一种超低温烧结的高Q值微波介质陶瓷材料制备工艺及产品的制作方法

文档序号:15221151发布日期:2018-08-21 17:29阅读:313来源:国知局

本发明属于微波介质陶瓷领域,具体涉及一种超低温烧结的高q值微波介质陶瓷材料制备工艺及产品。



背景技术:

wlan、buletooth等通信技术广泛应用后,通信设备工作频率进入毫米波段,微波器件材料的介电损耗明显增大,信号传输时间延长,信号的衰减问题突出。一般认为,信号延迟时间与材料介电常数呈正比关系,而信号的衰减则与介电损耗直接相关。随着微波通信技术进一步向高频波段发展,微波信号需要能够既具有较高的信号传输速度又保持较低的损耗,这对介质基板和微波元器件提出了巨大挑战,因此,研究具有应用价值较低介电常数和超高品质因数的微波介质材料是当今和未来一个十分重要的方向。同时,ltcc多层共烧工艺技术在微波器件高集成性、多功能以及小型化的重要技术地位,对材料的低温烧结特性提出了进一步的要求。

现有低介高q值微波介质单相陶瓷系材料根据组成大致可以分为以下几类:

(1)硅酸盐体系:zn2sio4在1300℃下烧结后微波介电性能如下:εr=6.6,q×f=219000ghz,τf=-66ppm/℃。kim等人报道了采用zno缺位合成的zn1.8sio3.8的微波介电性能,发现部分zno缺位可以提升材料的q×f到147000ghz。mg2sio4在1300℃烧结后的介电常数εr为6.8,品质因数q×f为270000ghz,谐振频率温度系数τf为-60ppm/℃]。此外常见的硅酸盐系微波介质陶瓷还有casio3、mgsio3等。

(2)awo4系:a为ba、ca、co、zn、mg等,根据a位离子的半径不同,可以分为白钨矿以及黑钨矿结构。cawo4在1100℃烧结时的εr为10,q×f为75000ghz,τf值为-50ppm/℃,但其较高的烧结温度以及谐振频率温度系数不利于ltcc微波介质器件的应用。kim等人研究了在cawo4中添加少量h3bo3以及bi2o3使cawo4在850℃可以烧结致密,且其品质因数为70200ghz,同时保持了较低的介电常数8.7。具有单斜晶系黑钨矿结构的如mgwo4、znwo4、cowo4等同样保持了较为优异的微波介电性能,但与白钨矿结构bawo4与cawo4相比,其烧结温度更高,大都在1200℃左右。

(3)钛酸盐系:钛酸盐系材料是研究的比较早的低介微波介质陶瓷材料,其优异的微波介电性能使其广泛的应用于微波介质天线、介质波导等器件的开发。比较常见的如mgtio3、zntio3、catio3以及mg2tio4等。chen的研究当中,组分为0.95mgtio3-0.05catio3复相陶瓷在1250℃烧结后的εr值为20,q×f为66000ghz,τf值为-8.2ppm/℃,且制成的带通滤波器具有十分优异的性能。

这类单相材料虽然具有较为优异的微波介电性能,但其过高的烧结温度仍然不能适用于ltcc工艺,且其负谐振频率温度系数影响了介质器件对于温度的稳定性。目前微波材料的低温烧结是对既有的介质陶瓷通过添加烧结助剂或者改善粉体制备工艺等方法来实现的,虽然这些方法能够有效的降低烧结温度,但是以降低其微波介电性能尤其是品质因素为代价的。因此,如何在降低烧结温度以及调节其谐振频率温度系数的同时,获得优异的微波介质材料性能参数,是现有技术工作亟需解决的问题。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供一种可在超低温下进行烧结的高q值微波介质陶瓷材料的制备方法,该方法通过固相一步合成,无需添加任何烧结助剂,烧结温度符合ltcc技术的温度范围要求。

本发明的另一目的是提供这种低温烧结高q值介质陶瓷材料,该材料同时具有高品质因子、低介电常数和近零温度系数的特点。

实现本发明目的的技术方案是:

一种超低温烧结的高q值微波介质陶瓷材料,是通过如下工艺技术步骤得到的:

(1)以纯度≥99.0wt%的li2co3、baco3、wo3、v2o5为原料按照如下质量配比进行配料:

baco340%-44%

v2o538%-42%

li2co33%-6%

wo311%-14%

(2)将配好的物料在带有尼龙或树脂内衬的研磨设备中,采用氧化锆球进行湿式研磨,研磨介质为去离子水或无水乙醇,磨至物料细度达到2000目以下,烘干研细过筛后,加入粘结剂成型,制得陶瓷生坯。

(3)在550~600℃温度区间范围内对上述样品进行烧结,保温2~4h,即得到所需的微波介质陶瓷材料。

优选的,步骤(1)中采用纯度≥99.5wt%的原料按照如下质量配比方案进行配料:

baco342%-44%

v2o539%-41%

li2co34%-5%

wo312%-13%

优选的,步骤(2)中湿式研磨工艺中,研磨物料:磨球:研磨介质的质量比为1:1~1.5:1~2。

在本发明中,步骤(2)中所述湿式研磨工艺设备除带有尼龙或树脂内衬外没有其他特殊限制,只要能够满足在湿式研磨状态下能将物料研磨至2000目以下即可,可以为微波陶瓷材料制备领域常用的球磨机、搅拌磨等,优选为带有尼龙或树脂内衬的球磨机。

在本发明中,对步骤(2)中所述的成型方式和粘结剂没有特殊限制,可以采用本领域中介质陶瓷常用的成型方法和粘结剂,如液压成型、干压成型、流延成型等;粘结剂可以选用精细陶瓷成型过程中常采用的pva、pmma等;生坯形状可以为圆片状、圆柱状、圆盘状、方片状等微波介质陶瓷常用的形态。

在本发明中,对步骤(3)中所述的材料烧结工艺中:烧结设备选用精细陶瓷烧结过程中的常规烧结设备,只要能将样品加热至550~600℃温度区间,且具有精确控温和保温的能力即可,可以为马弗炉、推板窑、钟罩窑和辊道窑等。

本发明的有益效果:

本发明通过将高纯度的li2co3、baco3、wo3、v2o5按一定配比湿式研磨、成型后,在550~600℃下烧结,得到的一种具有高q值的微波介质材料,其主要特点有:

(1)本发明提供的低温烧结微波陶瓷材料,经检测具有超高的q值(q×f≥45000ghz)、近零的频率温度系数τf、低介电常数和良好的工艺稳定性。

(2)本发明所涉及到的低温烧结微波介质陶瓷材料制备工艺方法与传统的生产技术相比,生产工艺过程基本相同,主要特点是该微波介质陶瓷材料可在超低温度下(低于600℃)进行烧结,且同时具有超高品质因子和近零的温度系数。

(3)传统复相陶瓷制备方法需要通过预烧等多个工艺步骤,相比之下本发明所涉及的材料制备工艺方法仅需通过低温固相法一步合成,大大提高了生产效率、降低了生产成本,适合工业化推广。

具体实施方式:

表1示出了构成本发明的不同原料配比的18个具体实施例及其微波介电性能。其制备方法如上所述,用圆柱介质谐振器法进行微波介电性能的评价。

表1:

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1