一种高稳态的三维石墨烯空心球的制备方法及其所得材料和应用与流程

文档序号:15466607发布日期:2018-09-18 19:27阅读:614来源:国知局

本发明涉及一种高稳态的三维石墨烯空心球的制备方法及其所得材料和应用,属于纳米微球制备技术领域。



背景技术:

石墨烯是一种由碳原子以sp2杂化轨道结合且只有单原子层厚度的二维材料,是构成碳质材料的基本单元,具有优良的机械性能和导电、导热性能,已经逐渐成为一种理想的燃料电池催化剂载体材料,对于降低贵金属的载量,提高催化效率具有重大意义。然而,二维的石墨烯化学稳定性高,其表面呈惰性状态,很难在水及常见的有机溶剂中均匀分散并稳定存在,具有很强的憎水性,不利于贵金属基纳米颗粒的沉积和分散。石墨烯作为载体时,最宏观的表现就是极易产生大面积堆叠,褶皱和团聚,大大降低了其作为燃料电池电极催化剂材料的活性和利用率。首先,被石墨烯层层卷绕住的纳米粒子难以接触并且参与电极催化反应,贵金属本身的活性位点,即利用率难以保证。严重的褶皱和折叠还造成了石墨烯二维层状结构的破坏,大大减少了石墨烯本身的比表面积,大量增加了电子传递阻力。此外,在电池实际运转过程中,石墨烯的强疏水性和褶皱会增加燃料电池有机小分子的传质阻力,妨碍电解液的渗透,造成电池效率低下。为此,大量研究都被用于了缓解石墨烯的疏水性,减少褶皱和团聚。其中,实现二维向三维石墨烯的转变,可以在很大程度上保留单个石墨烯片的独特性质,最大化的减少褶皱,增大比表面积,并且实现对二维结构的规律剪裁。目前,制备三维石墨烯空心球的方法主要集中在模板法,即首先制备出海绵状、三维网状或者球形的模板材料,再通过后续程序,例如π-π堆积,静电引力等的方法,使二维的石墨烯在模板表面沉积或包覆,去除模板后,即可得到基于原模板的,尺寸与形貌固定的的三维石墨烯材料,然而,由于石墨烯本身具有柔软的结构特性,当以三维形式存在时,其稳定性难以得到保证。



技术实现要素:

发明目的:为解决上述技术问题,本发明提供了一种高稳态的三维石墨烯空心球制备方法及其所得材料和应用。该方法通过硬模板法制备得到的三维石墨烯空心球,不仅操作简单快捷,易于规模化生产,而且制得的三维石墨烯空心球具有比表面积大,导电性好,稳定性优异等优点。

技术方案:本发明采用如下技术方案:

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:以通过层层自组装带上正电的SiO2球为硬模板,通过静电作用,使带负电的氧化石墨烯(GO)包覆到SiO2球的表面,经过高温热处理进行脱氧和固化处理,最后去除掉SiO2球模板后,即可得到高稳态的三维石墨烯空心球。

形貌均匀,尺寸单一的SiO2球被用作所述硬模板,所述SiO2球要经过三层电荷修饰,即layer-by-layer层层自组装法,使其表面带超强的正电。

所述的高稳态石墨烯空心球的制备方法,更具体地包括以下步骤:

1)SiO2@rGO的制备:取SiO2球硬模板和GO,分别分散在水中,将GO溶液逐滴滴入SiO2溶液中,搅拌,离心收集固体,烘干,得到SiO2@GO;将SiO2@GO在惰性氛围中,程序升温至一定温度进行高温煅烧脱氧固化,然后冷却,得到SiO2@rGO;

2)高稳态三维石墨烯空心球的制备:将得到的SiO2@rGO分散在NaOH溶液中,搅拌,然后用蒸馏水离心洗涤,将所得产物烘干,即得所述高稳态三维石墨烯空心球。

作为优选:

步骤1)中所述程序升温为4-6℃/min,高温煅烧温度为200~800℃,高温保持时间为2-4h。所述惰性气氛为氮气、氩气等。

步骤2)所述NaOH溶液的浓度为2mol/L,刻蚀SiO2时,即搅拌时,水浴温度为25~60℃,搅拌时间为7-9h。

上述制备方法所制得的高稳态石墨烯空心球,其具有比表面积大,导电性好,稳定性优异等优点,能够作为燃料电池催化剂载体材料应用,效果显著。

技术效果:本发明通过硬模板法制备高稳态的三维石墨烯空心球,工艺简便易行,便于操作,有利于规模化生产;该方法操作简单、快捷,制备得到的高稳态石墨烯空心球形貌单一、大小均一,可实现规模化生产。相比于传统的二维石墨烯材料,通过本方法制得的石墨烯空心球比表面积大、石墨化程度高,导电性好,在电化学测试中表现出了非常优异的稳定性,可以用作一种新型的高稳态的电催化剂载体。

下面结合具体实施例对本发明进行详细描述。本发明的保护范围并不以具体实施方式为限,而是由权利要求加以限定。

附图说明

图1是根据本发明方法制备的不同热处理温度下的三维石墨烯空心球的TEM图谱。

图2a,b分别是不同放大倍数下根据本发明方法制备的高稳态石墨烯空心球的SEM图谱。

图3是根据本发明方法制备的高稳态三维石墨烯空心球的BET图谱。

图4是根据本发明方法制备的高稳态三维石墨烯空心球和氧化石墨烯对比的XRD图谱。

图5是根据本发明方法制备的不同热处理温度下的三维石墨烯空心球和氧化石墨烯的拉曼图谱。

图6是根据本发明方法制备的高稳态石墨烯空心球和氧化石墨烯的红外图谱。

图7是根据本发明方法制备的高稳态石墨烯空心球的加速耐久力测试曲线。

图8是根据本发明方法制备的高稳态石墨烯空心球在加速耐久力测试后的TEM图谱。

具体实施方式

下面通过具体实施例对本发明所述的技术方案给予进一步详细的说明,但有必要指出以下实施例只用于对发明内容的描述,并不构成对本发明保护范围的限制。

以下实施例中,均采用形貌均匀,尺寸单一的SiO2球作为所述硬模板,SiO2球是采用1968年报道的法制备得到。然后所述的SiO2球要经过三层电荷修饰,即layer-by-layer层层自组装法,使其表面带超强的正电,得到modified-SiO2。

实施例1

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@rGO的制备:量称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以5℃/min进行程序控制升温至200℃进行高温脱氧,在200℃下维持3h,然后冷却至室温,得到SiO2@rGO。

2)高稳态三维石墨烯空心球的制备:将得到的SiO2@rGO分散在50mL 2M NaOH溶液中,于45℃水浴中搅拌8h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到高稳态三维石墨烯空心球。

实施例2

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@rGO的制备:量称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以5℃/min进行程序控制升温至300℃进行高温脱氧,在300℃下维持3h,然后冷却至室温,得到SiO2@rGO。

2)高稳态三维石墨烯空心球的制备:将得到的SiO2@rGO分散在50mL 2M NaOH溶液中,于45℃水浴中搅拌8h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到高稳态三维石墨烯空心球。

实施例3

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@rGO的制备:量称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以5℃/min进行程序控制升温至400℃进行高温脱氧,在400℃下维持3h,然后冷却至室温,得到SiO2@rGO。

2)高稳态三维石墨烯空心球的制备:将得到的SiO2@rGO分散在50mL 2M NaOH溶液中,于45℃水浴中搅拌8h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到高稳态三维石墨烯空心球。

实施例4

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@rGO的制备:量称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以5℃/min进行程序控制升温至500℃进行高温脱氧,在500℃下维持3h,然后冷却至室温,得到SiO2@rGO。

2)高稳态三维石墨烯空心球的制备:将得到的SiO2@rGO分散在50mL 2M NaOH溶液中,于45℃水浴中搅拌8h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到高稳态三维石墨烯空心球。

实施例5

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@rGO的制备:量称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以5℃/min进行程序控制升温至600℃进行高温脱氧,在600℃下维持3h,然后冷却至室温,得到SiO2@rGO。

2)高稳态三维石墨烯空心球的制备:将得到的SiO2@rGO分散在50mL 2M NaOH溶液中,于45℃水浴中搅拌8h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到高稳态三维石墨烯空心球。

实施例6

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@rGO的制备:量称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以5℃/min进行程序控制升温至700℃进行高温脱氧,在700℃下维持3h,然后冷却至室温,得到SiO2@rGO。

2)高稳态三维石墨烯空心球的制备:将得到的SiO2@rGO分散在50mL 2M NaOH溶液中,于45℃水浴中搅拌8h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到高稳态三维石墨烯空心球。

实施例7

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@rGO的制备:量称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以5℃/min进行程序控制升温至800℃进行高温脱氧,在800℃下维持3h,然后冷却至室温,得到SiO2@rGO。

2)高稳态三维石墨烯空心球的制备:将得到的SiO2@rGO分散在50mL 2M NaOH溶液中,于45℃水浴中搅拌8h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到高稳态三维石墨烯空心球。

实施例8

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@GO的制备:称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,于40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以5℃/min进行程序控制升温至600℃进行高温脱氧,在600℃下维持3h,然后冷却至室温,得到SiO2@rGO。

2)三维石墨烯空心球的制备:将得到的SiO2@GO分散在50mL 2M NaOH溶液中,于45℃水浴中搅拌8h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到三维石墨烯空心球。

实施例9

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@GO的制备:称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,于40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以4℃/min进行程序控制升温至600℃进行高温脱氧,在600℃下维持4h,然后冷却至室温,得到SiO2@rGO。

2)三维石墨烯空心球的制备:将得到的SiO2@GO分散在50mL 2M NaOH溶液中,于25℃水浴中搅拌9h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到三维石墨烯空心球。

实施例10

一种高稳态三维石墨烯空心球的制备方法,包括以下步骤:

1)SiO2@GO的制备:称取360mg modified-SiO2和90mg GO分别超声分散在60mL的水中,将均匀分散的GO溶液逐滴滴入modified-SiO2溶液中,室温下搅拌8h。离心收集固体,将固体放入烘箱中,于40℃条件下烘干,得到SiO2@GO。将制备得到的SiO2@GO均匀的铺在瓷舟底部,将瓷舟放入管式炉恒温部,在氮气氛围中,以6℃/min进行程序控制升温至600℃进行高温脱氧,在600℃下维持2h,然后冷却至室温,得到SiO2@rGO。

2)三维石墨烯空心球的制备:将得到的SiO2@GO分散在50mL 2M NaOH溶液中,于60℃水浴中搅拌7h。然后用蒸馏水离心洗涤,将所得产物放到烘箱中,40℃条件下烘干,得到三维石墨烯空心球。

采用TEM、SEM、BET、XRD、拉曼等途径对以上实施例制备的高稳态三维石墨烯空心球进行物理表征。从TEM(图1)图谱可以看出,高温热处理温度达到600℃以上,形成的三维石墨烯空心球形貌最为稳定单一。从SEM(图2)图谱可以看出,通过以上实施例制备的三维石墨烯空心球为形貌完好的中空结构,尺寸约为150nm,且球体分布较均匀,球与球之间形成互联网状结构。BET(图3)图谱表明了三维石墨烯空心球具有较大的比表面积(375.02m2/g)。从XRD(图4)图谱可以看出衍射角2θ在26.6°的位置出现了明显的衍射峰,对应于石墨(002)的衍射晶面,此外,并无其他物质的特征峰出现,证明石墨烯能够成功地包覆在SiO2球表面,并且SiO2球能够完全被刻蚀掉,即本发明制备的材料纯净度较高,并无其他杂质的存在。拉曼(图5)图谱表明制备出的高稳态三维石墨烯空心球具有较高的石墨化程度。红外(图6)图谱显示在600℃的高温脱氧温度下,羟基和羧基峰的强度下降,而环氧峰几乎消失。这表明经过在高温热处理,氧化石墨烯表面的官能团被除去而得到了还原氧化石墨烯。稳定性测试(图7)曲线表明通过以上实施例制备的三维石墨烯空心球具有非常优异的稳定性。从TEM(图8)图谱可以看出,在经过1000圈加速耐久力测试后,三维石墨烯空心球的解构能够很好的保持,并未发生明显改变。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1