为该二氧化铈6中的至少一部分暴露在隔壁4的气孔5的气孔表面5a。进而,在该暴露出来的二氧化铈6的表面和/或内部存在固溶或附着于二氧化铈6的状态的铁氧化物7。以下,将存在固溶或附着状态的铁氧化物7的二氧化铈6称为“含有氧化物的二氧化铈8”。

此处,所谓构成蜂窝结构体1(隔壁4)的陶瓷材料,假设为众所周知的材料,例如可以举出包含碳化硅、硅-碳化硅(si/sic)系复合材料、堇青石、多铝红柱石、氧化铝、尖晶石、碳化硅-堇青石系复合材料、硅酸铝锂以及钛酸铝等作为主成分的材料。应予说明,本发明的多孔质陶瓷结构体并不限定于上述的蜂窝结构体1,可以为各种形状。进而,即便是具有蜂窝形状的情况下,也不限定于大致圆柱状,可以呈棱柱状等。

构成本实施方式的蜂窝结构体1的陶瓷材料中含有的二氧化铈6的平均粒径为0.1μm~1.0μm的范围。进而,陶瓷材料中的二氧化铈6的含有率为0.1质量%~5.0质量%的范围,更优选为0.3质量%~1.0质量%的范围。二氧化铈6的比率高于0.1质量%的情况下,暴露在气孔表面5a的二氧化铈6的粒子增多,用于得到催化活性的量足够。

另一方面,如果二氧化铈6的比率低于5.0质量%,则暴露在气孔表面5a的二氧化铈6的量适当。因此,气孔5的一部分被暴露出来的二氧化铈6堵塞的可能性降低,将隔壁4的气孔率维持在较高水平,不会产生压力损失等不良情况。因此,特别优选使二氧化铈6的比率在上述的规定范围内。

进而,铁氧化物7在陶瓷材料中所占的比率为0.02质量%~0.6质量%的范围。如果铁氧化物7的比率高于0.02质量%,则能够充分发挥由含有氧化物的二氧化铈8带来的催化性能效果。另一方面,如果铁氧化物7的比率低于0.6质量%,则能够抑制压力损失增大。因此,特别优选使铁氧化物7的比率在上述的规定范围内。另外,铁氧化物7的平均粒径没有特别限定,如图2中示意性表示的那样,相对于上述二氧化铈6的平均粒径而言,铁氧化物7的平均粒径必然较小。

使二氧化铈6的表面和/或内部存在铁氧化物7的方法可以使用例如含浸法等。具体地进行说明:在预先将平均粒径调整为规定范围的二氧化铈6的粉末(粒子)中加入含有铁成分的金属氧化物的硝酸盐溶液,进行搅拌混合。由此,成为在金属氧化物的硝酸盐溶液中含浸有二氧化铈6的状态,将该含浸状态持续规定时间。由此,包含有铁成分等的硝酸盐溶液附着于二氧化铈6的粒子表面。

然后,从硝酸盐溶液中取出二氧化铈6,在大气中等对表面附着有金属氧化物中的一部分的状态的二氧化铈6进行烧成。其结果:形成在表面和/或内部存在铁氧化物7的含有氧化物的二氧化铈8。此时,可以通过调整硝酸盐溶液的浓度及各成分的比率等来适当改变铁氧化物7相对于二氧化铈6的含量(或含有率)。

此处,通过改变在大气中等进行的烧成处理的烧成温度,含有氧化物的二氧化铈8可以变化为铁氧化物7相对于二氧化铈6的状态不同的两个状态。即,可以对铁氧化物7以固溶于二氧化铈6的表面和/或内部的状态存在、或者以附着于二氧化铈6的表面的状态(非固溶状态)存在进行分别选择,并使其变化。此处,已知:含有氧化物的二氧化铈8的催化性能的表达机制因铁氧化物7相对于二氧化铈6的固溶或附着状态而不同。

进一步具体地说明:铁氧化物7固溶于二氧化铈6而得到的含有氧化物的二氧化铈8、亦即“固溶有氧化物的二氧化铈粒子8a”(参照图2a)的情况下,二氧化铈6自身具有催化活性功能。因此,通过使固溶铁氧化物7的二氧化铈6自身的平均粒径减小,能够使二氧化铈6的比表面积增大,能够发挥更高的催化性能。

与此相对,铁氧化物7(主要为fe2o3)附着于二氧化铈6而得到的含有氧化物的二氧化铈8、亦即“附着有氧化物的二氧化铈粒子8b”(参照图2b)的情况下,已知:铁氧化物7自身具有催化活性功能,二氧化铈6自身没有催化活性功能,作为催化辅助作用,具有吸引氧分子的功能。因此,通过使附着于二氧化铈6的铁氧化物7自身的平均粒径减小,能够使铁氧化物7的比表面积增大,能够发挥更高的催化性能。

本实施方式的蜂窝结构体1被形成为至少一部分的二氧化铈6暴露在隔壁4的结构体内部形成的多个气孔5的表面,并且,在暴露出来的该二氧化铈的表面和/或内部以固溶或附着的状态存在铁氧化物7。由此,无需通过以往的利用γ-氧化铝进行涂覆处理(湿法涂覆)来增大比表面积,就能够增加尾气与作为催化剂的含有氧化物的二氧化铈8的接触面积,能够充分地发挥上述铁氧化物7的催化性能及二氧化铈6自身对一氧化氮的吸附性能。其结果:不会出现压力损失增大等损害作为微粒除去过滤器的性能的情况。

进而,对于本实施方式的蜂窝结构体1,二氧化铈6的粒子除了包含上述的铁氧化物7以外,还可以包含锰(mn)、锶(sr)以及铝(al)中的至少任意一种金属的氧化物(未图示)。

根据本实施方式的蜂窝结构体1,二氧化铈6以按规定比率被引入构成该蜂窝结构体1(隔壁4)的结构体内部(陶瓷材料中)的状态存在,并且,该二氧化铈6暴露在隔壁4的结构体内部的气孔表面5a,且固溶或附着有铁氧化物7(参照图4~图6)。

由此,将蜂窝结构体1用作no2净化处理等用的催化剂体的情况下,能够使铁氧化物7的高催化活性发挥出来,能够提高no2的净化率(转化率)。另外,通过改变铁氧化物7相对于二氧化铈6的状态(固溶或附着),能够使催化性能的表达机制不同。进而,通过包含铁以外的锰等金属的氧化物,能够发挥更高的催化活性。

本发明的多孔质陶瓷结构体不限定于上述蜂窝结构体1,还可以以其它方式或方案进行使用。即,除了像蜂窝结构体1那样促进ー氧化氮的氧化处理,进行尾气中包含的no气体的净化处理以外,例如还可以用作促进通过尾气的净化处理而捕集到的烟尘燃烧的部件或者吸储氮氧化物的部件。

以下,基于下述的实施例,对本发明的多孔质陶瓷结构体(蜂窝结构体)进行说明,但是,本发明的多孔质陶瓷结构体并不限定于这些实施例。

实施例

下述表1给出了构成实施例1~5及比较例1~3的蜂窝结构体的陶瓷材料(包含无机原料及其它原料)及其配合比率等。此处,实施例1~5及比较例1~3为陶瓷成分(基材成分)由硅/碳化硅(si/sic)系复合材料构成的蜂窝结构体。

此处,对于实施例1~5的蜂窝结构体,包含铁氧化物的二氧化铈(含有氧化物的二氧化铈)以分布在隔壁的内部(结构体内部)的方式存在,二氧化铈在陶瓷材料中所占的比率满足0.1质量%~5.0质量%的范围的条件,且铁氧化物在陶瓷材料中所占的比率满足0.02质量%~0.6质量%的范围的条件。应予说明,蜂窝结构体除了包含陶瓷成分、含有氧化物的二氧化铈以外,还包含规定的质量%的氧化铝(al2o3)及氧化锶(sro)作为其它助剂成分。

另一方面,比较例1为不具有含有氧化物的二氧化铈的、仅基材及其它助剂成分的蜂窝结构体,比较例2为仅通常的二氧化铈分布在气孔表面的蜂窝结构体。此外,比较例3为预先准备包含铁氧化物的浆料状的含有氧化物的二氧化铈,通过浸渍到蜂窝结构体中而在隔壁表面形成有含有氧化物的二氧化铈的蜂窝结构体。以下,将实施例1~5及比较例1~3的蜂窝结构体的制作详细情况记载如下。

1.蜂窝结构体的制作

(1)坯土的调制

称量表1所示的蜂窝结构体的骨料、含有氧化物的二氧化铈(二氧化铈+铁氧化物),使用捏合机干式混合15分钟后,投入水,使用捏合机再混炼30分钟,得到坯土。此时,改变二氧化铈的添加量及有无添加、铁氧化物相对于二氧化铈的比率等,分别形成符合下述表1的实施例1~5及比较例1~3的坯土。应予说明,对于含有氧化物的二氧化铈,使用已经说明的含浸法等,将铁氧化物含浸于二氧化铈,再进行烧成处理,由此,预先准备出铁氧化物中的一部分固溶或附着于二氧化铈的含有氧化物的二氧化铈。另外,坯土的调制不限定于如上所述预先准备含有氧化物的二氧化铈的方法,例如还可以在蜂窝结构体的骨料中混合二氧化铈、铁氧化物(或硝酸铁溶液)来制作坯土。

(2)蜂窝成型体的成型

使用真空练泥机将各实施例及比较例中分别调制的多种坯土成型为柱状,然后,导入挤出成型机,挤出成型蜂窝状的蜂窝成型体。应予说明,蜂窝成型体的蜂窝直径为30mm,隔壁厚度为12mil(约0.3mm)、隔室密度为300cpsi(cellpersquareinches:46.5隔室/cm2)、外周壁厚度为约0.6mm,且在内部具备区划形成成为流体流路的多个隔室的格子状的隔壁。

(3)蜂窝成型体的干燥及烧成

将制作的蜂窝成型体通过微波干燥使约70%的水分蒸发,然后,进行暖风干燥(80℃×12小时)。然后,投入到维持450℃的脱脂炉中,进行除去蜂窝成型体中残留的有机物成分的脱脂,然后,将烧成温度设定为1450℃,在氩气氛气压下进行烧成处理(正式烧成)。然后,将烧成温度设定为1250℃,在大气压下进行氧化处理。由此,形成结构体内部包含具有二氧化铈及铁氧化物的含有氧化物的二氧化铈的蜂窝结构体。

2.试样的分析

对于通过上述操作得到的蜂窝结构体的试样(实施例1~5、比较例1~3),测定基材成分的比率、二氧化铈及铁氧化物的比率、二氧化铈的粒径、二氧化铈粒子的比表面积、铁氧化物粒子的比表面积、各粒子的结晶相。以下给出分析及计算的具体方法。

2.1基材成分、二氧化铈及铁氧化物的各成分的比率(质量%)

分别基于icp发光分光分析法(inductivitycoupledplasmaatomicemissionspectroscopy)进行分析,由此,计算出各成分的质量%。

2.2比表面积及平均粒径

利用众所周知的bet法来测定蜂窝结构体的比表面积。进而,二氧化铈的平均粒径为通过激光衍射法计算出的中值粒径。应予说明,对于平均粒径,除了上述激光衍射法以外,例如还可以对于通过扫描型电子显微镜(sem)观察到的视野图像内的二氧化铈6的各粒子,基于视野图像内的尺寸及放大倍率计算出粒径,计算出该粒径的平均值作为平均粒径。应予说明,具有含有氧化物的二氧化铈的蜂窝结构体的情形(实施例1~5)的比表面积高于不具有该含有氧化物的二氧化铈的蜂窝结构体(比较例1)的比表面积(参照表1)。即,含有氧化物的二氧化铈的存在成为使蜂窝结构体的比表面积增大的主要原因。

2.3粒子的结晶相

对于制作的试样,使用x射线衍射装置(旋转对阴极型x射线衍射装置:理学电机制、rint)来测定各粒子的结晶相。此处,x射线衍射测定的条件为cukα源、50kv、300ma、2θ=10~60°,使用市场上销售的x射线数据解析软件对得到的x射线衍射数据进行解析。

将通过上述2得到的测定结果汇总,示于下述表1。

表1

3.no吸附量的计算

基于使用了no气体的升温脱离法计算出no吸附量。此处,作为no吸附量计算用的装置,使用autochemii(micromeritis公司制)。进而,作为用于吸附的气体,使用200ppmno、10%o2、he的混合气体。在升温炉内的反应管内载放上述测定试样,气体吸附时的温度设定为250℃,并将上述气体导入反应管内。吸附时间为30分钟。吸附结束后,在反应管内导入he气体,在将升温速度设定为10℃/min的条件下,升温至250~600℃。通过质量分析仪来测量升温时的脱气成分,计算出no脱离量。将该no脱离量作为no吸附量。

4.no2转化率的计算

将通过上述1制作的蜂窝催化剂体分别加工成直径25.4mm×长度50.8mm的试验片,对加工的外周进行涂覆处理。将得到的试验片作为测定试样,使用汽车尾气分析装置(sigu1000:horiba公司制)进行评价。此时,在升温炉内的反应管内载放上述测定试样,加热至测定试样为250℃。然后,将200ppmno(ー氧化氮)、10%o2(氧)及n2(氮)的混合气体作为反应气体,导入反应管内。此时,使用尾气测定装置(mexa-6000ft:horiba公司制)对从测定试样中排出的排出气体(出口气体)进行分析,测定各排出浓度(no浓度、no2浓度)。进而,基于排出浓度的测定结果,求出no2转化率。此处,利用(1-(no浓度/(no浓度+no2浓度)))计算出no2转化率。

5.no2转化率的评价

将计算出的no2转化率的值为1.0%以上的情形评价为“a”,将0.5%以上且低于1.0%的情形评价为“b”,将0.1%以上且低于0.5%的情形评价为“c”,将低于0.1%的情形评价为“d”。此处,no2转化率的值为d评价即低于0.1%的情况下,考虑到上述汽车气体分析装置的测定误差,判断为几乎没有进行no2转化。在实用上,需要至少为c评价以上。

将no吸附量及no2转化率的评价结果汇总,示于下述表2。

表2

6.评价结果的考察

如上述表1及表2所示,随着二氧化铈的平均粒径减小,表现出no吸附量、no2转化率的评价变得良好,确认到其平均粒径依赖于二氧化铈的含量。特别是实施例2的蜂窝结构体显示出良好的结果。相对于此,像比较例1那样不具有含有氧化物的二氧化铈的蜂窝结构体的情况下,确认到:no吸附量的值为0,no2转化率也为d评价。另外,即便是像比较例2那样仅具备不含有铁氧化物的二氧化铈的蜂窝结构体,也几乎没有确认到效果。此外,即便是二氧化铈的比率与得到最高效果的实施例2相同的比较例4,也显示出在通过浸渍担载的情况下、no吸附量及no2转化率的评价降低。

产业上的可利用性

本发明的多孔质陶瓷结构体可以优选用作汽车尾气净化用催化剂载体等催化剂载体。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1