一种ZrC‑ZrB2‑SiC三元共晶复合陶瓷材料及其制备方法与流程

文档序号:12938285阅读:634来源:国知局
一种ZrC‑ZrB2‑SiC三元共晶复合陶瓷材料及其制备方法与流程

本发明属于复合陶瓷材料领域,具体涉及一种zrc-zrb2-sic三元共晶复合陶瓷材料及其制备方法。



背景技术:

过渡金属的碳化物、硼化物一般拥有较高的熔点与硬度,但单一的过渡金属的碳化物、硼化物由于其固有脆性,其抗热冲击性能还需进一步提高。同时,硼化物与碳化物在高温下抗氧化性能也较差,限制了其在超高温结构材料上的应用。将硼化物与碳化物通过一定的技术手段结合起来制备出的高温复合陶瓷材料具有熔点高、耐烧蚀、力学性能优良的特点,常被用作超高温结构材料以及精密加工刀具材料。

尽管zrc-zrb2-sic三元复合陶瓷目前已经得到了广泛的研究,但目前已有的文献中均使用固相烧结法进行制备。由于zrc、zrb2与sic熔点高,且热扩散系数低,故想获得力学性能优良,致密度高的zrc-zrb2-sic三元复合陶瓷,必须在高温下长时间烧结。



技术实现要素:

本发明的目的是提供一种zrc-zrb2-sic三元共晶复合陶瓷材料,采用定向凝固烧结法制备出一种具有zrc-zrb2-sic三元共晶组成的复合陶瓷材料,该材料具有共晶自生陶瓷的优异特征,且兼具zrc、zrb2、sic三者优异的性能特点,能作为精密加工刀具材料和高温结构材料使用,适合推广应用。

为实现上述目的,本发明采用的技术方案为:

一种zrc-zrb2-sic三元共晶复合陶瓷材料,它以zrc、zrb2、sic粉末为原料,采用定向凝固工艺制备而成,各原料所占摩尔百分比为:zrc10-30%,zrb220-40%,sic30-70%。

优选的,所述zrc所占摩尔百分比为18-22%。

优选的,所述zrb2所占摩尔百分比为30-36%。

优选的,所述sic所占摩尔百分比为44-50%。

上述方案中,所述zrc粉末的质量纯度为99.5%以上;zrb2粉末的质量纯度为99.5%以上;所述sic粉末为β-sic,纯度为99%以上。

上述方案中,所述定向凝固工艺为:将原料混合均匀后进行压坯至片状,然后加热进行快速熔融,再在冷却水的作用下,进行定向冷却、凝固。

上述方案中,所述熔融温度为2400-2600k,时间为30-40s。

上述方案中,所述熔融过程中的厚度方向上的温度梯度为3000℃/cm以上

上述方案中,所述定向冷却步骤中的厚度方向上的温度梯度为3000℃/cm以上,冷却速率大于50℃/s。

优选的,所述定向冷却步骤中的厚度方向上的温度梯度为3000~4000℃,冷却速率为100~150℃。

上述一种zrc-zrb2-sic三元共晶复合陶瓷材料的制备方法,具体步骤如下:

1)原料的称取,按如下配比称取各原料,各原料所占摩尔百分比为:zrc10-30%,zrb220-40%,sic30-70%;

2)将称取的原料粉末混合均匀,然后进行压坯至片状,所得坯体厚度为3-8mm;

3)将步骤2)所得片状坯体置于电弧熔炼炉中,加热进行熔融,然后在冷却水的作用进行定向冷却、凝固,即得所述zrc-zrb2-sic三元共晶复合陶瓷,它具有共晶结构和特定的生长方向。

与现有技术相比,本发明的有益效果为:

1)本发明首次提出采用定向凝固技术制备zrc-zrb2-sic三元共晶复合陶瓷材料,有效综合zrc、zrb2、sic三者的优异性能,所得复合材料具有优异的机械性能、导电性和导热性能,可用作精加工刀具材料和超高温陶瓷材料,具有非常广泛的用途,如:机械加工刀具、高温电极、炉膛原件、火箭发动机、机翼前缘、飞行器鼻锥以及超音速飞行器的热防护系统等。

2)本发明所得复合陶瓷材料中,相与相之间的连接界面是熔体自生复合而成,相界面配合性好、界面干净,且结合强度高;切共晶组织细小,有利于提升。

3)本发明采用定向凝固法制备出的材料相比于传统固相烧结法制备出的产品具有更加优异的机械性能,且具有优异的导电性能和导热性能,可在更为苛刻的环境下应用,有效拓宽其实用范围。

4)本发明涉及的制备工艺简单,为工业化生产提供了基础指导。

附图说明

图1为实施例1所得产物的xrd图谱。

图2为实施例1所得产物的bse图谱。

图3为实施例2所得产物的xrd图谱。

图4为实施例2所得产物的bse图谱。

图5为实施例3所得产物的xrd图谱。

图6为实施例3所得产物的bse图谱。

图7为实施例4所得产物的xrd图谱。

图8为实施例4所得产物的bse图谱。

具体实施方式

为了更好地理解本发明,下面结合具体实施例和附图进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。

以下实施例中,采用的zrc为市售高纯度zrc粉末,纯度为99.5%(质量);zrb2为市售高纯度zrb2粉末,纯度为99.5%(质量);sic为市售高纯度β-sic粉末,纯度为99%(质量)。

实施例1

一种zrc-zrb2-sic三元共晶复合陶瓷材料,其制备方法包括如下步骤:

1)原料的称取,按如下配比称取各原料,各原料所占摩尔百分比为:zrc20%,zrb230%,sic50%;

2)将称取的原料粉末置于球磨机中混合均匀,然后以10mpa的压力进行压坯至片状,所得坯体的厚度为5mm左右;

3)将步骤2)所得片状坯体至于电弧熔炼炉中,在氩气保护气氛下,在2600k的温度下快速熔融30s(厚度方向温度梯度为3000℃/cm),然后在冷却水的作用进行定向冷却、凝固(厚度方向温度梯度为3000℃/cm,冷却速率为100℃/s),即得所述zrc-zrb2-sic三元共晶复合陶瓷。

图1为本实施例所得产物的xrd图谱,图中只有zrc、zrb2以及sic的衍射峰,并无其他物质生成。图2为本实施例所得产物的背散射图谱,可以观察到分布较均匀的三元共晶结构。

将本实施例所得产物进行机械性能测试:在压力作用为4.9n,测试时间为10s时,测得的维式硬度为21gpa,断裂韧性为5.59mpam1/2,优于大部分固相烧结法所制备出的zrc-zrb2-sic三元复合陶瓷材料(wu等人利用热压烧结法制备出的zrc-zrb2-sic复相陶瓷,其维氏硬度为16.7gpa断裂韧性为5.1mpam1/2)以及本发明制备的其他非完全三元共晶结构的zrc-zrb2-sic三元复合陶瓷材料。

将本实施例所得产物进行电导率和热导率测试:在287至800k的温度范围中,电导率为7.2×107-1.75×106sm-1;在298至973k的温度范围中,其热导率为85-61wk-1m-1

实施例2

一种zrc-zrb2-sic三元共晶复合陶瓷材料,其制备方法包括如下步骤:

1)原料的称取,按如下配比称取各原料,各原料所占摩尔百分比为其中zrc20%,zrb240%,sic40%;

2)将称取的原料粉末置于球磨机中混合均匀,然后以10mpa的压力进行压坯至片状,坯体的厚度在5mm左右;

3)将步骤2)所得片状坯体至于电弧熔炼炉中,在氩气保护气氛下,在2600k的温度下快速熔融30s(厚度方向温度梯度为3000℃/cm),然后在冷却水的作用进行定向冷却、凝固(厚度方向温度梯度为3000℃/cm,冷却速率为100℃/s),即得所述zrc-zrb2-sic三元共晶复合陶瓷。

图3为本实施例所得产物的xrd图谱,图中只有zrc、zrb2以及sic的衍射峰,并无其他物质生成。图4为本实施例所得产物的背散射图谱,图中可以观察到分布较均匀的三元共晶结构,除此之外,还有叶脉状的zrb2与zrc的二元共晶结构。

将本实施例所得产物进行机械性能测试:在压力作用为4.9n,测试时间为10s时,测得的维式硬度为19.9gpa,断裂韧性为5.16mpam1/2,低于实施例1所得zrc-zrb2-sic三元共晶复合陶瓷材料。

实施例3

一种zrc-zrb2-sic三元共晶复合陶瓷材料,其制备方法包括如下步骤:

1)原料的称取,按如下配比称取各原料,各原料所占摩尔百分比为:zrc10%,zrb220%,sic70%;

2)将称取的原料粉末置于球磨机中混合均匀,然后以10mpa的压力进行压坯至片状,所得坯体的厚度在5mm左右;

3)将步骤2)所得片状坯体至于电弧熔炼炉中,在氩气保护气氛下,在2600k的温度下快速熔融30s(厚度方向温度梯度为3000℃/cm),然后在冷却水的作用进行定向冷却、凝固(厚度方向温度梯度为3000℃/cm,冷却速率为100℃/s),即得所述zrc-zrb2-sic三元共晶复合陶瓷。

图5为本实施例所得产物的xrd图谱,图中只有zrc、zrb2以及sic的衍射峰,并无其他物质生成。图6为本实施例所得产物的背散射图谱,图中可以观察到分布较均匀的三元共晶结构,除此之外还有棒状的sic的相结构。

实施例4

一种zrc-zrb2-sic三元高温共晶复合陶瓷材料,其制备方法包括如下步骤:

1)原料的称取,按如下配比称取各原料,各原料所占摩尔百分比为:zrc30%,zrb220%,sic50%;

2)将称取的原料粉末置于球磨机中混合均匀,然后以10mpa的压力进行压坯至片状,坯体的厚度在5mm左右;

3)将步骤2)所得片状坯体至于电弧熔炼炉中,在氩气保护气氛下,在2600k的温度下快速熔融30s(厚度方向温度梯度为3000℃/cm),然后在冷却水的作用进行定向冷却、凝固(厚度方向温度梯度为3000℃/cm,冷却速率为100℃/s),即得所述zrc-zrb2-sic三元共晶复合陶瓷。

图7为本实施例所得产物的xrd图谱,图中只有zrc、zrb2以及sic的衍射峰,并无其他物质生成。图8为本实施例所得产物的背散射图谱,图中可以观察到且可以观察到分布较均匀的三元共晶结构以及长条状的sic与zrc二元共晶结构。

将本实施例所得产物进行导电性与导热性的测试:在287至800k的温度范围中,其电导率为7.15×107-1.47×106sm-1;在298至973k的温度范围中,其热导率为46-48wk-1m-1

上述结果表明,本发明所得zrc-zrb2-sic三元高温共晶复合陶瓷材料具有均匀的三元共晶结构,共晶组织细小、均匀、可呈现出取向一致的棒状结构,且相与相之间界面配合性好、非常干净,可表现出优异的宏观机械性能,具有良好的硬度与断裂韧性;此外所得产物的导电性与导热性能优良;应用前景广阔,适用于机械加工刀具、高温电极、炉膛原件、火箭发动机、机翼前缘、飞行器鼻锥以及超音速飞行器的热防护系统等领域。

上述实施例仅仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1