用于蒸馏二氧化碳与挥发性较低的组分的混合物的方法和设备与流程

文档序号:15622692发布日期:2018-10-09 22:19阅读:310来源:国知局

本发明涉及一种用于蒸馏二氧化碳与挥发性较低的组分的混合物的方法和设备。



背景技术:

包括二氧化碳和至少一种挥发性比二氧化碳低的组分(例如,溶剂)作为主要组分的混合物可以通过化学过程来生产。在此情况下,有利的是分离挥发性较低的组分和二氧化碳。

溶剂是在其使用温度下为液体或超临界的物质,具有溶解、稀释或提取其它物质而不改变其化学性质且本身不发生任何变化的特性。在本发明的上下文中,所考虑的溶剂可以是例如丙酮、水、二甲基乙酰胺(dmac)或二甲基亚砜(dmso)。

混合物的组成可以相对于一种或多种挥发性较低的组分(例如丙酮)变化约1mol%(摩尔百分比)至30mol%,气体混合物的其余部分基本上是co2。

在某些化学过程中,co2可以被用作丙酮溶剂(以及一些其它等效分子)。回收这种co2以最大限度地减少消耗的“新鲜”co2的量有一定的经济效益。

如果压力升高,则溶剂和二氧化碳的分离变得更加困难。然而,本发明建议在20与25巴(绝对压力)之间操作蒸馏塔,以节省用于对二氧化碳加压的机器的费用。

从co2与挥发性较低的混合物中回收co2使其可以回收再利用,从而减少对新鲜co2的需求。工艺改进可以提高co2产率并设想溶剂的回收。

在co2/挥发性较低的组分分离的背景中,在预期的co2纯度不超过97mol%时,使co2回收率最大化的一种方式是从co2/挥发性较低的组分的超临界混合物开始(压力高于73bara(巴,绝对压力))并使其膨胀到低于30bara且高于6bara的压力。

为了使co2的回收最大化,在超临界co2的膨胀之前使用冷却器。所选择的温度尽可能低。

所使用的系统包括:

-用于将混合物调节到最佳温度的进料冷却器(例如使用水),

-膨胀阀,

-分离罐,其允许回收“纯”气态co2和液态的co2/溶剂混合物。

使capex最小化的该设备以60%与90%之间的产率生产纯度>97mol%的气态co2。另外的co2以及溶剂被输送至流出物。



技术实现要素:

根据本发明的一个目的,提供了一种用于分离二氧化碳与挥发性低于二氧化碳的挥发性较低的组分的气体混合物的方法,其中:

i)冷却并膨胀要分离的气体混合物,以形成膨胀流,任选地两相的膨胀流,

ii)将膨胀流输送至容器——其任选地是分相器——以形成任选地增浓了挥发性较低的组分的第一液体和任选地增浓了二氧化碳的第一气体,

iii)将任选地增浓了挥发性较低的组分的液体的至少一部分输送到蒸馏塔,

iv)从塔的顶部提取增浓了二氧化碳的第二气体并从塔的槽提取增浓了挥发性较低的组分的第二液体,

v)冷凝增浓了二氧化碳的第一气体和/或第二气体的至少一部分和/或从塔的顶部提取增浓了二氧化碳的液体,并且

vi)将冷凝气体的至少一部分和/或增浓了二氧化碳的液体的至少一部分输送到容器上游的部位或容器。

根据本发明的其它任选方面:

-将冷凝气体的至少一部分和/或液体的至少一部分再循环/回收到从其接收气体混合物的反应器。

将增浓了挥发性较低的组分的第二液体的至少一部分再循环到从其接收气体混合物的反应器。

-分离增浓了挥发性较低的组分的第二液体以形成贫含挥发性较低的组分的气体和富含挥发性较低的组分的液体产物,冷凝该贫含气体并且使冷凝的贫含气体返回容器。

-不从容器提取气体。

-使冷凝气体的至少一部分和/或液体的至少一部分返回到容器的上游或甚至反应器的上游。

-在位于容器上游的泵中将液体或冷凝气体加压。

-加热第二液体的至少一部分以使其部分地气化,在分相器中将它分离,提取液体作为产品,来自分相器的气体与第二液体换热而冷凝,并且将冷凝的气体输送到容器。

-混合物包含至少70mol%的二氧化碳,或甚至至少90mol%的二氧化碳。

根据本发明的另一目的,提供了一种用于分离二氧化碳与挥发性低于二氧化碳的挥发性较低组分的气体混合物的设备,该设备包括:用于冷却待分离的气体混合物的装置;用于使冷却后的气体混合物膨胀以形成膨胀流、任选地两相膨胀流的阀;容器,其任选地为分相器;用于将膨胀流输送到容器的装置;第一管线,经由其从容器提取任选地增浓了挥发性较低组分的第一液体;任选的管线,经由其从容器提取增浓了二氧化碳的第一气体;与第一管线连接的蒸馏塔;管线,经由其从塔的顶部提取增浓了二氧化碳的第二气体;管线,经由其从塔的槽提取增浓了挥发性较低的组分的第二液体;任选的冷凝器,其用于冷凝增浓了二氧化碳的第一气体的和/或第二气体的至少一部分;和/或用于从塔的顶部提取增浓了二氧化碳的液体的装置和用于将在冷凝器中冷凝的气体的至少一部分和/或增浓了二氧化碳的液体的至少一部分输送到容器上游的部位或容器的装置。

任选地,在被供给以二氧化碳的反应器中产生该气体混合物。

用于将在冷凝器中冷凝的气体的至少一部分和/或增浓了二氧化碳的液体的至少一部分输送到容器上游的位置的装置可以与反应器连接。

附图说明

将参照附图更详细地描述本发明,附图为根据本发明的方法的示意图。其中:

图1示出了根据用于分离混合物的方法的用于生产二氧化碳与溶剂的气体混合物的方法。

图2示出了二氧化碳和挥发性较低的组分的分离方法。

图3示出了根据本发明的方法的一种实施方案。

图4示出纵坐标上的质量流量和co2的摩尔浓度随着横坐标上的时间的变化。

具体实施方式

在分离co2与挥发性较低的组分(这里为溶剂,例如丙酮、二甲基乙酰胺(dmac)或二甲基亚砜(dmso))的混合物的背景中,在预期的co2纯度高于99%的情况下,使co2回收率最大化的一种方式是从co2与挥发性较低的组分(例如,溶剂)的超临界混合物开始(压力>73bara)并使其膨胀到低于30bara且高于6bara的压力。

为了使co2的回收最大化,本发明基于冷却器在超临界co2的膨胀并且然后蒸馏之前的使用(温度被选择为尽可能低),其中在塔的顶部回收纯co2。

本发明提出了一种系统,其包括:

-用于使混合物3达到低于0℃的最佳温度的进料冷却器5(例如使用水),

-膨胀阀7,

-分离罐9,其允许回收“纯”气态co213和处于液态的co2与挥发性较低的组分(例如,溶剂)的混合物11,

-蒸馏塔15,其结合了冷凝器31和再沸器19。

用于生产气体混合物的方法在被供给以处于超临界压力下的液态二氧化碳1以及诸如溶剂的其它流体的反应器r中执行。该反应器r产生溶剂与气态二氧化碳的混合物3。混合物的组成可以在30mol%的挥发性较低的组分和70mol%的二氧化碳与99.9mol%的二氧化碳和0.1%的挥发性较低的组分之间变化,反应器过程是循环的。

混合物通过冷却器5中的热交换而冷却,在阀7中膨胀以产生两相流,并且在分相器9中分离。分相器的温度根据气体混合物3的组分而变化。

由于料流3中的溶剂与co2的比率以及料流3的流速随时间变化(不连续过程),所以对于在反应器r中进行的某些过程而言,有必要稳定对蒸馏塔15的供给,该供给实质上变化很大。

组成和流速变化大的蒸馏塔15的操作坦率地讲在不首先将这些波动稳定在较小操作范围内的情况下将是不可能的。

更一般而言,本发明提出从在反应器r中进行的不连续过程获得的料流3的处理。这是通过阀7中的快速膨胀来分离混合物3(两种化合物或以上)的液相和气相并且将所产生的液体蓄积在分离罐9中以便连续和稳定地供给下游的塔15以确保它连续操作的问题。

该状况下的一种替代方案将是维持塔15中的最低进料速度,其需要:

-附加管路(管道、阀和仪器)的安装,

-塔15的针对最大负荷的尺寸确定。

组成的稳定性在此情况下不维持。

根据本发明的方法包括将由容器9组成的滞留空间(holdup)确定尺寸为足够大以使不连续过程的变化平顺。事实上,由混合物的膨胀引起的液相的回收和蓄积使得可以均匀和连续地供给安装在该方法的下游的塔。这种很灵活的系统使得可以容忍流速和/或组成的变化大的进料。

方法基于真实情况但可以应用于其它料流和不同的组成比率。相的数量以及各相的持续时间不是限制性的。

在典型情况下,反应器过程逐步起作用,其中每天四个步骤。流速、组成和因此液体分数(fraction)根据步骤而变化。

图4示出纵坐标上的质量流量3和co2的摩尔浓度随着横坐标上的时间的变化。

外推该方法的模拟数据(逐步模拟+模拟瞬态阶段的附加点-以15分钟为增量),可以定义整个液相(体积和组成)。

本发明提出向罐9分配两个角色:分相器和液体滞留空间。

罐9的直径是根据用于分离罐的常规尺寸确定标准限定的。分离器9的高度由液体“滞留”功能决定。

除了确保连续操作外,本发明可以显著减小塔15的直径(减小大约50%),因为塔中的待处理流量11比在不使用本发明确定的情况下的流量(在液体分数最大的情况下)低得多。

来自分相器的液体11被输送到在约22巴(绝对压力)下操作的蒸馏塔15的中间位置。

被增浓了挥发性低于二氧化碳的溶剂的来自塔15的槽17的液体从塔被提取并输送到通过蒸汽21加热的再沸器19。所产生的蒸气返回塔并且被进一步增浓溶剂的液体23作为产品被回收。

来自塔的塔顶气体27被分为两部分,一部分29在冷凝器31中冷凝并作为回流33返回塔。另一部分35与来自分相器的气体13混合而形成增浓了二氧化碳的气体流37。

也可以从塔直接取得气体35。塔的顶部处于-20℃下且槽处于180℃下,因此仅塔的顶部需要绝热。

料流37通过也可以用于冷却冷凝器31的致冷单元41冷凝。通过冷凝料流37而形成的液体返回反应器r以减少所需的二氧化碳1的量。

塔顶处的产物为纯度很高的co2,它可以与由于膨胀而产生的co2混合以获得总纯度高于99.8mol%的co2。

挥发性较低的组分和“损失的”co2将在塔底部被发现。co2的期望水平的回收限定所需的再沸(例如使用蒸汽)。

co2的回收水平越高,塔15的底部处的产品(挥发性较低的组分,例如溶剂)的纯度越大(假设混合物中不存在第三种化合物)。

在co2产率为约99%的情况下,所提取的挥发性较低的组分(例如,溶剂)的纯度高于99mol%。它可以在该方法的上游被回收而不进行再处理。因此,料流25将再沸器19与反应器r的入口连接。

图2中仅示出二氧化碳和挥发性较低的组分的分离方法。溶剂与二氧化碳的混合物3在阀7中膨胀而形成液体并被输送到缓冲容器9。在加热器10中加热液体以使其成为两相,然后在具有槽再沸器19和顶部冷凝器31的蒸馏塔15中分离它。

与图1中的冷凝器不一样,顶部冷凝器接收全部来自塔15的塔顶气体,使其冷凝,并且使一部分33作为回流返回。冷凝气体的其余部分32通过泵34泵送并分割,一部分44经由阀46返回容器9,而其余部分43再循环到反应器r。使富含co2的液体返回容器9的目的在于在其中反应器r的输出呈现大的波动的瞬态阶段期间稳定塔进料组成。

图3中的方案消耗了更多能量,但可以具有两个温度水平并且减小了塔的温度梯度。除了图2中的元件外,它包括热交换器、加热器46、分相器47和泵53。来自再沸器19的槽液体23在交换器中被加热,在加热器46中被再次加热至所需的气化程度,并且所形成的两相料流在分离器47中分离。富含挥发性较低的组分的液体49用作产品。气体51用于加热交换器中的液体23并因此冷凝。泵53将其加压并使其返回容器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1