一种利用镍铁合金尾渣制备镁橄榄石耐火材料的方法与流程

文档序号:14767971发布日期:2018-06-23 00:54阅读:324来源:国知局

本发明属于有色冶金废渣资源综合利用技术领域,具体涉及一种镍铁合金尾渣的处理方法,尤其是一种利用硅镁型红土镍矿火法冶炼镍铁合金产生的水淬渣生产镁橄榄石耐火材料的方法。



背景技术:

近年来,随着红土镍矿火法冶炼镍铁合金规模逐步扩大,红土镍矿冶炼镍铁废渣的排放量逐渐增多,约占冶金废渣总排放量的五分之一。国内对镍铁合金尾渣的利用率较低,除了少部分作为矿井填充料,大部分只是进行了简单的堆存,大量镍铁合金尾渣堆放而不加治理,不仅占用大量土地,还会对区域水体、大气、生态等环境因素造成不安全因素,甚至会对周围居民安全造成威胁。鉴于我国可开采矿石资源日益枯竭的严峻现状及冶金行业绿色低碳发展的要求,将镍铁合金尾渣等含硅镁冶炼废渣作为二次资源进行综合利用是提高资源综合利用率、实现可持续发展的有效途径之一。

镁橄榄石耐火材料具有熔点高、化学稳定性好、不水化、抗熔融、金属侵蚀性能好、热传导率低、高温下与大多数高温材料间的相容性较好的特点。由于镁橄榄石耐火材料的上述特点,使其广泛应用于冶金、热工以及铸造行业。在热工领域,镁橄榄石耐火材料主要用于加热炉炉底、热风炉炉衬以及各种工业窑炉蓄热室的格子砖;在铸造领域,由于不含游离态SiO2,而被公认为是绿色环保型铸造材料。在冶金领域,目前镁橄榄石耐火材料主要作为连铸中间包内衬材料使用,少部分作为转炉和钢包修补材料使用。但作为生产耐火材料的天然镁橄榄石中含有较多的铁、钙、铝等杂质,严重影响了其在冶金领域的应用,而另一主要原料高纯度菱镁矿的储量也日益短缺,这就使得镍铁合金尾渣作为制备镁橄榄石耐火材料的新原料将会受到更多的关注。此外使用天然矿物制备镁橄榄石耐火材料,都需要进行高温预烧来消除结晶水和防止烧结过程中原料产生的热膨胀,而镍铁合金渣作为冶金废渣则不需要进行预烧,这样将节省大量能源。因此以镍铁合金尾渣做为原料,生产质量合格的镁橄榄石耐火材料将具有广阔的应用前景及综合利用价值。

专利CN106810281A《一种利用镍铁渣制备得到的镁橄榄石耐火砖的制备方法》公开了一种将镍铁渣与镁砂细粉混合,使用氯化镁水溶液、腐殖酸作为粘结剂制备镁橄榄石耐火砖。该方法使用的粘结剂氯化镁在潮湿环境中易产生返卤。同时氯化镁水溶液在高温下生成氯化氢,其与另一粘结剂腐殖酸都为酸性物质,而镁橄榄石耐火材料为碱性耐材,在一定程度上会对产品质量产生影响。此外,过低的焙烧温度也不能使镁砂中的镁置换出镁橄榄石类质同象体中的钙和铝等杂质,导致镁橄榄石质耐材的耐火度降低。

专利CN107285778A《一种耐高温镁橄榄石型耐火材料的制备方法》公开了一种耐高温镁橄榄石型耐火材料的制备方法,通过生成少量的MgO·Cr2O3以提高镁橄榄石耐火材料的耐火度。但如果原料中不含Cr,则需引入Cr源。以铬铁矿的形式引入会增加Fe的含量,降低镁橄榄石质耐材的耐火度,以镁铬尖晶石或镁铬砂的形式引入会提高成本。

现有的通过镍铁渣制备镁橄榄石耐火材料的专利中,都缺少对耐火材料的使用性能上的描述,如0.2MPa荷重变形开始温度、抗热震性、线变化率等重要参数。本发明将这些参数作为生产镁橄榄石耐火材料的主要性能指标在实例中进行说明。



技术实现要素:

本发明克服了上述技术中存在的不足,通过改变原料配比及粘结剂种类;减少原料成型所需的水分;适当提高烧结温度以制备出耐火度高、体积密度大、显气孔率小、抗热震性强、高温形变小的优质镁橄榄石耐火材料。

一种利用镍铁合金尾渣制备镁橄榄石耐火材料的方法,其特征在于以镍铁合金尾渣、镁砂作为原料,酚醛树脂作为粘结剂,进行细磨并按照一定的粒度比例充分混合;混合后原料中主要组分的质量分数比例为:MgO=40~62%;MgO/SiO2=0.9~2;MgO/FeO>5;MgO/Al2O3>9.25;MgO/CaO>8;将混合料加少量水润湿后压制成型,得到生砖;经过干燥处理的生砖在一定的升温速率下加热至1350~1600℃,并在此温度下进行2.5~3.5h的高温烧结,烧结完毕后以一定的降温速率进行冷却,最后制得成品镁橄榄石耐火材料,整个烧结过程中都是在氧化气氛下进行的。

进一步地,所述镁砂成分中MgO的质量分数大于94%,使用镁砂的烧成温度大于1500℃。

进一步地,所述粘结剂酚醛树脂为外加,添加量为所述原料的2~4%;外加水分添加量为5~10%。

进一步地,所述原料粒度要求:镍铁合金尾渣细磨至粒度为85%小于0.074mm;镁砂为细磨镁砂与粗磨镁砂混掺,其中细磨镁砂粒度为小于0.074mm,占镁砂总量的70~80%;粗磨镁砂粒度为0.25~0.074mm,占镁砂总量的20~30%,酚醛树脂粒度为90%小于0.074mm。

进一步地,所述镁橄榄石耐火材料的成型压力为50~100MPa,干燥温度50~100℃,干燥后镁橄榄石质耐材水分含量小于1%。

进一步地,所述耐火材料烧结过程,烧结温度1350~1600℃,升温速率小于10℃/min,高温烧结时间2.5‐3.5h,降温速率小于20℃/min。

进一步地,所述生产过程中将耐火度、体积密度、显气孔率、抗热震性、0.2MPa荷重变形开始温度、重烧收缩率作为性能指标,指导镍铁合金尾渣制备镁橄榄石耐火材料。

整个烧结过程中,分为慢速升温、高温烧结、缓慢冷却三个阶段,高温烧结温度为1350~1600℃,高温烧结时间2.5‐3.5h;升温速率小于10℃/min,降温速率小于20℃/min;整个烧结过程为氧化气氛。控制升温速率,是为了防止升温过程中耐火材料出现爆裂,保证有足够的液相生成,提高产品强度。控制降温速率,则是为了使高熔点的Mg2SiO4晶体继续生长以及镁砂中的MgO与镍铁合金尾渣中的FeO、CaO、Al2O3可以充分生成固溶体,提高耐火材料的耐火性能。

本发明中,镁砂的添加量和烧结温度是提高镁橄榄石质耐材耐火性能的主要影响因素。原料中镍铁合金尾渣的主要晶体结构为镁橄榄石(Mg2SiO4)的类质同象结构,晶格中少量的Mg2+被Fe2+、Ca2+所取代,生成Fe2SiO4的熔点为1205℃、Ca2SiO4的熔点为1436℃。如果原料中含Fe2+、Ca2+均比较多,则需要1436℃的温度才能使镁砂中的Mg2+将Fe2+、Ca2+从镁橄榄石中大量置换出来。而对于含Ca2+低的原料,烧结温度可以低于1436℃。但出于不同行业对耐火材料使用性能要求的差异,尤其是将镁橄榄石耐火材料应用在冶金工业中,则需提高烧结温度以增强材料的耐火度和物理强度。

生产过程中如果其他条件不变,随着镁砂添加量的增加,显气孔率增大,体积密度和抗压强度会降低。此时需要提高烧结温度,增加液相量的生成,使材料结构变得致密,才能消除增添镁砂产生的不良后果。此外,提高烧结温度也有利于降低镁橄榄石耐火材料的重烧收缩率,但烧结温度过高会生成过多的液相,造成耐火材料形变。因此,在本发明给定的范围内适当提高烧结温度,有利于提升镁橄榄石耐火材料的性能。

镍铁合金尾渣中除镁橄榄石外的其他晶体为MgO、FeO、CaO、Al2O3形成的固溶体。其中FeO与CaO、Al2O3形成的固溶体中最高熔化温度低于1360℃,会造成镁橄榄石质耐材的耐火性能的降低。但是当加入镁砂后,给系统中带来充足的MgO,则会生成大量的MgO‐FeO、MgO‐CaO、MgO‐Al2O3固溶体。MgO‐FeO固溶体体系中,当MgO质量分数达到70%时,MgO‐FeO固溶体熔化温度高达2000℃。同样,MgO‐CaO固溶体的熔化温度为2370℃,MgO‐Al2O3固溶体的熔化温度为2050℃。因此需要加入镁砂来增强材料的耐火性能。

本发明中,采用的粘接剂为酚醛树脂,因其具有良好的力学性能、耐高温性能。即使在非常高的温度下,也能保持其结构的整体性和尺寸的稳定性。此外酚醛树脂为有机物,高温烧结后不会带入有害杂质,其低廉的价格也使它可以在工业中大量的使用。

本发明具有原料适用范围广的优点。其中铁、钙、铝为镁橄榄石耐火材料中的有害元素,但只要低于本发明配方中要求的含量,即可生产出具有经济效益的镁橄榄石耐火材料。

本发明具有成型过程用水量少的优点。原料采用粗细磨混合的方式,提升了成型强度,减少了用水量,防止生砖压制过程中挤压出大量的泥浆,污染生产环境。

本发明生产的耐火砖具有较高的耐火性能。小幅增加镁砂掺量、提高烧结温度会使加工成本微弱增加,但是保证了镁橄榄石耐火材料的耐火度、高温抗蠕变性能、抗压强度等重要指标的提高。使其可以作为耐火材料应用在高温行业中。

本发明在生产过程中可将镍铁合金尾渣全部利用,充分解决镍铁合金尾渣作为固体废弃物对环境造成的污染,制备出市场价格较高的优质耐火材料。工艺简单,易于生产。

具体实施方式

下面通过具体实施例对本发明的技术方案进行详细说明。并非对其保护范围的限制。为避免重复,先将本具体实施方式所涉及的原料参数统一描述如下,具体实例中不再赘述,所用水淬镍铁合金尾渣成分如表1所示,其中Mg、Si、Fe、Al、Ca为主要组分,其他元素由于含量较少视为杂质元素。

表1水淬镍铁合金尾渣成分

实施例1

以85wt%镍铁合金尾渣、15wt%镁砂为原料,原料混合后几种主要组分的质量分数比例关系如下:MgO为45%;MgO/SiO2=1.18;MgO/FeO=6.41;MgO/Al2O3=12.26;MgO/CaO=10.82;其余为杂质。外加所述原料质量分数3%的酚醛树脂作为粘结剂,外加所述原料质量分数7%的水将原料润湿。在50MPa压力下压制成型。经过80℃干燥3h后制成生砖。生砖在氧化气氛下,于1350℃高温烧结2.5h,并按要求的升降温速率控制升降温过程,制成镁橄榄石耐火砖。

所述实例1的镍铁合金尾渣粒度为86%小于0.074mm。

所述实例1的镁砂为细磨镁砂与粗磨镁砂混掺,其中细磨镁砂粒度小于0.074mm,占镁砂总量的70%;粗磨镁砂粒度为0.25~0.074mm,占镁砂总量的30%。

所述实例1的酚醛树脂粒度为95%小于0.074mm。

所述实例1的烧结升温速率为8℃/min;降温速率1350~1200℃时为5℃/min,1200℃以下为10℃/min。

所述实例1经过上述条件制备成镁橄榄石耐火砖:耐火度1560~1580℃,抗压强度20~30MPa,体积密度2.47~2.69g/cm3,显气孔率21.41~25.63%,0.2MPa荷重变形开始温度1500~1520℃,抗热震性(1000℃)3~5次,重烧收缩率(1500℃,保温2h)1.75~2.05%。

实施例2

以85wt%镍铁合金尾渣、15wt%镁砂为原料,原料混合后几种主要组分的质量分数比例关系如下:MgO为45%;MgO/SiO2=1.18;MgO/FeO=6.41;MgO/Al2O3=12.26;MgO/CaO=10.82;其余为杂质。外加所述原料质量分数3%的酚醛树脂作为粘结剂,外加所述原料质量分数8%的水将原料润湿。在70MPa压力下压制成型。经过80℃干燥3h后制成生砖。生砖在氧化气氛下,于1450℃高温烧结3h,并按要求的升降温速率控制升降温过程,制成镁橄榄石耐火砖。

所述实例2的镍铁合金尾渣粒度为86%小于0.074mm。

所述实例2的镁砂为细磨镁砂与粗磨镁砂混掺,其中细磨镁砂粒度小于0.074mm,占镁砂总量的70%;粗磨镁砂粒度为0.25~0.074mm,占镁砂总量的30%。

所述实例2的酚醛树脂粒度为95%小于0.074mm。

所述实例2的烧结升温速率为8℃/min;降温速率1450~1200℃时为5℃/min,1200℃以下为10℃/min。

所述实例2经过上述条件制备成镁橄榄石耐火砖:耐火度1610~1630℃,抗压强度45~55MPa,体积密度2.59~2.73g/cm3;显气孔率15.34~19.81%,0.2MPa荷重变形开始温度1550~1570℃,抗热震性(1000℃))5~6次,重烧收缩率(1500℃,保温2h)1.12~1.32%。

实施例3

以80wt%镍铁合金尾渣、20wt%镁砂为原料,原料混合后几种主要组分的质量分数比例关系如下:MgO为48%;MgO/SiO2=1.34;MgO/FeO=7.26;MgO/Al2O3=13.91;MgO/CaO=12.24;其余为杂质。外加所述原料质量分数3%的酚醛树脂作为粘结剂,外加所述原料质量分数8%的水将原料润湿。在70MPa压力下压制成型。经过80℃干燥3h后制成生砖。生砖在氧化气氛下1500℃高温烧结3h,并按要求的升降温速率控制升降温过程,制成镁橄榄石耐火砖。

所述实例3的镍铁合金尾渣粒度为89%小于0.074mm。

所述实例3的镁砂为细磨镁砂与粗磨镁砂混掺,其中细磨镁砂粒度小于0.074mm,占镁砂总量的70%;粗磨镁砂粒度为0.25~0.074mm,占镁砂总量的30%。

所述实例3的酚醛树脂粒度为95%小于0.074mm。

所述实例3的烧结升温速率为8℃/min;降温速率1500~1200℃时为5℃/min,1200℃以下为10℃/min。

所述实例3经过上述条件制备成镁橄榄石耐火砖:耐火度1670~1700℃,抗压强度65~75MPa,体积密度2.65~2.81g/cm3,显气孔率14.26~18.93%,0.2MPa荷重变形开始温度1610~1630℃,抗热震性(1000℃)7~9次,重烧收缩率(1600℃,保温2h)0.51~0.64%。

实施例4

以75wt%镍铁合金尾渣、25wt%镁砂为原料,原料混合后几种主要组分的质量分数比例关系如下:MgO为51%;MgO/SiO2=1.52;MgO/FeO=8.22;MgO/Al2O3=15.79;MgO/CaO=13.89;其余为杂质。外加所述原料质量分数3%的酚醛树脂作为粘结剂,外加所述原料质量分数8%的水将原料润湿。在100MPa压力下压制成型。经过80℃干燥3h后制成生砖。生砖在氧化气氛下1550℃高温烧结3h,并按要求的升降温速率控制升降温过程,制成镁橄榄石耐火砖。

所述实例4的镍铁合金尾渣粒度为89%小于0.074mm。

所述实例4的镁砂为细磨镁砂与粗磨镁砂混掺,其中细磨镁砂粒度小于0.074mm,占镁砂总量的70%;粗磨镁砂粒度为0.25~0.074mm,占镁砂总量的30%。

所述实例4的酚醛树脂粒度为95%小于0.074mm。

所述实例4的烧结升温速率为8℃/min;降温速率1550~1200℃时为5℃/min,1200℃以下为10℃/min。

所述实例4经过上述条件制备成镁橄榄石耐火砖:耐火度1700~1730℃,抗压强度85~105MPa,体积密度2.71~2.94g/cm3,显气孔率8.58~12.62%,0.2MPa荷重变形开始温度1650~1670℃,抗热震性(1000℃)8~10次,重烧收缩率(1600℃,保温2h)0.19~0.31%。

实施例5

以70wt%镍铁合金尾渣、30wt%镁砂为原料,原料混合后几种主要组分的质量分数比例关系如下:MgO为54%;MgO/SiO2=1.73;MgO/FeO=9.34;MgO/Al2O3=17.88;MgO/CaO=15.74;其余为杂质。外加所述原料质量分数3%的酚醛树脂作为粘结剂,外加所述原料质量分数10%的水将原料润湿。在100MPa压力下压制成型。经过80℃干燥3h后制成生砖。生砖在氧化气氛下1580℃高温烧结3h,并按要求的升降温速率控制升降温过程,制成镁橄榄石耐火砖。

所述实例5的镍铁合金尾渣粒度为89%小于0.074mm。

所述实例5的镁砂为细磨镁砂与粗磨镁砂混掺,其中细磨镁砂粒度小于0.074mm,占镁砂总量的70%;粗磨镁砂粒度为0.25~0.074mm,占镁砂总量的30%。

所述实例5的酚醛树脂粒度为95%小于0.074mm。

所述实例5的烧结升温速率为8℃/min;降温速率1580~1200℃时为5℃/min,1200℃以下为10℃/min。

所述实例5经过上述条件制备成镁橄榄石耐火砖:耐火度1760~1790℃,抗压强度89~112MPa,体积密度2.84~2.97g/cm3,显气孔率6.12~9.54%,0.2MPa荷重变形开始温度1670~1690℃,抗热震性(1000℃)9~11次,重烧收缩率(1700℃,保温2h)0.23~0.37%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1